AVERAGING THEORY FOR SIGN-SIGN LMS

B. D. O. Anderson1, I. H. Y. Mareels2, W. A. Sethares4 and C. R. Johnson2

ABSTRACT

This paper examines the behavior of the "sign-sign" algorithm, in which the sign (or signum) function is applied to both the regressor vector and the error signal. Despite the discontinuity of the sign function, we show that averaging theory can be applied when the algorithm is driven by ergodic random inputs. The analysis defines an averaged equation around which the trajectories of the sign-sign algorithm cluster. The averaged equation is shown to converge when the algorithm is excited by Gaussian inputs. Simulations show that other input distributions cause the averaged equation to diverge.

1. INTRODUCTION

The parameter of the least Mean Square (LMS) algorithm are updated according to [1]

\[\theta_{k+1} = \theta_k - \mu X_k e_k \tag{1.1} \]

where \(\mu \) is a small scalar gain, \(X_k \) is the regressor vector containing time shifted versions of the inputs, and \(e_k \) is the measured error. Implementation of (1.1) imposes certain hardware demands, including a need for multipliers. To lessen such demands, several variants of (1.1) have been proposed, which replace the update kernel \(X_k e_k \) by \(\text{sgn}(X_k) e_k \), \(X_k \text{sgn}(e_k) \) or \(\text{sgn}(X_k) \text{sgn}(e_k) \). These are referred to as the signed regressor algorithm, the signed error algorithm and the sign-sign algorithms, respectively. If \(\theta^* \) represents the true parameterization, then the evolution of the parameter error \(\theta_k = \theta - \theta^* \) for the sign-sign algorithm is defined by

\[\theta_{k+1} = \theta_k - \mu \text{sgn}(X_k) \text{sgn}(X_k^* e_k) \tag{1.2} \]

With stochastic inputs, LMS is well-studied, the signed regressor has recently been analyzed [4] and algorithms of the form of the signed error are amenable to analysis as in [10]. This paper therefore focuses on the sign-sign algorithm and shows by example that nontrivial stochastic inputs can cause instability. In view of this possibility of divergence (for

1Department of Systems Engineering, Research School of Physical Sciences, P.O. Box 4, Australian National University, Canberra, A.C.T. 2601, Australia.

3Department of Electrical and Computer Engineering, University of Newcastle, New South Wales, Australia.

4Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI.
excitation sequences which pose no problem for the LMS algorithm) it becomes important to classify situations leading to acceptable behavior and to unacceptable behavior. This paper contributes to this classification by proving the stability of the sign-sign algorithm when excited by a correlated Gaussian process. In general, the application of averaging theory to an equation like

$$\theta_{k+1} = \theta_k - \mu f(x_k, \theta_k)$$

requires \(f(\cdot, \cdot) \) to satisfy a Lipschitz continuity condition in its second argument, see e.g. [7]. In case the \(X_k \) sequence is independent, an averaging result for \(f(\cdot, \cdot) \) discontinuous in \(\theta_k \) is available in [3], while [10] offers an averaging result for dependent \(X_k \) and discontinuous \(f(\cdot, \cdot) \). This result takes some work to obtain, and, reasonably, requires side conditions (stationarity) on the \(X_k \) sequence. The result is applied in [10] to the signed error algorithm.

The method of [10] leads to results governing the probability distribution of the suprema over a finite time interval of the difference between the solution of the unaveraged equation and an averaged differential equation. Here we present a result for the suprema of the expectation of this difference, again over a finite time interval. This is of course a similar result; it is obtained with much simpler machinery. In the process, the meaning of small \(\mu \) is clarified. Conventional averaging requires that \(\mu \) be small. Here it only makes sense to say \(\mu \) is small with respect to the magnitude of \(\lambda_0 \). For if \([\theta_k] \) is a solution trajectory of the sign-sign algorithm for some \(\mu \), then \([\lambda_0 \theta_k] \) is a solution trajectory when \(\mu \) is replaced by \(\lambda \), for any positive \(\lambda \), and the \(X_k \) sequence is left unaltered. The real point is that one can average and secure insights while \(\mu \) is small relative to \(\lambda_0 \). Averaging theory is thus inapplicable if \(\lambda_0 \) tends to the vicinity of the origin. On the other hand \(\lambda_0 \) small means that the estimate \(\theta_k \) is close to the desired parameterization \(\theta^* \).

