
Network Flows as Least Squares Solvers for Linear Equations

Yang Liu, Youcheng Lou, Brian D. O. Anderson and Guodong Shi

Abstract— This paper presents a first-order continuous-time
distributed step-size algorithm for computing the least squares
solution to a linear equation over networks. Given the unique-
ness of the solution and nonintegrable step size, the convergence
results are provided for fixed graphs. For the nonunique
solution and square integrable step size, the convergence is
shown for constantly connected switching graphs. We also
validate the results and illustrate possible impacts on the
convergence speed using a few numerical examples.

I. INTRODUCTION

In modern engineering systems, there is a great demand
for large-scale computing capabilities of solving real-world
mathematical problems. Centralized algorithms are effective
tools if the computing center possesses the information of the
entire problem. In some cases, however, due to the compar-
atively weak computing power of one agent and its limited
knowledge of the whole problem, the notion of distributed
computation over networks is developed, which is nowadays
widely applied in the areas of analyzing the consensus of
complex systems [1], solving various optimization problems
[2], carrying out distributed estimation [3], [4] and filtering
[5].

Solving systems of linear equations using distributed al-
gorithms over networks, which is intrinsically related to
distributed optimization problems, emerges as one of the
basic tasks in distributed computation. In these scenarios,
it is often assumed that each agent of the network only
has access to one or a few of the linear equations due to
security issues or memory limitation, and is only permitted
to interact with some of the other agents. Each agent of
the network may request the entire solution, instead of only
its components, for the purpose of protecting the privacy of
customers [6]. On the one hand, a number of contributions
have been made to the development of distributed solvable
linear equation solvers, where simple first-order distributed
algorithms, in continuous time or discrete time [7]–[14],
manage to deliver satisfactory solutions even for switching
network structures. On the other hand, another frequent case
in practical problems is concerning with non-solvable linear

This work was supported by the Australian Research Council (ARC)
under grants DP-130103610 and DP-160104500.

Y. Liu is with Research School of Engineering, The Australian National
University, Canberra 0200, Australia yang.liu@anu.edu.au

Y. Lou is with the Department of Systems Engineering and Engineer-
ing Management, The Chinese University of Hong Kong, Hong Kong
louyoucheng@amss.ac.cn

B. D. O. Anderson is with Research School of Engineering,
The Australian National University, Canberra 0200, Australia
brian.anderson@anu.edu.au

G. Shi is with Research School of Engineering, The Australian National
University, Canberra 0200, Australia guodong.shi@anu.edu.au

equations, in which we often consider least squares solution
by minimizing the associated objective function.

However, it seems a rather challenging problem in de-
veloping distributed least squares solvers for network linear
equations, due to the mismatch between individual linear
equations at each node and the network least squares so-
lution. Despite the difficulties, there exist a few distributed
algorithms developed for the least squares problem using
different approaches, such as second-order algorithms [15]–
[18], state expansion [12] and high gain consensus gain
method [8]. Second-order distributed least squares solvers
[15]–[18] generally can produce good convergence perfor-
mance, however, they rely on restricted network structures
and demand higher communication and storage capacities.
State expansion method [12] is to enlarge the state dimension
and then apply the existing methods for linear equations with
exact solutions directly, but the nodes have to grasp more
knowledge than their own linear equations. It was shown
in [8] that first-order algorithms for exact solutions can be
adapted to the least squares case by a high consensus gain,
but only in approximate sense.

In this paper, we propose a first-order continuous-time
flow for the least squares problems of network linear equa-
tions, in which each agent keeps averaging the state with
its neighbors’ and in the mean time descending along the
diminishing gradient of its local cost function. This flow is
inspired by the work of [19] on distributed subgradient opti-
mization. If the network linear equation has one unique least
squares solution, we prove that all node states asymptotically
converge to that solution along our flow, with constant and
connected graphs and nonintegrable step size. For switching
network structure that is kept connected, we show that the
node states always converge to one of the least squares
solutions with square integrable step size. We also provide
a few numerical examples that validate the usefulness of the
proposed algorithms and demonstrate the convergence rate.

