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will occur. We further analyze the rigid motions induced by constant mismatches for both
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1. INTRODUCTION

Formation control for a group of autonomous mobile
agents has gained much attention due to its broad appli-
cations in many areas including both civil and military
fields Oh et al. (2015). In this paper we focus on for-
mation control strategy based on graph rigidity theory,
motivated by its many advantages over other formation
control strategies, such as its independence of a global co-
ordinate system Oh et al. (2015); Olfati-Saber and Murray
(2002); Krick et al. (2009). The rigidity-based formation
control has received much attention in recent years, in
particular since the comprehensive analysis on the stability
and convergence conducted in Krick et al. (2009).

One of the main concerns when implementing any forma-
tion controller in practice is the robustness issue in the
presence of distance measurement error, perturbations or
information inconsistency in distributed coordination. It
has been shown in Belabbas et al. (2012) by using a 2-D
rigid triangular formation as an example that undirected
formations may display undesired motions induced by dis-
tance mismatch (a term that describes inconsistency in
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either distance measurements or desired distance specifica-
tion for a particular edge of the formation, as viewed from
the two agents on which it is incident). A more comprehen-
sive study for general 2-D rigid undirected formations is
reported in Mou et al. (2016), which shows that for any 2-D
rigid formations, circular motion will almost surely occur
as a consequence of constant distance mismatch. A corre-
sponding study for 3-D rigid formations with mismatched
distances is reported in Sun et al. (2017) which proves
that generically a helical motion in 3-D rigid formations
could be induced by constant distance mismatch. Recent
efforts on how to eliminate undesired motions induced by
mismatch distances or how to generate rigid motions by
considering distance mismatches as control parameters are
also available, see e.g. Mou et al. (2014); Garcia de Marina
et al. (2015, 2016),

We note that most results on rigid formation control re-
ported in the literature (including the above mentioned
papers) are based on simple single-integrator formation
models. Such models allow one to focus on the stability
and convergence of the formation dynamics, while the
kinematics for each agent have been ignored. As a com-
parison, a double-integrator agent model is considered to
be a more suitable model to describe real-life formation
control tasks as the control input relates to the accelera-
tion instead of velocity, as in single-integrator formation
models. Double-integrator models have also been very
popular in studying distributed coordination among spa-
tially distributed agents, such as flocking control of multi-
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agent systems Olfati-Saber (2006),Tanner et al. (2007). In
recent years, rigid formation control modelled by double-
integrator agents has also begun to attract much atten-
tion; see e.g. Deghat et al. (2016) on flocking control of
rigid formation by combining distance-based shape con-
trol and velocity consensus, and Sun et al. (2016a) which
focused on the system dynamics and stability analysis of
different equilibria for double-integrator rigid formation
control systems (including the shape stabilization system
and flocking system). However, a robustness analysis on
double-integrator formation systems is still lacking (with
the exception of Garcia de Marina et al. (2017)). Note
that the paper Garcia de Marina et al. (2017) discussed
the robustness issue in rigid shape stabilization control
for second-order agents with distance mismatch, but did
not consider the inclusion of an additional flocking re-
quirement. Also, in contrast to the stability analysis of
Garcia de Marina et al. (2017), we will emphasize the
important issue of augmenting a self-contained formation
error system for the stability and perturbation analysis of
double-integrator formation systems.

Following the spirit of the above mentioned papers (espe-
cially Mou et al. (2016) and Deghat et al. (2016)), we aim
to provide a comprehensive analysis on robustness issues
in double-integrator formation systems with mismatched
distances. The aims and contributions of this paper are

• to revisit the stability results of formation systems
governed by a double-integrator version of the stan-
dard single-integrator control law in Krick et al.
(2009). Two types of double-integrator formation sys-
tems will be considered in this paper, namely, the
formation stabilization system and formation flocking
system (the definitions will be made clear in Section
2);

• to derive self-contained equations for the evolution of
distance error systems (the definition of such systems
will be made clear in Section 3). Compared to the case
of single-integrator system models discussed in Mou
et al. (2016), for the self-contained issue of double-
integrator formation systems, the angular momentum
get involved too;

• to establish the exponential stability of the linearized
distance error systems, which is crucial for the study
of the robustness property against distance pertur-
bations (i.e. small distance mismatches considered in
this paper);

• to determine the rigid body motion properties for
double-integrator formation systems for shape control
and double-integrator flocking systems in the pres-
ence of small and constant mismatched distances.

The paper is organized as follows. In Section 2, preliminary
concepts on graph theory, rigidity theory are introduced.
We also review in Section 2 two types of formation system
equations and a known convergence result. In Section 3,
we discuss the self-contained distance error systems by
augmenting additional state variables and further show its
local exponential stability at the origin via linearization
analysis. Section 4 focuses on the robustness issues of the
double-integrator formation systems and flocking systems.
Finally, Section 5 concludes this paper.

