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1. INTRODUCTION 
p- = ~'(9.f) R(f) :(B,f) . - 

In frequency-domain array beamfarming the 
output power can be written as an Hermitian form where 
of the cross-spectral matrix of the receiver H 
outputs for both conventional and optimum R(f) - <z(f)5 (f)> 
beamforming algorithms 11-31. Furthermore, in a 
number of bearing estimation algorithms [4-51 the and is the crass-spectral matrix of receiver 
eigenvalues and eigenvectors of the outputs. Thus the mean output power of a 
cross-spectral matrix play a central role. cauventional beamformer is an Hermitian form of 

the cross-spectral matrix. 
For many types of arrays and noise fields, the 

exact cross-spectral matrix has a particular 
structure, e.g. in a noise field consisting of a 
superposition of plane waves and for a linear 
array of equispaced receivers, it is Toeplitz 
161. This is due to the fact that the spatial 
covariance function is a function only of the 
spatial separation between two receivers. In 
such cases we refer to the cross-spectral matrix 
as a structured covariance matrix. When 
estimating the cross-spectral matrix of receiver 
outputs, it can be an advantage to constrain the 
estimate to have the same structure as the exact 
cross-spectral matrix, i.e. to estimate a 
structured covariance matrix. The problem of 
estimating a structured covariance matrix is the 
main focus of this paper. 

Although the results of this paper can be 
extended to arbitrary arrays attention here is 
restricted to linear arrays of equispaced 
receivers. In this case the problem becomes that 
of estimating an Hermitian Toeplitz matrix. 
First the maximum likelihood estimator of such a 
covariance matrix is discussed 17-91 and its 
relation to minimum cross-entropy estimation is 
outlined. 

A number of new estimators are also proposed 
[91; these are based upon various information 
theoretic measures of the differences between two 
hypotheses. Non-linear equations for the new 
estimators are derived and same sample 
illustrations are given to illustrate both 
statistical properties of these estimators and to 
compare their performance when used in 
beamforming applications. 

The estimators are shown to be closely related 
to optimum beamformers in interesting but 
surprising ways. 

2. NOTATION AND REVIEW OF BEAMFORMING 

For frequency-domain beamforming, the 
narrowband receiver outputs are multiplied by 
phase factors proportional to the relative time 
delay, T (9). of the jth receiver and the output 
of a conJentiona1 beamformer, p , steered in the 

C 
direction 9 is given by 

In practice, this matrix is often estimated 
from a number of realisations of the receiver 
outputs by replacing the ensemble average 
with a simple linear average, e.g. given M 
samples of the receiver outputs 

x(') (f) (0,. . . JM) (f) , - 
the cross-spectral matrix of receiver outputs is 
estimated as 

In general, this estimator will not be 
structured. 

3. ESTIMATION OF FINITE DIMENSIONAL TOEPLITZ 
MATRICES 

Here we consider a number of different 
estimators of a finite K-dimensional Toeplitz 
matrix, R, from M independent realisations of 
the receiver outputs. 

3.1 Maximum likelihood estimation 

bet x(m), m=1,2 ,..., M denote M independent 
sample realisations of the vector of complex 
receiver outputs. Assuming these are Gaussian 
the joint probability density function is given 
b" 

where R is the assumed Toeplitz covariance matrix 
and I A J  denotes the determinant of a matrix A. 
Ignoring additive and multiplicative constants, 
the function, L, to be maximised is given by 



where S is given by as a consequence of the independence of the 

1 M 
(m)x(m)H s = -  15 - 

M m=l 

and is the maximum likelihood estimator of the 
unstructured covariance matrix. Of course, the R 
maximising L is the structured covariance matrix 
estimate. Maximising results in the following 
set of equations 

T~(vPR-') = T~-(VPR-~SR-~), p = o,'~,. . .'(K-L) 
for R. The matrix V is defined as 

with v-' = (vT)' where denotes transpose and 
vO=l. 

Conditions for the existence of a solution are. 
at present, not well defined. 

However if 

then any quadratic form derived from the Hessian 
is negative-definite. [7,8,9]. 

Hence if / IS-R 1 / is small relative to S we 
will have concav8y near a solution. However, 
the above condition may not be necessary and it 
may be that weaker conditions than above still 
allow the Hessian to be negative definite. See 
also [91 and [8] for other discussions an the 
existence of solutions. 

3 . 2  Minimum Entropy Estimation 

In [9] it is argued that 

can be interpreted as the amount of information 
contained in the data sequences 

(1) ( 2 )  5 , 5 ,..., x(M) or alternatively as an 
estimator of the entropy of a set of data 
samples. 

The minimum entropy method implies that we 
choose our unknown parametersA.l.n this case r 
the elements of R, such that H is minimisld. 