The remainder of this paper is organized as follows.
In Section II, a brief introduction to the definition of the
problem studied is given. We present the main results in
Section III and make further discussions using numerical
examples in Section IV. In Section V, the main work of this
paper is summarized and potential future work are provided.

II. PROBLEM DEFINITION

In this section, a few mathematical preliminaries are
provided, regarding linear equations over networks. Also we
establish a distributed network flow that can asymptotically
compute the least squares solution to network linear equa-
tions and discuss its relation to existing work.

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2872-6/17/$31.00 ©2017 IEEE 1046

A. Linear Equations

Consider the following linear algebraic equation with
respect to y ∈ Rm:

z = Hy (1)

where z ∈ RN and H ∈ RN×m are known (m ≤ N). Denote

H =

h>1
h>2

...
h>N

 , z =

z1
z2
...
zN

 .
We can rewrite (1) as

h>i y = zi, i = 1, . . . , N.

Denote the column space of a matrix M by colsp{M}. If z ∈
colsp{H}, then the equation (1) always has (one or many)
exact solutions. If z /∈ colsp{H}, the least squares solution
is defined by the solution of the following optimization
problem:

min
y∈Rm

‖z−Hy‖2. (2)

It is well known that if rank(H) = m, then (2) yields
a unique solution y∗ = (H>H)−1H>z, while (2) has a
set of non-unique least squares solutions if rank(H) < m.

Define a cost function f(y) =
N∑
i=1

fi(y) where fi(y) =

|h>i y−zi|2. Note that y∗ ∈ argmin f(y), i.e., ∇f(y∗) = 0,

where ∇f(y) = 2
N∑
i=1

(hih
>
i y − zihi).

B. Networks

Denote G = (V, E) as a constant undirected graph with
the finite set of nodes V = {1, 2, . . . , N} and the set of
edges E ⊂ V ×V . Suppose throughout the rest of paper that
G has no self loops. Assign a weight function w : E → R
to every edge. Obviously w((i, j)) = w((j, i)). Based on
constant graphs, we next introduce time-varying graphs. Let
Q be the set containing all possible constant and undirected
graphs induced by the node set V and Q∗ ⊂ Q be a
subset of Q. Define a piecewise constant mapping Gσ(·) =
(V, Eσ(·)) : R≥0 → Q∗. Note that the time-varying graph
Gσ(t) = (V, Eσ(t)) represents the network topology at time t.
Let Ni(t) be the set of neighbor nodes that are connected to
node i at time t, i.e., Ni(t) = {j : (i, j) ∈ Eσ(t)}. Define the
degree matrix D(t) = diag(|N1(t)|, |N2(t)|, . . . , |NN (t)|)
and the adjacency matrix A(t) of the graph Gσ(t) by
[A(t)]ij = w((i, j)) if (i, j) ∈ Eσ(t)}, and [A(t)]ij = 0
otherwise. Then L(t) = D(t) − A(t) is the Laplacian of
graph Gσ(t) at time t.

C. Distributed Flows

Assume that node i of the network Gσ(t) only knows the
information of hi, zi, i.e., node i is associated with the linear
equation h>i y = zi. We assign xi(t) ∈ Rm that varies as

a function of time t as the state of each node i. Then we
propose the following continuous-time network flow

ẋi(t) = K
∑

j∈Ni(t)

[A(t)]ij(xj(t)−xi(t))−
α(t)

2
∇fi(xi(t)),

(3)
where K ∈ R+ is a positive constant, ∇fi(y) = 2(hih

>
i y−

zihi) and the step size α(t) : R≥0 → R+ is a continuous
function which assures the continuity of all xi(t) and their
derivatives, with the exception of the time points when the
networks switch. In vector form, we have

ẋ(t) = −M(t)x(t) + α(t)zH (4)

where M(t) = K(L(t) ⊗ Im) + α(t)H̃,
x(t) = [x>1 (t) . . . x>N (t)]> ∈ RNm, H̃ =
diag{h1h

>
1 , . . . ,hNh>N} ∈ RNm×Nm, and zH =

[z1h
>
1 . . . zNh>N]> ∈ RNm. Now we make a few

assumptions of α(t) that will be used in our main results.
Assumption 1: (i)

∫∞
0
α(t)dt = ∞; (ii) lim

t→∞
α(t) = 0;

(iii)
∫∞
0
α2(t)dt <∞.

