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1. INTRODUCTION

In frequency-domain array beamforming the
output power can be written as an Hermitian form
of the cross-spectral matrix of the receiver
outputs for both conventional and optimum
beamforming algorithms [1-3]. Furthermore, in a
number of bearing estimation algorithms [4-5] the
eigenvalues and eigenvectors of the
cross—~spectral matrix play a central role.

For many types of arrays and noise fields, the
exact cross—-spectral matrix has a particular
structure, e.g. in a noise field consisting of a
superposition of plane waves and for a linear
array of equispaced receivers, it is Toeplitz
[6}. This is due to the fact that the spatial
covarlance function is a function only of the
spatial separation between two receivers. In
such cases we refer to the cross-spectral matrix
as a structured covariance matrix. When
-estimating the cross—spectral matrix of recelver
outputs, it can be an advantage to constrain the
estimate to have the same structure as the exact
ocross-spectral matrix, i.e, to estimate a
structured covariance matrix. The problem of
estimating a structured covarilance matrix is the
main focus of this paper.

Although the results of this paper can be
extended to arbitrary arrays attention here is
restricted to linear arrays of equispaced
receivers. In this case the problem becomes that
of estimating an Hermitian Toeplitz matrix.

First the maximum likelihood estimator of such a
covariance matrix is discussed [7-9] and its
relation to minimum cross-—entropy estimation is
outlined.

A number of new estimators are also proposed
{9]; these are based upon various information
theoretic measures of the differences between two
hypotheses. Non~linear equations for the new
estimators are derived and some sample
illustrations are glven to illustrate both
statigtical properties of these eatimators and to
compare their performance when used in
beamforming applications.

The estimators are shown to be closely related
to optimum beamformers in interesting but
surprising ways.

2. NOTATION AND REVIEW OF BEAMFORMING

For frequency~domain beamforming, the
narrowband receiver outputs are multiplied by
phase factors proportional to the relative time
delay, 1,(8), of the jth receiver and the output
of a con%entional beamformer, p_, steered in the
direction § is given by ¢

- 418

p, = ¥ (8,6) R(E) ¥(8.6)
where
R(E) = <x(D)x ()>

and s the cross-gpectral matrix of receiver
outputs. Thus the mean output power of a
conventional besmformer is an Hermitian form of
the cross-spectral matrix.

In practice, this matrix is often estimated
from a number of realisations of the receiver
outputs by replacing the ensemble average
with a simple linear average, e.g. given M
samples of the recelver outputs
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the cross-spectral matrix of receiver outputs is
estimated as -
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In general, this estimator will not be
structured.

3. ESTIMATION OF FINITE DIMEWSIONAL TOEPLITZ
MATRICES

Here we conslder a number of different
estimators of a finite K-dimenslonal Toeplitz
matrix, R, from ¥ independent realisations of
the recelver outputs.

3,1 Maximum likelihood estimation
Let x(m), m=1,2,...,M denote M independent
sample realisations of the vector of complex
receiver outputs. Assuming these are CGaussian
the joint probability density function is given
by
-ME.
PR aXysen sy =(m) [R]

=M M
Hexp(—xH R-lx )

=1 —m “m

where R is the assumed Toeplitz covariance matrix
and |A| denotes the determinant of a matrix A.
Ignoring additive and multiplicative constants,
the function, L, to be maximised is given by

L = -1n{R]-Tr &5},



where S ig given by

I MOROLY

M m=1
and is the maximum likelihood estimator of the
unstructured covariance matrix. Of course, the R
maximising L i1s the structured covariance matrix

estimate. Maximising results in the following
set of equations

Tr(VpR_l) = Tr(vPR s, p o= 0,%l,...5{K-1)

for R. The matrix V is defined as
o 1 0 . . . 0]
V= 0 0 1 0 .
. . 0
0 1
o . . . . 0 0
=0 _ gl p T
w%th VP = (V)" where = denotes transpose and
v =I.

Conditions for the existence of a solution are,
at present, not well defined.

However if
28 ~ R>0

then any quadratic form derived from the Hessian
is negative-definite, [7,8,91].

Hence if |{S-R___|| 15 small relative to S we
will have concav?@% near a solution. However,
the above condition may not be necessary and it
may be that weaker conditions than above still
allow the Hessian to be negative definite. See
also [9] and [8] for other discussions on the
existence of solutions.

3.2 Minimum Entropy Estimation

In [9] it is argued that

R 1 M
By = - - il

! M i=1
can be interpreted as the amount of information
contained in the data sequences

1 2 M
E( ), 5( ),..., 3( ) or alternatively as an
estimator of the entropy of a set of data
samples.

