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Abstract— In an earlier paper, [1], we have considered the
Maximum Likelihood (ML) localization of a stationary nuclear
source using the time of arrival of particles modeled as a Poisson
process at a sensing vehicle moving with a constant velocity.
In this paper we consider whether the ML location estimate
characterized in [1] is unique. Using Morse theory we show
that not only is the likelihood function unimodal on either side
of the line the sensor moves on (note the source can only be
localized uniquely if one knows on which side it resides), but
that in fact it has only one critical point in each side and this
critical point is the global maximum. These results strongly
indicate that gradient ascent maximization will always work.
We verify these results with real field data.

I. INTRODUCTION

Localization and tracking of radioactive sources is an area
of significant research interest, [1]- [5]. Nuclear materials are
difficult to localize as their concentrations and compositions
vary greatly. Moreover, they are hidden by shielding material,
and immersed in background radiation [6]. While sensors
used for their detection [7] are also disparate in nature, in
essence they detect by absorbing discrete particles. In this
paper as in some others, [1] and [2], we treat this absorption
as discrete events modeled as a Poisson process, [8], [9].

We observe that the formulation of the localization prob-
lem in [2] involves non-concave expectation maximization
and is thus potentially intractable. On the other hand [1]
uses Maximum Likelihood (ML) localization, assumes an
ideal detector, and ignores timing errors due to the quantum
energy-time uncertainty principle, [11]. It assumes that the
source is stationary and the detector travels with a known
constant velocity. It formulates a likelihood function treating
a finite number of arrival times, t1, · · · , tn, measured over an
infinite horizon, as observations. The maximization of this
likelihood function has been shown in [16] to be equivalent
to a tractable root locus problem.

Even though the theory in [16] and evidence of simula-
tions in [1] strongly indicate that the likelihood function is
unimodal, and that in fact it has a solitary critical point, proof
of this fact has remained elusive. This paper remedies this
lack of proof.
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In particular using an appealing geometrical interpretation
of critical points developed in [16], we first prove that the
Hessian of the likelihood function is negative definite at
every critical point. Then using the powerful machinery of
Morse theory, [19]- [24], we prove that this implies that the
likelihood function has only one critical point.

Beyond the obvious appeal of unimodality, these results
have wide ranging computational implications. The fact that
there is only one critical point at which the Hessian is
negative definite implies that a gradient ascent algorithm or
its variants will converge to the unique maximum. This is
so as under mild assumptions, satisfied by the fact that the
Hessian is negative definite, gradient ascent must converge
to a critical point, [25].

It is noteworthy that though localization from signals like
time of arrival (TOA), [17], [18], is very rich, theoretical
results for the Poisson arrival model are few and far between.
This paper takes a first stride toward establishing such theory.

Section II describes the log likelihood function derived in
[1]. Section III proves that the Hessian of the log likelihood
function is negative definite at all its critical points. Section
IV proves that there is only one critical point, using the per-
tinent points of Morse theory summarized in the appendix.
Section V numerically verifies these results using real data.
Section VI is the conclusion. All proofs are omitted due to
space constraints.
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Fig. 1. Ideal detector moving in a straight line with constant velocity.

II. PROBLEM FORMULATION

We assume that the source is at [x0,y0]
T ∈ R2 and the

detector moves at a known constant velocity. Without loss
of generality we further assume that as depicted in Figure
1, this trajectory is along the x axis, with velocity [v,0]T

obeying,
v > 0. (II.1)

We further assume that the particles arrive at the detector at
times governed by an inhomogeneous Poisson process, [15],
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with mean arrival rate:

λ (t) =
A0

y2
0 +(x0− vt)2 , (II.2)

A0 being a source strength parameter determined by detector
type and the volume, shape and type of the radiation source.
This model is obeyed by scintillation devices [14] in isotropic
media, but not by directional devices like CZT Compton
scattering detectors [13].