D. Discussion
Now we clarify the relation between the previous work

of distributed least squares and optimization algorithms, and
our algorithm (3) by briefly discussing their structure and
applicability. It is clear that (3) has exactly the same structure
as the flow in [19], [20], with the difference that the flow
in [19], [20] is discrete time but (3) is continuous time.
However, we cannot use the algorithm and the analysis
directly because the gradient boundedness of (3) is not
directly verifiable. It can be noted that the first-order flow
in [8] is a special case of (3) by letting α(t) be a proper
constant. Due to the existence of the diminishing step size,
(3) is a linear time-varying system, while the flow in [8]
is linear time invariant and can only produce the solution
in approximate sense. Hence the approach to analyzing the
flow in [8] is not applicable for (3). There are also second-
order least squares solvers [15]–[18], nevertheless they often
request limited network topologies and have more complex
structures than (3).

III. CONVERGENCE RESULTS

In this section, we investigate the flow (4) over fixed and
switching networks, respectively, and establish the conver-
gence conditions regarding α(t) and the graphs.

A. Convergence over Fixed Networks
First we consider the case where the linear equation (1)

has one unique least squares solution and the network is a
constant graph for all t. In this case, the following theorem
can be proved.

Theorem 1: Suppose rank(H) = m and denote y∗ =
(H>H)−1H>z as the unique least squares solution of (1).
Let Assumption 1.(i) and (ii) hold. If Gσ(t) = G is constant
and connected for all t ≥ 0, then along any solution of (3)
there holds that

lim
t→∞

xi(t) = y∗

for all i ∈ V .

1047

B. Convergence over Switching Networks
Now we consider a more general case where the least

squares solutions of (1) can be unique or non-unique, and
the network Gσ(t) switches among a collection of graphs.
Regarding the convergence of (3) in this case, we have the
following theorem.

Theorem 2: Suppose rank(H) ≤ m and denote the set
of least squares solutions of (1) by YLS = argmin f(y). In
particular, |YLS| = 1 if rank(H) = m. Let Assumption 1.(i),
(ii) and (iii) hold. If all G ∈ Q∗ are connected, then along
any solution of (3) over the switching graph Gσ(t) there exists
ŷ ∈ YLS such that

lim
t→∞

xi(t) = ŷ

for all i ∈ V .
We conjecture that the condition for graphs in Theorem 2

can be even more relaxed. Now we define the graph union
of Q∗ as G(Q∗) =

⋃
G∈Q∗

E with G = (V, E). One of the

potential generalizations is to extend “all graphs G ∈ Q∗ are
connected” to “the graph union G(Q∗) is connected”, for
which we provide a numerical example in this paper.

C. Proofs of Statements
Now we provide the proofs of Theorem 1 and Theorem

2, in addition to a couple of key lemmas.
1) Key Lemmas: Here are a few lemmas that assist with

the proofs of Theorem 1 and Theorem 2. The proofs of
Lemma 1 and Lemma 2 are directly based on properties
of strongly convex functions and Grönwall’s Inequality,
respectively, and omitted due to space limitations.

Lemma 1: Consider a linear equation Hy = z with
respect to y ∈ Rm where H ∈ RN×m, z ∈ RN . Denote
h>i as the i-th row of H and zi as the i-th entry of z. Let

f(y) =
N∑
i=1

|h>i y − zi|2. If rank(H) = m, then f(y) is

strongly convex and there exists σ > 0 such that f(y) ≥
f(y∗) + σ

2 ‖y − y∗‖2 with y∗ = min
y
f(y).

Lemma 2: Consider a continuously differentiable func-
tion g(t) : R≥0 → R≥0 with g(0) ≥ 0. If there ex-
ist continuous functions γ(t) : R≥0 → R+ and β(t) :
R≥0 → R+ satisfying ġ(t) ≤ −γ(t)g(t) + β(t), then
g(t) ≤ exp(−

∫ t
0
γ(s)ds)g(0)+

∫ t
0

exp(−
∫ t
s
γ(r)dr)β(s)ds.