It is worth noting that the LMS algorithm, the signed regressor, signed error and the sign-sign algorithms do not have identical convergence properties. For example, the sign-sign algorithm takes steps of magnitude \(\pm \mu \), so convergence to zero is generically impossible. More importantly though, there exist periodic deterministic input sequences for which the LMS algorithm converges (with suitably small \(\mu \)), and which led to divergence of the signed regressor and sign-sign algorithms, see [6] and [4]. There are also deterministic inputs for which LMS and sign-sign algorithms converge but signed-regressor diverges, and others for which LMS and signed-regressor converge but sign-sign diverges.

Section 2 defines an averaged function \(f_{av}(\cdot) \) (analogous to \(f(\cdot, \cdot) \) of (1.3)) and an averaged error system with error \(\theta^a \), and then shows (under appropriate hypothesis) that the error system for the sign-sign algorithm is stable whenever the averaged error system is stable. The result is in the form of a bound on the expected difference between \(\theta_k \) and \(\theta^a \).

Section 3 demonstrates that \(\theta^a \) is uniformly stable when the input is a Gaussian process. Combined with the result of section 2, this shows that the estimates \(\theta_k \) of the sign-sign algorithm are convergent to a \(\mu \)-region about \(\theta^* \).
Section 4 presents two sets of simulations. The first simply supports the preceding analysis by example (i.e., that a^u stable implies $a^* u$). The second set shows that a^u is not always well behaved. By choosing certain non-Gaussian random inputs, we show that a^u and the sign-sign algorithm diverge together. This shows that the relationship between a^u and the sign-sign algorithm is tighter than we were able to prove since we were unable to prove that unstable a^u implies unstable a. It also shows that the stability of the algorithm is highly dependent on the properties of the excitation sequence.

2. STOCHASTIC AVERAGING FOR THE SIGN-SIGN ALGORITHM

Suppose that X_k is a n-dimensional random process $X_k = (x_k, x_{k-1}, \ldots, x_{k-n+1})$, with x_k ergodic. Define the averaged update term as

$$f_{av}(\theta) = E[\text{sgn}(x_k) \text{sgn}(x_{k-1})] \quad (2.1)$$

This section relates the behavior of the sign-sign error system (1.2) to the behavior of the averaged equation

$$\dot{\theta}_{k+1} = \theta_k - \eta f_{av}(\theta_k) \quad (2.2)$$

with the additional assumption that (1.2) and (2.2) are initialized identically, that is,

$$\theta_0 = \theta^0 \quad (2.3)$$

The initial value θ_0, if regarded as a random variable, is independent of the x_k sequence.

For $n > 1$ we will make several assumptions concerning f_{av} and the properties of the input process X_k. The first requires Lipschitz continuity of the averaged update $f_{av}(\theta)$.

Assumption 1: Assume that $f_{av}(\theta)$ exists for all $\theta \in \mathbb{R}^n$ and that f_{av} is Lipschitz continuous in D, an open subset of \mathbb{R}^n. \\
Notice that it is impossible for f_{av} to be Lipschitz continuous at the origin unless f_{av} is identically zero. An important special case is provided by a Gaussian, zero mean sequence $\{x_k\}$. Let

$$E[X_k^T X_k] = R = r_{ij} \quad (2.5)$$

Let r_{ij} be the rows of R, and suppose R is positive definite. Then for a fixed but arbitrary θ, the ith component of the vector $f_{av}(\theta)$ can be written (see for example [11, p. 184])

$$E(\text{sgn} X_k \text{sgn} X_k^T) = \frac{2}{\pi} \sin^{-1} \left(\frac{r_{ij}}{\sqrt{r_{ij}^2 + 2}} \right) = \left[f_{av}(\theta) \right]_i \quad (2.6)$$