Suppose the observed arrival times {t1, · · · , tn} are inde-
pendent on an interval [T1,T2]. Noting that there are detectors
with such short detection time as 150 ms, [12], [1] assumes
that the detector can discern particle counts over vanishingly
small intervals. Observe that the assumption of a finite n is
entirely reasonable as λ (t) in (II.2) quadratically approaches
zero with |t|. Then [1] and [16] show that as limT1→−∞

and limT2→∞, the maximization of the likelihood function
is equivalent to the maximization of

L(A0,x0,y0) =−
πA0

v|y0|
+n logA0 +

n

∑
i=1

log
(

1
y2

0 +(x0− ci)2

)
,

(II.3)
where

ci = vti. (II.4)

As v is known estimation of A can be accomplished by
estimating

Ā0 =
A0

v
In this case (II.5) can be replaced by

L(Ā0,x0,y0) = −πĀ0

|y0|
+n log Ā0 +n logv

+
n

∑
i=1

log
(

1
y2

0 +(x0− ci)2

)
. (II.5)

Suppose A0 > 0, x and y ≥ 0 are the ML estimates of
Ā0 > 0, x0 and y0 ≥ 0. Then they satisfy the critical point
equations

A0 =
n|y|
π

, (II.6)

n

∑
i=1

x− ci

y2 +(x− ci)2 = 0, (II.7)

n

∑
i=1

1
y2 +(x− ci)2 =

n
2y2 . (II.8)

As neither the physical context nor these equations can
distinguish between ±y uniqueness, of the solutions to (II.6-
II.8) will refer to uniqueness in the half plane

A0 > 0 and y≥ 0. (II.9)

Also note that because of (II.6) this in turn is equivalent
to there being a unique solution to (II.7,II.8) for y ≥ 0.
Unsurprisingly, for n = 2, there is no unique solution as
two observations cannot be used to uniquely determine three
variables. Indeed for n = 2 any

y2 = |x− c1||x− c2| (II.10)

simultaneously satisfies (II.7,II.8). Thus we will focus on
n > 2.

Finally, we note that as L(A0,x,y) approaches −∞ as y
approaches 0 or ∞ and is finite when y > 0 it must have a
maximum in the set defined by (II.9). As it is also analytic
in this half plane (II.6-II.8) must have at least one solution
in (II.9).

III. PROPERTIES OF THE HESSIAN

We begin with a geometrical interpretation of the critical
points obeying (II.7) and (II.8) given in [16].

Lemma 3.1: Consider any simultaneous root (x,y) of
(II.7,II.8). Define

θi = arctan
[

y
x− ci

]
. (III.11)

Then the following hold.
n

∑
i=1

sin2θi = 0 and
n

∑
i=1

cos2θi = 0 (III.12)

In other words with θi the phase of x− ci + jy one has the
appealing equality

n

∑
i=1

e j2θi = 0 (III.13)

at a critical point. As depicted in Figure 2 for n = 3, the θi
represent the angle made by the source with the x-axis at
each point of detection.

v𝑡𝑡1 v𝑡𝑡2 v𝑡𝑡3

𝜃𝜃1 𝜃𝜃2 𝜃𝜃3

𝑥𝑥 + 𝑗𝑗𝑗𝑗

Fig. 2. Depiction of θi when n = 3.

It is readily seen that for y≥ 0 the Hessian of L(A0,x,y)
is given by
− n

A2
0

0 π

y2

0 −2∑
n
i=1

y2−(x−ci)
2

(y2+(x−ci)2)2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2

π

y2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2 − 2πA0

y3 −2∑
n
i=1

(x−ci)
2−y2

(y2+(x−ci)2)2


and at a critical point, it is evident using (II.6) that this
becomes the alternative expression for the Hessian H(x,y)
that equals:
− π2

ny2 0 π

y2

0 −2∑
n
i=1

y2−(x−ci)
2

(y2+(x−ci)2)2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2

π

y2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2 − 2n

y2 −2∑
n
i=1

(x−ci)
2−y2

(y2+(x−ci)2)2

 .
We next provide a Lemma that simplifies the proof of

negative definiteness of H(x,y) at critical points.
Lemma 3.2: With y≥ 0, at any solution of (II.6-II.8), the

matrix in (III.14) is negative definite iff the matrix below is
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negative definite:

G(x,y) =

−2∑
n
i=1

y2−(x−ci)
2

(y2+(x−ci)2)2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2

4y∑
n
i=1

x−ci
(y2+(x−ci)2)2 −4∑

n
i=1

(x−ci)
2

(y2+(x−ci)2)2

 .
(III.14)

We next focus on G(x,y) and prove that it must be at
least negative semidefinite at a critical point. To this end
the lemma below exploits (III.12) to relate G(x,y) to the θi
define in Lemma 3.1.