Furthermore, the following statements hold:
(i) If

∫∞
0
γ(t)dt =∞ and lim

t→∞
β(t)
γ(t) = 0, then lim

t→∞
g(t) =

0.
(ii) If

∫∞
0
γ(t)dt =∞ and lim sup

t→∞

β(t)
γ(t) <∞, then g(t) is

bounded.
2) Proof of Theorem 1: The proof starts by establishing

x(t) is bounded, which is given as follows. Consider

QK(x, t) = x>M(t)x

= K
∑
{i,j}∈E

[A]ij‖xj − xi‖2 + α(t)

N∑
i=1

|h>i xi|2

with x 6= 0. It can be easily known that QK(x, t) ≥ 0
and the equality holds only if xi = xj for any i, j. If

rank(H) = m, there does not exist x 6= 0 such that
QK(x) = 0, i.e., QK(x) > 0 for x 6= 0. Therefore, M(t)
is positive-definite for all t. Similarly, P = L ⊗ Im + H̃
is also positive-definite. Under Assumption 1.(ii), we know
that there exists sufficiently large t0 such that α(t) < K
for all t > t0. By Theorem 4.2.2 in [21], we know that
QK(x, t) ≥ α(t)x>Px ≥ α(t)λmin,P ‖x‖2 for any x and
all t > t0, where λmin,P is the minimum eigenvalue of P.
Let h(t) = ‖x(t)‖2. Then

d

dt
h(t) = −2x>(K(L⊗ Im) + α(t)H̃)x + 2α(t)x>zH

≤ −2α(t)λmin,P ‖x‖2 + 2α(t)‖x‖‖zH‖,

for t > t0. Consider

d

dt

√
h =

ḣ

2
√
h
≤ −α(t)λmin,P

√
h+ α(t)‖zH‖, t ≥ t0.

By Lemma 2.(ii), identifying g(t) with
√
h(t), we have that√

h(t) = ‖x(t)‖ is bounded for t > t0. Due to the continuity
of x(t), ‖x(t)‖ is bounded for all t ≥ 0.

Denote x̄(t) := 1
N

N∑
i=1

xi(t) and x̄�(t) := 1N⊗x̄(t). Then

we analyze d
dt‖x(t)− x̄�(t)‖2 and find out

d

dt
‖x(t)− x̄�(t)‖2 ≤ −2λ2K‖x(t)− x̄�(t)‖2 + β(t),

where β(t) = 2α(t)〈x(t) − x̄�(t), zH − H̃x(t) − 1N ⊗

(1
2N

N∑
i=1

∇fi(xi))〉 and λ2 is the second minimum eigenvalue

of L. Under Assumption 1.(ii) and by the claim that ‖x(t)‖
is bounded, we know that lim

t→∞
β(t) = 0. By Lemma 2.(i),

lim
t→∞

‖x(t) − x̄�(t)‖2 = 0, i.e., the dynamical system (4)

achieves a consensus. Similarly, we study d
dt‖x̄(t) − y∗‖2

and apply Lemma 1, Lemma 2.(i). It can be easily obtained
that lim

t→∞
‖x̄(t)− y∗‖2 = 0. Thus one can conclude that (4)

reaches a consensus that is the least squares solution to (1).
3) Proof of Theorem 2: The idea of proving Theorem 2

is analogous to the proof of Theorem 1, and omitted due to
page limit.

IV. NUMERICAL EXAMPLES

In this section, a couple of numerical examples are pro-
vided to validate the results of Theorem 1, 2.