One can verify that $f_{av}(\theta)$ is Lipschitz continuous in the set

$$D = \{ \theta \in \mathbb{R}^n, 101 \geq r_{ij} \}$$
where \(\epsilon \) is an arbitrary, positive constant, with a global Lipschitz constant inversely proportional to \(\epsilon \); notice that

\[
[f_{av}(\omega)]_t = \frac{Z}{\pi} \sin^{-1} \left(\frac{r [r^{1/2} k]}{(\alpha^T \beta)^{1/2} r^{1/2}} \right)
\]

\[
= \frac{Z}{\pi} \left[\frac{Z}{2} \cos^{-1} \left(\frac{[r^{1/2} k]}{(\alpha^T \beta)^{1/2} r^{1/2}} \right) \right]
\]

\[
= 1 - \frac{Z}{2} \frac{r^{-1/2}}{r^{1/2} R^{-1/2}} \text{ (angle between vectors } R^{-1/2} r_0 \text{ and } R^{1/2} \alpha) \]

(2.7)

In comparing (1.2) and (2.2), we shall also make assumptions on the character of the process \(X_k \). The first concerns the direction in which the vector \(X_k \) can point, essentially, requiring that no direction is infinitely likely, in the sense that the probability density associated with the \(X_k \) direction contains no delta function.

Assumption 2: Let \(dS \) be an elemental area on the unit sphere. Then there exists \(\delta > 0 \) (independent of the location of \(dS \)) such that

\[
Pr[|X_k X_{k+1} dS| < \delta dS \text{ for every } k] \leq \delta dS
\]

(2.8)

Remark: Assumption 2 is a technical assumption which insures that \(\theta \) is not orthogonal to \(X_k \) infinitely often, and so prevents a "lock up" of the algorithm in some particular direction in parameter space. The only practically important stochastic processes which violate this assumption, at least in a communication or control engineering context, are those whose range consists of a finite number of points.

Another assumption on the \(X_k \) is a mixing condition. This essentially requires that information about the process at time \(k \) becomes less significant in determining the value at time \(k+1 \) as \(n \) becomes larger. Mixing is a way of exploiting analytically the idea that the auto correlation of a dependent process decreases with time.

Assumption 3: The following mixing properties hold:

\[
\lim_{K \to \infty} E \left[\prod_{k=0}^{K-1} \left(\sum_{k=mK}^{(m+1)K-1} \text{sgn} X_k \text{sgn}(X_k') \right) \right] \theta_{nk} = \theta^0
\]

(2.10)

We note that we shall also be using the following particular ergodic property:
Assumption 4: In the set D, there holds

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{(m+1)K-1} \text{sgn} x_k \text{sgn}(x_k^m r_k) = 0$$

(2.11)

In the following result, we shall establish conditions under which $E(\theta_0 - \theta_k^m)$ remains small. One of these conditions is that θ_k^m does not get too small, which should be no surprise. The fact that the Lipschitz constant associated with $f_{av}(0)$ becomes infinite as one seeks to include arbitrarily small θ_k^m in the domain of definition suggests that one might expect difficulties in obtaining a result which permitted arbitrarily small θ_k^m. Also, as mentioned in the introduction, averaging suggests that we may need m small relative to θ_k^m.

The first connection between (1.2) and (2.2) is as follows.

Proposition 1: Consider equations (1.2) and (2.2) with the same initial condition as per (2.3), and with Assumptions 1 through 4 in force. Let $\epsilon > 0$ be arbitrary. With K sufficiently large, with u_K sufficiently small and with r such that for all $m \leq r$ there holds

$$\left| \frac{\theta_k^m}{\theta_k} - \frac{\theta_k}{\theta_k} \right| \leq 2\mu_K$$

and for all $k \leq r$ there holds $\theta_k^m \in D$, then

$$\sup_{0 \leq k < K} E(\theta_k^m - \theta_k) \leq \mu_K \in M$$

(2.12)

with

$$M = 3\epsilon \left[1 + (1 + \mu_K)(1 + \mu_K)^r - 1 \right]$$

(2.13)

and L independent of μ, K, r.