Lemma 3.3: With θi defined in Lemma 3.1, suppose
(III.12) holds. Then G(x,y) in (III.14) can be expressed as:

y2G(x,y) =−
n

∑
i=1

[
cos2θi
sin2θi

][
cos2θi sin2θi

]
. (III.15)

Thus indeed at all critical points the Hessian is negative
semidefinite. Let us now consider the n = 2 case. Observe
that at a critical point, by multiplying both sides of (II.7) by
y we obtain

sin2θ1 =−sin2θ2. (III.16)

From (II.8) we get

sin2
θ1 + sin2

θ2 = 1

i.e.

cos2
θ1 = sin2

θ2 and cos2
θ2 = sin2

θ1. (III.17)

As θi ∈ (0,π) and the θi are distinct both cannot be π/2.
Without loss of generality assume θ1 6= π/2. Further θ2 /∈
{0,π}. Then from (III.16) and (III.17) we obtain:

2sinθ1 cosθ1

cos2 θ1
=−2sinθ2 cosθ2

sin2
θ2

i.e. tanθ1 tanθ2 =−1. Then as

| tanθ1− tanθ1|=
∣∣∣∣ tanθ1− tanθ2

1+ tanθ1 tanθ2

∣∣∣∣= ∞

we obtain |θ1 − θ2| = π

2 . As |2θ1 − 2θ2| = π ,
[cos2θ1,sin2θ1] = −[cos2θ2,sin2θ2]. In particular this
means that H(x,y) is singular at critical points. This totally
accords with our observation that for n = 2 there is a
continuum of points that form critical points of L(A,x,y).

We now prove that in fact for n > 2, H(x,y) is negative
definite at every critical point.

Theorem 3.1: Suppose the ci in (II.4) are distinct and n >
2. Then for all A,x,y that satisfy (II.6-II.8), the Hessian of
L(A,x,y) in (II.5) is negative definite.

Thus indeed for n > 2, the Hessian of L(A,x,y) is negative
definite at every critical point. In the next section we invoke
Morse theory to show that this not only means that L(A,x,y)
is unimodal, but that it in fact has precisely one critical point
in the half plane defined by (II.9).

IV. UNIMODALITY OF L(A,x,y)

For technical convenience we will convert the maximiza-
tion in R3 to an equivalent problem in R2. To this end
observe that as (II.6) holds at critical points of L(A,x,y),
for y≥ 0, the maximization of L(A,x,y) is equivalent to the

maximization of

J(x,y) = L(A,x,y)|A= ny
π
=−n+n log

n
π
+n logv

+ n logy+
n

∑
i=1

log
1

y2 +(x− ci)2 , (IV.18)

with A determined by (II.6). In particular

(A) J(x,y) has the same number of critical points in the
domain y≥ 0 as does L(A,x,y) in the domain (II.9).

(B) The nature of the critical points of J(x,y) in y≥ 0 and
L(A,x,y) in (II.9), are the same.

Indeed the lemma below confirms (A).
Lemma 4.1: The number of critical points of the utility

function L(A,x,y) in (II.5) in the domain (II.9) equals the
number of critical points as J(x,y) in (IV.18) in the domain
y≥ 0.

Proof: The gradient of J(x,y) is given by

∇J(x,y) =

[
−2∑

n
i=1

x−ci
y2+(x−ci)2

n
y −2∑

n
i=1

y
y2+(x−ci)2

]
. (IV.19)

Thus the critical points of J(x,y) satisfy (II.7,II.8). Observe
from (II.6) that if a critical point of L(A,x,y) satisfies y > 0
then it also satisfies A > 0. Further, y 6= 0 at every critical
point of both L(A,x,y) and J(x,y). The result follows from
the fact that there are as many solutions to (II.6-II.8) in (II.9)
as there are of (II.7,II.8) for y≥ 0.

The next lemma also confirms that the Hessian of J(x,y)
is negative definite at each of its critical points.