The minimum entropy method implies that we
choose our unknown parameters, in this case r
the elements of R, such that H is minimiséﬁ.

b ) .
An intereating property of this is that it ig
equivalent to maximising the log of the
likelihood since

o —_—
H‘K,M -

- R[P(R(D) | K(2),eees XOD)]
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as a consequence ¢f the independence of the
(Note that for dependent x

(J), the above
can be taken as the definition of the entropy
estimator}. Thus this form of minimum entropy
estimation is equivalent to maximum likelihood
estimation. As noted in [10], this holds for
any parametrisation of the probability density
function and not just for the parametrisation
using the r,- :

3.3 RKullback Information Measure

Let H_ be the hypothesis that the covarilance
matrix Es R and H_ the hypothesis that it is S.
The Kullback wmeastire [11] for the mean amount of
information for discriminating in favour of H
against HS is denoted as I{R:S) and is given %y

pp(x)
I(R:8) = hli pR(x)dx.
pg(x)

For Gaussian variables with zero mean this
reduces to

-1
I(R:S) = ln (det(8)) - In{det(R}) + Tr(RS )}-K
We choose the elements of R by minimising I(R:S)
i.e. minimising the mean amount of information
for discriminating in favour of H_ against HS.
Setting the gradient of the above expression to
zerc implies
@ - sh1 =0, p=0, t1,...,2®&D)
The relevant quadratic form derived from the
Hessian can be shown to be positive definite for
all positive definite R. Thus a unique positive
definite solution to the above equation can
always be obtained,.

3.4 Divergence

A symmetric measure of the mean difference in
information between two hypotheses H, and H_ is
given by the divergence, J(R:S), def%ned as

J(R:S) = T(R:8) + I(5:R)

Kullback {11] interprets J(R:8) as a measure of
the difficulty in discriminating between H_, and
H_. and here we choose the elements of R soc as to

minimise J(R:S).

For Gaussian densities it can be shown that

J(R:S) = =~ 2K + Tr{R-IS] + Tr[sTR]
Setting the gradient of J(R:S) to zero yields

TevP(s Tl - RIS =0, b o= 0,21,.0.,2(R-1)
The quadratic form obtained from the Hegsian is
sign definite, and thus a unique solution can
always be obtained.

3.5 Bhattacharyya Distance

The Bhattacharyya measure, B, of the distance
between two probability densities 1s defined by

B = - lnpr!E(x) p;i(x) dx



and lies between zero and unity. In this
application we choose the r_ such that B is
minimised. P

For Gaussilan densitv functions with zero mean
and covarlances R and S, it can be shown that

B.= - In2 - 2(In(det(R)-In(det (S))+in(det (R+5)).

Setting the gradient to zero results'in

v eE+ 9 - r ] 200 = 0,81, 2 K-1)
The quadratic form obtainable from the assoclated
Hessian matrix cam be shown to be positive
definite when a sufficiently large number of

integrations are used.
3.6 Least Squares

The least squares estimate of the structured
covariance is obtained from S by averaging along
the appropriate diagomnal. 1In [9] it is shown
that this minimises the Frobenius norm of the
difference between R and 5. This estimate is not
always guarenteed to be positive definite.

4, RELATIONSHIP TO OPTIMUM BEAMFORMERS

It 1s shown here that, when the above
estimators are used in optimum beamforming, the
resulting output power can be interpreted in
terms of the output power of an optimum
beamformer using the unstructured covariance
matrix S.

We first state without proof the following
lemma, [9]. ' )

Lemma: Let A be an arbitrary matrix and v(98,f) be
a steering vector as defined above., Then

k-1
z szr[VpA]
p=-K+1

vi(8,E)Av (8, 1) =

where

dsine)
A

z = exp (2wl

{a} Maximum Likelihood

ael ALl An]
Taking A as R © -~ R "SR ~ and using the lemma
results in the following egquation

H

H

Fad
Rw = w Sw

vhere

: r-1 H -1

w =R v(6,8)/y (8,)R w(8,f).

This is the optimum weight vector in the case
where the estimated R is assumed to be the exact
cross—spectral matrix of recelver outputs. The
above equation states that the saﬁple output
power cof such a processor, i.e. v Sw, is the
same as the mean output using the assumed
cross-spectral matrix.

(b} FKullback

1

fal™™ -
Taking A as R ~ -8 L and using the lemma implies

(v (8, 60k 've,0)17! = (vee, 057 vce, 17
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Thus, using the Kullback estimator of R results
in the same expression for the estimate of the
output power of an optimum beamformer as is
obtained by using the unstructured covariance
matrix S.

(c) Divergence

-1 1Al
Taking A as § " - R "SR = and using the lemma
implies

- -1 Ao
Hee,ns7lveo,p = ve, nR IR v(e, 6.

The inverse of the quantity on the left is an
estimate of the output power of an optimum
beamformer using the unstructured covarlance S.
The term on the right 1s the sample output power
of 2 minimum noige beanformer under the
assumption that R, the divergence estimate of
the noise power, is the true cross-spectral
matrix.