Remark: The minimum value which K can take depends on both the ergodic and mixing properties of X_k and on ϵ, with smaller ϵ requiring a large value of K. The maximum value which μ_K can take depends on ϵ, with smaller ϵ requiring a smaller maximum value. It is most convenient to think of ϵ being chosen first, then (large enough) K, then (small enough) μ. Then r is chosen in effect so that over $[0, rK]$, the solution of the averaged equation stays in D and does not get too small.

Proof: See [16]

Proposition 1 demonstrates conditions under which the sign-sign error system (1.2) and the averaged equation (2.2) behave alike, assuming fixed μ. Note also that the solution of (2.2) can be related to the solution of a differential equation:

$$\frac{d\theta_k^m}{dt} = -f_{av}(\theta_k^m) \quad \theta_k^m(0) = \theta_k^m$$

(2.22)

so that as $\mu = 0$, with μK constant, $\theta_k^m + \theta_k$ in a certain sense over an interval proportional to ϵ^{-1}. Assume that if ϵ is chosen first, and K is chosen to exceed its allowed lower bound, then μ can be chosen arbitrarily small. Consider in fact ϵ, K fixed, and μ, r variable, with μK fixed so
that $\theta^{a,k}_t = \theta^d(\mu K)_t > \sigma$, and indeed $\theta^d(t)_t > \sigma$ for all $t < \mu K$ and such that $\theta^d_0 \in \mathbb{D}$, $K < \mu K$. Then as $\mu \to 0$, it is easily checked that

$$\mu Ke^{\epsilon} e(\mu Kr) e^{\mu Kr}.$$ \hspace{1cm} (2.23)

Since ϵ is arbitrary, this shows that

$$\lim_{\mu \to 0} \sup_{0 < k < T} E \theta^a_{k+1} - \theta^a_k = 0$$

when μK remains constant. We thus have

Proposition 2: Consider equations (1.2) and (2.2) with the same initial condition as per (2.3), and with Assumptions 1 through 4 in force. Suppose that the solution of (2.2) obeys $\theta^d(t)_t > \sigma > 0$ and remains in \mathbb{D} for all $t \in [0, T]$. Then,

$$\lim_{\mu \to 0} \sup_{0 < k < T} E \theta^a_{k+1} - \theta^a_k = 0.$$ \hspace{1cm} (2.22)

Proposition 2 is essentially a consistency result, showing that the sign-algorithm and the averaged equation behave the same way for vanishing stepsizes. The result was easy to derive once the fixed stepsize case was shown in proposition 1.

3. BEHAVIOR OF THE AVERAGED EQUATION WITH GAUSSIAN INPUTS

In the previous section, we described how the solutions of the stochastic equation and the averaged equation are related. This section shows that the averaged equation converges to a region about the origin when the input is a Gaussian process. The averaged equation from (2.2) and (2.6) is

$$\theta^a_{k+1} = \theta^a_k - \frac{2}{\pi} \sin^{-1}\left(\frac{1}{(r_{ij})^2 (a^a_k R a^a_k)^{1/2}} \right)$$ \hspace{1cm} (3.1)

Now observe that because $(2/\pi)0 < \sin \theta < 0$, for $\theta \in [0, \pi/2]$, we have $z \in \sin^{-1}z < (\pi/2)z$ for $z \in [0, 1]$, while $z > \sin^{-1}z > (\pi/2)z$ for $z \in [-1, 0]$. This means $\sin^{-1} = v(z)$ where $v(z) \in [1, \pi/2]$ for every $z \in [-1, 1]$. Accordingly, (3.1) can be replaced by

$$\theta^a_{k+1} = \theta^a_k - v(z) \frac{1}{\pi} \text{diag}[v(z_1), \ldots, v(z_n)] \text{vec}\left[\frac{1}{(r_{ij})^2 (a^a_k R a^a_k)^{1/2}} \right]$$ \hspace{1cm} (3.2)

with $v(z) \in [1, \pi/2]$, and $z = \frac{1}{(r_{ij})^2 (a^a_k R a^a_k)^{1/2}}$.