Lemma 4.2: Under the conditions of Theorem 3.1, for n>
2, the Hessian of J(x,y) is negative definite at every critical
point of J(x,y) in the domain y≥ 0.

Proof: The Hessian of J(x,y) is given by−2∑
n
i=1

y2−(x−ci)
2

(y2+(x−ci)2)2 4y∑
n
i=1

x−ci
(y2+(x−ci)2)2

4y∑
n
i=1

x−ci
(y2+(x−ci)2)2 − 2n

y2 −2∑
n
i=1

(x−ci)
2−y2

(y2+(x−ci)2)2


(IV.20)

and is the bottom 2× 2 principal submatrix of H(x,y) in
(III.14). The result follows from Theorem 3.1.

Then the main theorem below is proved by invoking Morse
theory whose pertinent points have been presented in the
appendix to prove the main result in Theorem 4.1 below.
The salient point of the appendix is the following. Suppose
a convex domain D ⊂ R2 has a boundary which at each
point can be locally described by g = 0, where g is a smooth
function. Suppose a smooth function f (·) : D → R has a
positive definite Hessian at every critical point in D and
obeys Assumption A.1. Then f (·) has only one critical point
in D which is a minimum.

Theorem 4.1: Under the conditions of Theorem 3.1, for
n > 2, L(A,x,y) has precisely one critical point in (II.9).
Further this critical point is the only maximum in (II.9).

Thus indeed L(A,x,y) has precisely one critical point, the
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global maximum, in (II.9). Observe that with v = 1, y > 0

∇L(A,x,y) =

 −π

y +
n
A

−2∑
n
i=1

x−ci
y2+(x−ci)2

πA
y2 −2∑

n
i=1

y
y2+(x−ci)2

 . (IV.21)

Then the gradient ascent algorithm ˙̂A
˙̂x
˙̂y

= ∇L(A,x,y)|(A,x,y)=(Â,x̂,ŷ) (IV.22)

initialized with ŷ(0) > 0 Â(0) > 0 and augmented with
projection will converge to the only critical point, the global
maximum, in (II.9).

V. NUMERICAL RESULTS

We now present some numerical results to illustrate our
analysis.

Figure 3 shows the likelihood function L(A0,x,y) in the
neighborhood of the true source location (x0,y0) with sim-
ulated random arrival times. It is clear from this figure that
in the range of x,y shown in this plot, the unique local
maximum is close to the true source location. The figure also
shows the evolution of estimates of the source location over
iterations of a fixed-point algorithm described in [1]. While
no theoretical guarantees are available for this fixed-point
algorithms, our results in this paper show that a gradient
search will converge to the maximum likelihood estimate,
and we can see from Fig. 3 that the fixed-point estimates
appear to follow the gradient of the likelihood function.
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Fig. 3. Heatmap of the likelihood function.
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Fig. 4. Illustrating the uniqueness of the x coordinate solution to the critical
equation.

Figure 4 shows the function

Q(x) .
=

∑i vtiα(x,y0, ti)
∑i α(x,y0, ti)

where
α(x,y, t) .

=
1

y2 +(x− vt)2 .

Note that the critical point equations (II.6) defining the
maximum likelihood estimate satisfies Q(x) = x. This plot
visually illustrates the uniqueness of the solution to the
critical equation for the x coordinate.

Figure 5 shows 10 time-series of actual measured radiation
intensity as a function of position from a sensor moving
with a constant speed of approximately 1 m/s for a period
of 512 seconds. The same figure also shows estimates of
the source location obtained using the fixed-point algorithm
described in [1]. Although the ground truth source location
is unknown, we can see that the estimates from the different
time-series are consistent with each other in the sense of
being clustered close to their mean value as we would expect
from observations of the same source.
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Fig. 5. Source location estimates with noisy radiation measurements.

VI. CONCLUSION

We have considered the maximum likelihood estimation
of a static radiation source from measurements of the time
of arrival of particles at a sensor moving with a constant
velocity. Under mild assumptions a previous reference [1]
formulated a likelihood function. Simulations in [1] strongly
suggest that the likelihood function is unimodal, on either
side of the line on which the detector travels.