K,M 

An interesting property of this is that it is 
equivalent to maximising the lag of the 
likelihood since 

5''). (Note that for dependent q(j), the above 
can be taken as the definition of the entropy 
estimator). Thus this form of minimum entropy 
estimation is equivalent to maximum likelihood 
estimation. As noted in [lo], this holds for 
any parametrisation of the probability density 
function and not just for the parametrisation 
using the r . 

P 

3.3 Kullback Information Measure 

Let H be the hypothesis that the covariance 
matrix !s R and HS the hypothesis that it is S. 
The Kullback measure [ll] for the mean amount of 
information for discriminating in favour of H 
against H is denoted as I(R:S) and is given Ey S 

For Gaussian variables with zero mean this 
reduces to 

We choose the elements of R by minimising I(R:S) 
i.e. minimising the mean amount of information 
for discriminating in favour of HR against HS. 
Setting the gradient of the above expression to 
zero implies 

The relevant quadratic form derived from the 
Hessian can be shown to be positive definite far 
all positive definite R. Thus a unique positive 
definite solution to the above equation can 
always be obtained. 

3.4 Divergence 

A spetric measure of the mean difference in 
information between two hypotheses H and H is 
given by the divergence, J(R:S), defyned as 

S 

Kullback 1111 interprets J(R:S) as a measure of 
the difficulty in discriminating between HR and 
H and here we choose the elements of R so as to 
mHnimise J(R:s). 

For Gaussian densities it can be shown that 

Setting the gradient af J(R:S) to zero yields 

1 -1 
Tr[vP(S-' -R- SR )] = 0, P =O,tl,..., f(K-1) 

The quadratic form obtained from the Hessian is 
sign definite, and thus a unique solution can 
always be obtained. 

3.5 Bhattacharyya Distance 

The Bhattacharna measure, B, of the distance 
between two probability densities is defined by 



and lies between zero and unity. In this 
application we choose the r such that B is 
minimised. P 

For Gaussian density functions with zero mean 
and covariances R and S, it can be shown that 

Setting the gradient to zero results in 

The quadratic form obtainable from the associated 
Hessian matrix can be shown to be positive 
definite when a sufficiently large number of 
integrations are used. 

3.6 Least Squares 

The least squares estimate of the structured 
covariance is obtained from S by averaging along 
the appropriate diagonal. In [91 it is shown 
that this minimises the Frobenius norm of the 
difference between R and S. This estimate is not 
always guarenteed to be positive definite. 

4. RELATIONSHIP TO OPTIMUM BEAMFORMERS 

It is shown here that, when the above 
estimators are used in optimum beamforming, the 
resulting output power can be interpreted in 
terms of the output power of an optimum 
beamformer using the unstructured covariance 
matrix S. 

We first state without proof the following 
lemma. 191. 

Lemma: Let A be an arbitrary matrix and ~(0,f) be 
a steering vector as defined above. Then 

where 

dsin 8 
z = exp (2ni - ) 

A 

(a) Maximum Likelihood 

"-1 A-1 
Taking A as - R SR and using the lemma 
results in the following equation 

H yH cy = Y_ SY_ 
where 

"-1 H h-l 
= R v(e,f)lx (e,f)~ x(e,f). 

This is the optimum weight vector in the case 
where the estimated R is assumed to be the exact 
cross-spectral matrix of receiver outputs. The 
above equation states that the sa~ple output 
power of such a processor, i.e. y Sy, is the 
same as the mean output using the assumed 
cross-spectral matrix. 

(b) Kullback 

Taking A as -s-I and using the lemma implies 

-1 [VH(e,r)?lv(e,f) - - I-' = [vH(e,f)s-'v(e,f)~ - . 

Thus, using the Kullback estimator of R results 
in the same expression for the estimate of the 
output power of an optimum beamformer as is 
obtained by using the unstructured covariance 
matrix S. 

( c )  Divergence 

" -1 "-1 
Taking A as S-I - R SR and using the l e m a  
implies 

The inverse of the quantity on the left is an 
estimate of the output power of an optimum 
beamfarmer using the unstructured covariance S .  
The term on the right is the sample output power 
of a minimum noip beamformer under the 
assumption that R, the divergence estimate of 
the noise power, is the true cross-spectral 
matrix. 