Equation (3.2) may be rewritten as follows:
where the matrix L_k is defined as:

$$L_k = \frac{1}{\sqrt{n}} \text{diag}(v(z_k)) \text{diag}((r_{1f})^{-\frac{1}{2}}) \quad (3.4)$$

To demonstrate that the averaged equation (3.1) is uniformly stable, consider the following candidate Lyapunov function:

$$V(e) = e^t R e \quad (3.5)$$

along the trajectories of (3.3) the difference

$$V(e_{k+1}^\beta) - V(e_k^\beta) = -\nu e_{k+1}^\beta R L_k e_k^\beta (e_k^\beta)^{-\frac{1}{2}} + \nu^2 e_{k+1}^\beta R L_k R e_k^\beta (e_k^\beta)^{-1}$$

using the definition of L_k in (3.4) and the property that $v(z_k) \in [1, \pi/2]$, can be over bounded as

$$V(e_{k+1}^\beta) - V(e_k^\beta) \leq -\alpha_1 V(e_k^\beta)^{\frac{1}{2}} + \nu^2 \alpha_2 \quad (3.6)$$

where α_1 and α_2 are given by:

$$\alpha_1 = \frac{2}{\pi} \min_{\lambda_{k}} \left(-\frac{1}{2} j_{\min}(R) \right),$$

$$\alpha_2 = \left(\min_{\lambda_{k}} \frac{1}{2} j_{\max}(R)^2 \right).$$

This demonstrates that

$$V(e_{k+1}^\beta) - V(e_k^\beta) < 0 \text{ if } V(e_k^\beta) > (\nu \alpha_2 / \alpha_1)^2$$

Thus the averaged equation (3.3) is uniformly stable and θ_k^β is asymptotically of the order of ν.

From proposition 1 it follows that the trajectories of the averaged equation are on average good approximations to the trajectories of equation (2.2) over the interval $[0,N]$ provided $\theta_0^\beta = \alpha$, $k \in [0,N]$ and $\theta_k^\beta \in D$. In the Gaussian case, these two conditions are identical. Since one can always choose D to be $\{0 \in R^n, \theta_0^\beta = \alpha, 0 \leq l(\beta) \leq \min_{\max}(R)^{-1/2}(R)\theta_0^\beta \}$, so the signe-sign algorithm drive by a Gaussian input sequence (x_k) on average exhibits convergent behavior for all initial conditions $\theta_0^\beta > \mu C$, (for some constant $C > 0$ independent of ν) and asymptotically θ_k^β becomes of the order of ν.
4. SIMULATION RESULTS

This section presents two sets of simulations. The first set illustrates the validity of the averaging results of the previous sections and the second set shows that the sign-sign algorithm tracks the averaged equation even when the averaged equation diverges.

Figure 1 shows simulations in which the two-dimensional sign-sign algorithm was excited by i.i.d. (pseudorandom) Gaussian inputs. In each run, the two-dimensional sign-sign algorithm was initialized at (2.5) in parameter error space. Each converges to a region about the origin (parameter error equal to zero) in a few hundred iterations. The steady center line is an approximation to the averaged equation \(\bar{\theta} \) which was computed at each \(t \) by
\[
\bar{\theta}(t) = \frac{1}{K} \sum_{i=1}^{K} \text{sgn} \left(e_{i}(t) \right) \]
where \(e_{i}(t) \) is a pseudorandom input sequence. The value \(K = 10,000 \) was found empirically to give an appropriately smooth averaging window for this calculation. The simulation shows that individual runs of the sign-sign algorithm tend to cluster around the averaged equation, as expected from proportions 1 and 2. The stepsize was set at \(\mu = 0.1 \).