In this paper we leverage Morse theory to prove uni-
modality. This opens up the prospect of localization through
gradient ascent as well as a number of directions of future
research: Can we localize when the detector traverses on
nonlinear trajectories? Will that improve the quality of detec-
tion? Can we use gradient ascent to track a relatively slowly
moving source? These directions are being jointly pursued
at ANU and Iowa.
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A.1. BACKGROUND ON MORSE THEORY

Morse theory deals with results concerning the nature of
critical points on manifolds, see e.g. [19], [20]. [21].

Let M be a smooth m-dimensional manifold and let f :
M → R be a smooth function defined on M . A critical
point of f is a point at which the gradient of f is zero. The
function f is said to be a Morse function if the Hessian is
nonsingular at every critical point (equivalently, each critical
point is nondegenerate). In any particular coordinate basis,
the Hessian is an m×m matrix, and the number of its
negative eigenvalues (which is invariant with the coordinate
basis) is termed the index of the critical point. A critical
point of index 0 is thus a minimum of f and a critical point
of index m is a maximum.

Any manifold M has associated with it an integer number
called its Euler characteristic χ(M ), which is a particular
topological invariant. All manifolds that can be smoothly
contracted to a point, e.g. any convex set in R2 and R3,
have χ(M ) = 1. A key and basic result of the theory is the
following:

Theorem A.1: Let M be a smooth compact m-
dimensional manifold and f : M→ R a Morse function. Let
ni(M ) denote the number of critical points of f with index
i. Then there holds

m

∑
i=1

(−1)ini(M ) = χ(M ) (A.1)

In the above theorem, the terminology regarding M is
taken to imply that any neighborhood in M can be defined
by a set of simultaneous equalities, but not equalities together
with some adjoined inequalities or inequalities alone. (It may
be that the same equalities and inequalities apply globally in
M , but this is not necessary.) Thus M could be a sphere
S2 in R3, defined by x2 + y2 + z2 = 1, but it cannot be the
open ball defined by x2+y2+ z2 < 1, or the closed ball x2+
y2 + z2 ≤ 1. To treat such cases, one works with the concept
of a “manifold-with-boundary”, see [19], [21]. A manifold-
with-boundary is a concept which accords with intuition, but
there are additional technical requirements.

The concept may have been first treated in [22], and
though generalizations have since been obtained, see e.g.
[21], it is easiest in this paper to work with the ideas and
requirements of [22] as they are simpler.

The manifolds in question are connected bounded open
domains in Rm with the property that at each point p0 on
the boundary, the boundary can be locally described by an
equation of the form g = 0 where g is a smooth function.
In particular, in two-dimensional space, one could have an
axis-parallel rectangle with rounded corners (to provide the
smoothness).

In addition to the properties of the manifold M itself, the
function f is more tightly constrained than simply being a
Morse function. In particular, we require that

Assumption A.1: 1) f has no critical points on the
boundary.
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2) the gradient of f points outwards from the boundary,
i.e. its inner product with the outward normal to the
boundary is positive.

In [22], these conditions are termed “boundary conditions
β”. They are presented as a development of “boundary
conditions α”, which require that f be constant on the
boundary.

The relevant result, a straightforward generalization of
Theorem A.1, is

Theorem A.2: Let M be a smooth bounded m-
dimensional manifold-with-boundary, such that at each
point p0 on the boundary, the boundary can be locally
described by an equation of the form g = 0 for some smooth
g. Suppose further that f : M → R is a Morse function
smoothly extendable to include a domain including the
boundary of M , and satisfying Assumption A.1. Let ni(M )
denote the number of critical points of f in M with index
i. Then (A.1) holds.
This then allows statement of the following theorem, ob-
tained by introducing special knowledge concerning the
number of critical points associated with each index. Results
such as the following have been used before, see e.g. [23]
and [24].

Theorem A.3: Let M be a smooth bounded m-
dimensional manifold-with-boundary, contractible to a
point, and such that at each point p0 on the boundary,
the boundary can be locally described by an equation
of the form g = 0 for some smooth g. Suppose further
that f : M → R is a Morse function smoothly extendable
to include a domain including the boundary of M, and
satisfying Assumption A.1. Suppose that every critical point
of f in M is a minimum. Then f has a single minimum
and in fact a single critical point in M .
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