A. Fixed Graphs

Example 1. Consider a linear algebraic equation with respect
to y ∈ R2:

−1 1
2 1
2 0
1 0

y =

2
1
0
2

 .
It can be calculated that the unique least squares solution
is y∗ = [0.0526 1.4737]>. Given the initial value x(0) =
[0.3 −0.2 0.1 −0.1 1.1 1.6 −0.2 0.8]> and K = 100. Let
the network flow (4) do iteration over the graph G0 given in
Figure 1 for α(t) = t−1, α(t) = t−

1
2 , α(t) = t−

1
4 , α(t) =

1048

1

4 3

2

Fig. 1. A constant, connected and undirected graph G0 considered in
Example 1 and 2.

t−
1
8 , respectively, in which cases the conditions of Theorem

1 are satisfied. Then we plot the trajectories of e(t) = ‖x(t)−
14⊗y∗‖ in logarithmic scales for the cases in which α(t) =
t−

1
2 , t−

1
4 , t−

1
8 in Figure 2. As can be seen, x(t) converges to

14⊗y∗, which verifies the correctness of Theorem 1. Further,
according to the trajectories in Figure 2, we calculate the
slopes κ = −0.5035, κ = −0.2497, κ = −0.1242 for these
three cases, respectively. Also we plot the trajectory of e(t)
for α(t) = t−1 and obtain the slope κ = −0.4667.

These results suggest that when α(t) is taken as α(t) = tκ

for −1 < κ < 0, the trajectories of the solution x(t) to
(4) will tend to the least squares solution to (1) with the
error e(t) decreasing at an rate O(tκ). Surprisingly, α(t) =
t−1 seems to be an exception, with which the error e(t) is
decreasing by O(t−0.4667).
Example 2. Consider the same linear equation as in Example
1, where x(0) = [0.3 − 0.2 0.1 − 0.1 1.1 1.6 − 0.2 0.8]>

and α(t) = t−
1
2 . Let (4) do iteration over the graph in

Figure 1 for K = 1, 10, 100, respectively. Then we plot
the trajectories of e(t) = ‖x(t) − 14 ⊗ y∗‖ in logarithmic
scales in Figure 3. In all three cases the solution x(t) of
(4) converges to 14 ⊗ y∗, consistent with Theorem 1. Also
we calculate the slopes κ for the cases K = 1, 10, 100 and
obtain κ = −0.4924, κ = −0.5024, κ = −0.5035.

These results illustrate that the asymptotic convergence
speed of the flow (4) is dominated by the term α(t), while
the consensus gain K plays a role in affecting the transient
behaviors of the trajectories.

B. Switching Connected Graphs
Example 3. Consider the following linear equation with
respect to y ∈ R2:

3 2
1 −3
1 5
−1 4
2 4

y =

1
1
5
3
−2

 .
As can be calculated, its unique least squares solution is
y∗ = [−0.2008 0.4344]>. Let Q∗ = {G1,G2} with G1,G2
as shown in Figure 4 and Gσ(t) be given as following:

Gσ(t) =

{
G1, t ∈

[
Tk, T (k + 1)

)
, k = 0, 2, 4, . . .

G2, t ∈
[
Tk, T (k + 1)

)
, k = 1, 3, 5, . . .

with T = 1, i.e., the network switches between graph G1
and G2 periodically with period T = 1. Set the initial value

x(0) = [−1 1 −0.5 1 −1.2 0.6 −0.3 −0.4 −1 0.3]>. Let
the flow (4) do iteration over the switching network Gσ(t)
with K = 100, α(t) = (t + 1)−1. It can be known by
simple calculation that the conditions of Theorem 2 are met,
in particular, rank(H) = 2. Then we plot the trajectories
xi[1](t), xi[2](t) with i = 1, 2, 3, 4, 5 in Figure 5. We can see
that xi(t) for all i converge to y∗, consistent with Theorem
2.
Example 4. Consider the following linear equation with
respect to y ∈ R2:

4 6
1 1.5
1 1.5
−1 −1.5
2 3

y =

2
−1
1
−3
2.5

 .
Let the network Gσ(t),K, α(t) be the same as in Example
3. We can easily know that the conditions of Theorem 2 are
satisfied, in particular, rank(H) = 1 < 2, which means the
linear equation has non-unique least squares solutions. Set
the initial value x(0) = [−1 1 − 0.5 1 − 1.2 0.6 − 0.3 −
0.4 − 1 0.3]>. Let (4) do iteration under these conditions.
Then the trajectories of xi[1](t),xi[2](t) with i = 1, 2, 3, 4, 5
are plotted in Figure 6, from which it can seen that xi(t) for
all i converge to ŷ = [−0.5705 0.8442]>. Evidently, ŷ is one
of the least squares solutions and this validates the result in
Theorem 2.