For the second set of simulations, a non-Gaussian, dependent stochastic process was chosen. The process alternates between two nonzero mean (but independent) Gaussian random variables \(S_{1} \) and \(S_{2} \) in a Markov like manner. Let \(S_{1} \) be normally distributed with mean 1.5 and variance 0.1, and let \(S_{2} \) be normal with mean -0.1 and variance 0.1. If the value of the process at time \(k \) is determined by \(S_{1} \), then with probability \(\alpha \), the value of the process at time \(k+1 \) will be determined by \(S_{1} \), and with probability \(1-\alpha \), the value will be determined by \(S_{2} \). Similarly for \(S_{2} \) with transition probabilities \(\alpha \) and \(1-\alpha \). For the simulation, \(\alpha = .2 \) and \(\beta = .8 \) were chosen. This particular process was used because it fulfills the Assumptions, (a simple Markov chain would fail Assumption 2 since \(X_{k} \) would point infinitely often in certain directions), and because the averaged equation diverges in simulation. It is an interesting (and non-trivial) question whether the divergence of \(\bar{\theta} \) could actually be proven.

This process was used to excite a six-dimensional sign-sign algorithm. The trajectories of the averaged equation (which is computed as before) are shown in Figure 2. The graph is a two-dimensional slice of the six-dimensional parameter error space and the trajectories of \(\bar{\theta} \) are shown for seven different starting values. In each case, the trajectory moves near the origin, and then proceeds to diverge along one of the two \(45^\circ \) lines. Since the function \(\bar{\theta} \) fails to be Lipschitz at the origin, it is not surprising that the solution fails to be well-defined near the origin. In the present case, there are two solutions, corresponding to the two unstable directions. It should be noted that the initial convergence to the origin in Figure 2 is not a generic behavior, that is, other input sequences, other plants (values of \(\bar{\theta} \)), and other 2-D slices of the 6-D parameter error space would not necessarily show convergence to the origin before diverging. What is generic, however, is that multiple solutions of \(\bar{\theta} \) at the origin can lead to diverging "arms" in parameter error space. Moreover, this example is not singular, in the sense that a continuum of values for \(S_{1} \), \(S_{2} \), \(\alpha \) and \(\beta \) lead to similar divergent behavior. It is also not hard to find multi-state Markov-like processes for which \(\bar{\theta} \) diverges in simulation.
The behavior of an algorithm is only a useful guide if individual runs of the algorithm behave like the averaged equation. Figure 3 shows a number of simulations all initialized at the same location (-2, -6) in parameter space. The individual runs tend to cluster around the averaged equation until they approach the origin, where averaging fails to hold. Then, the trajectories move out along one or the other of the unstable branches, apparently forever. These simulations indicate that the assumptions made in the theory are not restrictive, in that the behavior of the averaged equation is a good representation of the actual response, in both stable and unstable situations.

5. CONCLUSION

We have established two key facts about the sign-sign algorithm. The random trajectories of the unaveraged equation cluster around those of the averaged equation, at least until the solution of the latter becomes small, (under conditions of ergodicity, mixing, small μ etc). Second, trajectories of the averaged equation excited by Gaussian inputs converge to a ball around the origin. Combining these facts, the trajectories of the unaveraged random equation with Gaussian inputs must also converge to a region in the vicinity of the origin.

In addition, we have investigated (through simulation) the behavior of the sign-sign algorithm and the related averaged equation when excited by certain non-Gaussian processes. In all cases investigated, stability/instability of the averaged equation was coupled with stability/instability of the actual algorithm. In particular, a simple class of input processes was found for which the sign-sign algorithm diverges.

The averaged equation provides a tool which may lead to a further understanding of what types of input excitation lead to stability/instability of the sign-sign algorithm, though more insights are necessary in order to unambiguously classify all suitable and unsuitable inputs.

REFERENCES

Figure 1: Trajectories and averaged trajectories of two dimensional algorithm with gaussian regressor

Figure 2: Two-dimensional cross section of six-dimensional algorithm exhibiting instability

Figure 3: Unstable algorithm showing ultimate divergence