(dl Bhattacharyya 

The corresponding equation for the Bhattacharyya 
estimator is 

~~~(e.f)(fi+s)-'~(e,f) - = q(e,f)C-lXce,f) 

This does not have a ready physical 
interpretation but as shown in 191 the 
divergence and Bhattacharyya estimates of R will 
often be identical. Thus we may expect the 
optimum output powers to be close. 

Finally, we observe that the above expressions 
are not unique to a linear array of equispaced 
receivers. By replacing vP by the appropriate 

matrix i.e. $ the lemma can readily be 
"- 

generalised taparbitrary arrays. Thus, the 
results above hold for arbitrary arrays. 

5. EXAMPLE APPLICATIONS 

The narrow-band outputs from an array of 
equi-spaced receivers in a number of different 
noise fields were simulated. The noise field 
consisted of isotropic noise, uncorrelated 
receiver self noise and a plane wave signal. 
The frequency was such that d, the separation 
between adjacent receivers was either A12 or 
hl4. Expressions for the bias of the various 
estimators and are given in tables 1 and 2. In 

TABLE 1. Bias Factors - 400 samples 

1 d l  = - , e = 25', SNR* = -10dB 4 

*Signal to uncorrelated noise ratio 

r 
K 

4 

2 

Kullback 

1.165 
1.232 
1.403 
1.66 

1.03 
1.045 
1.06 
1.14 

M 

16 
12 
8 
6 

16 
12 
8 
4 

Max.Lik. 

.998 

.997 

.994 

.993 

- - - 
- 



Table 2. Bias factors - 400 samples 
1 dlh = , 8 = 90'. SNR = 6dB 

all cases the biases depended only on M and K 
i.e. the number of integrations and the number 
of receivers. Bearing in mind the close 
relationship of these estimators to the optimum 
beamforming using S this result is not 
unexpected, [121. 
In figures 1 and 2 the snapshot a-gular 

spectra for are shown for the least squares, 
Kullback, and maximum likelihood estimates 
using a sample matrix inverse beamformer. 
Also plotted are the angular spectrum of the 
output of an optimum beamformer when the 
cross-spectral matrix is known exactly and 
the one derived using the unstructured 
estimator S. In this and all cases 
considered, the use of S gave identical 
results to the use of the Kullback 
estimator, thus canfirmine that the Kullback 

K 
4 

2 

- 
estimator had converged. Apart from the 
different bias factors the probability based 
estimators all gave roughly equivalent 
results. This was also observed for many 
other simulations. Significant differences 
between the least squares and the 
probability based estimators is apparent, 
particularly regarding biases in the peaks 
corresponding to signal arrival directions 
and spurious side lobes. 

M 
16 
12 
8 

16 
12 
8 
4 

Fig 1: Angular spectra (d/A = 0.25, SNR = 6 dB, 
K = 8, M = 32) 

Fig 2: Angular spectra (d/A = 0.5, SNRs = 
16,10,16, K = 4, M = 8) 

To illustrate further the difference 
between the least squares and the Kullback 
estimator, 350 different estimates of the 
angular spectrum were generated, using the 
least squares and Kullback estimators of the 
structured covariance. The mean plus or 
minus one standard deviation are plotted in 
figure 3. As can be seen the Kullback 
estimator has a significantly reduced 
variance with respect to the least squares 

Kullback 
1.172 
1.236 
1.397 

1.029 
1.04 
1.061 
1.138 

one. 

-5 

- 
% - -10 . 
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-15 

-20 

Max.Lik. 
I 

.999 

.999 

- 
- 
- 
- 
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Fig 3: Angular spectra (mean ir sipma) 
(dl1 = 0.5, SNRs = 10,5,K = 4 ,  M= 16) 

6. CONCLUSIONS 

For a linear array of equispaced receivers 
the exact cross-spectral matrix of receiver 
outputs has an Hermitian Toeplitz structure. 
New estimators of the cross-spectral matrix, 
constrained to have this structure, have 
been proposed. These estimators were 
derived using information thearetic measures 
of the distance between structured and 
unstructured estimates of the cross-spectral 
matrix. 

Some example applications of the methods 
to estimating the spatial covariances of 
simulated data have indicated biases in some 
of the estimators. 

Estimators based upon information 
theoretic measures have been shown to be 
closely related to optimum beamfomers. 
Estimates of the optimum angular power 
spectrum of simulated data using the 
information theoretic estimators have been 
compared with those using unstructured 
estimates or the unbiased least squares 



estimator. Theoretical results indicating the 
equivalence of the methods when (1) M is 
large (typically M> 4K) and (2) the 
condition number of the observed 
unstructured estimate is not too large, were 
confirmed. In most simulations the 
information theoretic estimators gave almost 
equivalent results which confirmed further 
results in [ 9 1 .  When the number of 
integrations was reduced (i.e, typically M <  
2K) or the condition 
number of the unstructured estimate of the 
cross-spectral matrix was increased by either 
increasing the number of receivers or by 
increasine the sinnal to noise ratio the - 
information theoretic based estimators showed 
significant improvements over the unbiased least 
squares one. 
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