C. Switching Graphs with Joint Connectivity

Example 5. Consider the same linear equation as Example
3. Let Gσ(t) be given as following:

Gσ(t) =

{
G3, t ∈

[
Tk, T (k + 1)

)
, k = 0, 2, 4, . . .

G4, t ∈
[
Tk, T (k + 1)

)
, k = 1, 3, 5, . . .

with G3, G4 in Figure 7, T = 1. We can see that neither
G3 nor G4 is connected, but only G3 ∪ G4 is connected.
Given the same K,α(t),x(0) as Example 3. Let the flow
(4) do iteration over Gσ(t). Then we plot the trajectories of
xi[1](t),xi[2](t) for all i in Figure 8. It can be seen that
xi(t) converge to y∗ = [−0.2008 0.4344]> for all i when
rank(H) = m. We can also verify the convergence for the
case with rank(H) < m.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a first-order distributed step-size least
squares solver over networks was proposed. When the least
squares solution is unique, We proved the convergence results
for fixed and connected graphs, with an assumption of
nonintegrable step size. By loosening the uniqueness of
the least squares solution, we obtained the convergence re-
sults for constantly connected switching graphs, with square
integrable step size. We also provided a few numerical
examples, in order to verify the results and illustrate the
convergence speed. Potential future work includes proving
the convergence over networks without instantaneous con-
nectivity, studying the exact convergence rate, and finding
out the convergence limit.

1049

time
103 104

10-4

10-3

10-2

10-1
The Trajectory of Error e(t)

(a) α(t) = t−
1
2

time
103 104

10-4

10-3

10-2

10-1
The Trajectory of Error e(t)

(b) α(t) = t−
1
4

time
103 104

10-4

10-3

10-2

10-1
The Trajectory of Error e(t)

(c) α(t) = t−
1
8

Fig. 2. The trajectories of e(t) = ‖x(t)− 14 ⊗ y∗‖ in logarithmic scale. The slope κ = −0.5035,−0.2497,−0.1242 for α(t) = t−
1
2 , α(t) = t−

1
4 ,

α(t) = t−
1
8 , respectively.

time
103 104

10-4

10-3

10-2

10-1

100
The Trajectory of Error e(t)

(a) K=1

time
103 104

10-4

10-3

10-2

10-1

100
The Trajectory of Error e(t)

(b) K=10

time
103 104

10-4

10-3

10-2

10-1

100
The Trajectory of Error e(t)

(c) K=100

Fig. 3. The trajectories of e(t) = x(t)− 14 ⊗ y∗ in logarithmic scale. The slopes κ = −0.4924,−0.5024,−0.5035 for K = 1, 10, 100, respectively.

1

4 3

2 5

(a) G1

1

4 3

2 5

(b) G2

Fig. 4. Constant, connected and undirected graph G1, G2 considered in
Example 3 and 4.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[3] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 56, no. 5, pp. 1865–1877,
2008.

[4] P. Barooah and J. P. Hespanha, “Graph effective resistance and
distributed control: Spectral properties and applications,” in Decision
and control, 2006 45th IEEE conference on, pp. 3479–3485, IEEE,
2006.

[5] S. Kar and J. M. Moura, “Gossip and distributed kalman filtering:

time
0 5 10 15 20

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

 Entry x i [1] Trajectories

x
 1

 [1]

x
 2

 [1]

x
 3

 [1]

x
 4

 [1]

x
 5

 [1]

time
0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Entry x i [2] Trajectories

x
 1

 [2]

x
 2

 [2]

x
 3

 [2]

x
 4

 [2]

x
 5

 [2]

Fig. 5. The trajectories of xi[1](t),xi[2](t) for i = 1, 2, 3, 4, 5 given
K = 100, α(t) = (t + 1)−1 obtained over a switching network. The
result shows all xi(t) converge to y∗ = [−0.2008 0.4344]>.