(d) Bhattacharyya

The corresponding equation for the Bhattacharyya
estimator is

207 (0,) (R+8) Tw(e,8) = v (6, 6)% v (o, )

This does not have a ready physical
interpretation but as shown in [9] the
divergence and Bhattacharyya estimates of R will
often be identical, Thus we may expect the
optimum output powers to be close.

Finally, we observe that the above expressions
are not unique to a linear array of equispaced
receivers. By replacing V' by the appropriate

matrix i.e. %% the lemma can readily be

generalised toparbitrary arrays. Thus, the
results above hold for arbitrary arrays.

5. EXAMPLE APPLICATIONS

The narrow-band outputs from an array of
equi-spaced receivers in a number of different
noilse fields were simulated. The noise field
consisted of isotropic noilse, uncorrelated
receiver self noise and a plane wave signal.
The frequency was such that d, the separation
between adjacent receivers was either A/2 or
Af4, Expressions for the bias of the various
estimators and are given in tables 1 and 2. 1In

TABLE 1, Bias Factors - 400 samples
a/h = F, 0 =25, SNR* = -10dB

K M Kullback Max.Lik.

4 16 1.165 .998
12 1.232 .997
8 1.403 .994
6 1.66 .993

2 16 1.03 -
12 1.045 -
8 1.06 -
4 1.14 -

*Signal to uncorrelated noise ratio



Bias factors ~ 400 samples

Table 2,
a/n = —}Z— , 8 = 90°, SNR = 6dB
K M Kullback Max.Lik.
A 16 1.172 T
12 1.236 .999
8 1.397 .999
2 16 1.029 -
12 1.04 -
8 1.061 N
4 1.138 -

all cases the biases depended only on M and K
i.e. the number of integratioms and the number
of receivers. Bearing in mind the close . ’
-relationship of these estimators to the optimum
beamforming using S5 this result is not
unexpected, [12],

In figures 1 and 2 the snapshot angular
spectra for are shown for the least squares,
Kullback, and maximum likelihood estimates
.using a sample matrix inverse beamformer.

Also plotted are the angular spectrum of the

output of an optimum beamformer when the
cross—-spectral matrix is known exactly and
the one derived using the unstructured
estimator S. 1In this and all cases
considered, the use of § gave identical
results to the use of the Rullback

" estimator, thus confirming that the Kullback
estimator had converged. Apart from the

- different blas factors the probability based
estimators all gave roughly equivalent
results. This was also observed for many
other simulations. Significant differences

" between the least squares and the

probability based estimators is apparent,

particularly regarding biases in the peaks

- corresponding to signal arrival directions
and spuricus side lobes.
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Fig 1: Angular spectra (d/* = 0.25, SNR = 6 4B,
K=28, M= 32)
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Fig 2: Angular spectra (d/A = 0.5, SNRs =
16,10,16, K = 4, M = 8)

To illustrate further the difference
between the least squares and the Kullback
estimator, 350 different estimates of the
angular spectrum were generated, using the
least squares and Kullback estimators of the
structured covariance, The mean plus or
minus one standard deviation are plotted in
figure 3. As can be seen the Kullback
estimator has a significantly reduced _
variance with respect td the least squares
one,

Power (dB)

0 45 90 135 180
' Angle (degrees)

Fig 3: Apgular spectra (mean * sigma)
(d/x = 0,5, S¥Rs = 10,5,K = 4, M= 16}

6. CONCLUSIONS

For a linear array of equispaced receivers
‘the exact cross-spectral matrix of receiver
outputs has an Hermitian Toeplitz structure.
New estimators of the cross-spectral matrix,
constrained to have thils structure, have
been proposed., These estimators were
derived using information theoretic measures
of the distance between structured and
ungtructured estimates of the cross-spectral
matrix.

Some example applications of the methods
to estimating the spatial covariances of
simulated data have indicated bilases in some
of the estimators.

Estimators based upon information
theoretic measures have been shown to be -
closely related to optimum beamformers.
Estimates of the optimum angular power
spectrum of simulated data using the
information theoretic estimators have been
compared with those using unstructured
estimates or the unbiased least squares



estimator. Theoretical results indicating the
equivalence of the methods whenr (1} M is

large (typically M»> 4K) and {(2) the

condition number of the observed

unstructured estimate is not too large, were
confirmed. In most simulations the
information theoretic estimators gave almost
equivalent results which confirmed further
regults in. [9]. When the number of
integrations was reduced (i.e. typlcally M<
2K) or the condition

number of the unstructured estimate of the
crogg—spectral matrix was increased by either
dincreasing the number of recelvers or by
increasing the signal to noise ratio the
information theoretic based estimators showed
significant improvements over the unbilased least
gquares one,
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