1050

time
0 5 10 15 20

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 Entry x i [1] Trajectories

x
 1

 [1]

x
 2

 [1]

x
 3

 [1]

x
 4

 [1]

x
 5

 [1]

time
0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Entry x i [2] Trajectories

x
 1

 [2]

x
 2

 [2]

x
 3

 [2]

x
 4

 [2]

x
 5

 [2]

Fig. 6. The trajectories of the first component xi[1](t) and the second
component xi[2](t) for i = 1, 2, 3, 4, 5 given K = 100, α(t) = (t+1)−1

obtained over a switching network. As calculated, all xi(t) converge to
ŷ = [−0.5705 0.8442]>, which is one of the least squares solutions.

1

4 3

2 5

(a) G3

1

4 3

2 5

(b) G4

Fig. 7. Constant, connected and undirected graph G3, G4 considered in
Example 5.

time
0 500 1000 1500 2000 2500 3000

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 Entry x i [1] Trajectories

x
 1

 [1]

x
 2

 [1]

x
 3

 [1]

x
 4

 [1]

x
 5

 [1]

time
0 500 1000 1500 2000 2500 3000

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Entry x i [2] Trajectories

x
 1

 [2]

x
 2

 [2]

x
 3

 [2]

x
 4

 [2]

x
 5

 [2]

Fig. 8. The trajectories of the first component xi[1](t) and the second
component xi[2](t) for i = 1, 2, 3, 4, 5 given K = 100, α(t) = (t+1)−1

obtained over a switching network with connected graph union. It can be
seen that all xi(t) converge to y∗ = [−0.2008 0.4344]>.

Weak consensus under weak detectability,” IEEE Transactions on
Signal Processing, vol. 59, no. 4, pp. 1766–1784, 2011.

[6] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6,
pp. 1172–1181, 2013.

[7] B. Anderson, S. Mou, A. S. Morse, and U. Helmke, “Decentralized
gradient algorithm for solution of a linear equation,” arXiv preprint
arXiv:1509.04538, 2015.

[8] G. Shi, B. D. Anderson, and U. Helmke, “Network flows that solve
linear equations,” IEEE Transactions on Automatic Control, vol. 62,
no. 6, pp. 2659–2674, 2017.

[9] J. Lu and C. Y. Tang, “Distributed asynchronous algorithms for solving
positive definite linear equations over networksPart i: Agent networks,”
IFAC Proceedings Volumes, vol. 42, no. 20, pp. 252–257, 2009.

[10] J. Liu, S. Mou, and A. S. Morse, “An asynchronous distributed
algorithm for solving a linear algebraic equation,” in 52nd IEEE
Conference on Decision and Control, pp. 5409–5414, 2013.

[11] S. Mou and A. Morse, “A fixed-neighbor, distributed algorithm for
solving a linear algebraic equation,” in Proc. European Control
Conference, pp. 2269–2273, 2013.

[12] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving
a linear algebraic equation,” IEEE Transactions on Automatic Control,
vol. 60, no. 11, pp. 2863–2878, 2015.

[13] J. Wang and N. Elia, “Solving systems of linear equations by dis-
tributed convex optimization in the presence of stochastic uncertainty,”
IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1210–1215, 2014.

[14] J. Wang and N. Elia, “Distributed solution of linear equations over
unreliable networks,” in American Control Conference (ACC), 2016,
pp. 6471–6476, IEEE, 2016.

[15] J. Wang and N. Elia, “Control approach to distributed optimization,” in
Communication, Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, pp. 557–561, Sept 2010.

[16] J. Wang and N. Elia, “Distributed least square with intermittent
communications,” in American Control Conference (ACC), 2012,
pp. 6479–6484, IEEE, 2012.

[17] B. Gharesifard and J. Cortés, “Distributed continuous-time convex
optimization on weight-balanced digraphs,” IEEE Transactions on
Automatic Control, vol. 59, no. 3, pp. 781–786, 2014.

[18] Y. Liu, C. Lageman, B. Anderson, and G. Shi, “Exponential least
squares solvers for linear equations over networks,” World Congress
of the International Federation of Automatic Control, 2017.

[19] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Transactions on Automatic Control,
vol. 60, no. 3, pp. 601–615, 2015.

[20] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[21] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

1051