2. PRELIMINARIES

2.1 Graph rigidity and notations

Consider an undirected graph withm edges and n vertices,
denoted by G = (V, E) with vertex set V = {1, 2, . . . , n}
and edge set E ⊆ V × V . The neighbor set Ni of node i
is defined as Ni := {j ∈ V : (i, j) ∈ E}. We define an
orientated incidence matrix H ∈ Rm×n for the undirected
graph G by assigning an arbitrary orientation for each
edge. Note that for a rigid formation modelled by an
undirected graph considered in this paper, the orientation
of each edge for writing the incidence matrix can be
defined arbitrarily and the stability analysis in the next
sections remains unchanged. Following this, we define the
entries of H as hki = +1 if the k-th edge sinks at
node i, or hki = −1 if the k-th edge leaves node i, or
hki = 0 otherwise. The Laplacian matrix L(G) is also
often used for matrix representation of a graph G, which
is defined as L(G) = H�H for undirected graphs. For a
connected undirected graph, there holds rank(L) = n− 1
and null(L) = null(H) = span{1n}.
We denote by p = [p�1 , p

�
2 , . . . , p

�
n ]

� ∈ Rdn the stacked
vector of all the agents’ positions pi ∈ Rd where d = {2, 3}.
The pair (G, p) is said to be a framework of G in Rd. The
incidence matrix H defines the sensing topology of the for-
mation, i.e. it encodes the set of available relative positions
that can be measured by the agents. By introducing the
matrix H̄ := H ⊗ Id, one can construct the stacked vector
z of available relative positions by

z = H̄p, (1)

where each element zk ∈ Rd in z is the relative position
vector for the vertex pair defined by the edge Ek.
This paper focuses on formation control of rigid shapes.
The definition of graph rigidity can be found in e.g.
Hendrickson (1992). Define Z(z) = diag(z1, z2, . . . , zm) ∈
Rdm×m. With this notation at hand, we consider the
smooth distance map rG : Rdn −→ Rm, rG(p) = (‖pi −
pj‖2)(i,j)∈E = Z�z. A useful tool to study graph rigidity
is the rigidity matrix, which is defined as the Jacobian
matrix R(p) = 1

2∂rG(p)/∂(p) = Z(z)�H̄ ∈ Rm×dn. A
framework (G, p) is infinitesimally rigid if rank(R(z)) =
2n−3 when it is embedded in R2 or if rank(R(z)) = 3n−6
when it is embedded in R3. Additionally, if |E| = 2n − 3
in the 2-D case or |E| = 3n − 6 in the 3-D case then the
framework is called minimally rigid.

2.2 System equations

Let dkij denote the desired length of edge k which links
agents i and j. We assume that the set of desired lengths
is realizable, i.e., there exists a formation in Rd whose
inter-agent distances correspond to the desired values.
In the following, the set of all formations (G, p) which
satisfies the distance constraints is referred to as the set
of target formations. In this paper we assume that all
target formations are infinitesimally and minimally rigid.
We further define (for an arbitrary formation) ekij

=

‖pi − pj‖2 − d2kij
= ‖zk‖2 − d2kij

to denote the squared

distance error for edge k. Note we may also use ek and dk
occasionally for notational convenience in the sequel if no
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rigid triangular formation as an example that undirected
formations may display undesired motions induced by dis-
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either distance measurements or desired distance specifica-
tion for a particular edge of the formation, as viewed from
the two agents on which it is incident). A more comprehen-
sive study for general 2-D rigid undirected formations is
reported in Mou et al. (2016), which shows that for any 2-D
rigid formations, circular motion will almost surely occur
as a consequence of constant distance mismatch. A corre-
sponding study for 3-D rigid formations with mismatched
distances is reported in Sun et al. (2017) which proves
that generically a helical motion in 3-D rigid formations
could be induced by constant distance mismatch. Recent
efforts on how to eliminate undesired motions induced by
mismatch distances or how to generate rigid motions by
considering distance mismatches as control parameters are
also available, see e.g. Mou et al. (2014); Garcia de Marina
et al. (2015, 2016),

We note that most results on rigid formation control re-
ported in the literature (including the above mentioned
papers) are based on simple single-integrator formation
models. Such models allow one to focus on the stability
and convergence of the formation dynamics, while the
kinematics for each agent have been ignored. As a com-
parison, a double-integrator agent model is considered to
be a more suitable model to describe real-life formation
control tasks as the control input relates to the accelera-
tion instead of velocity, as in single-integrator formation
models. Double-integrator models have also been very
popular in studying distributed coordination among spa-
tially distributed agents, such as flocking control of multi-
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agent systems Olfati-Saber (2006),Tanner et al. (2007). In
recent years, rigid formation control modelled by double-
integrator agents has also begun to attract much atten-
tion; see e.g. Deghat et al. (2016) on flocking control of
rigid formation by combining distance-based shape con-
trol and velocity consensus, and Sun et al. (2016a) which
focused on the system dynamics and stability analysis of
different equilibria for double-integrator rigid formation
control systems (including the shape stabilization system
and flocking system). However, a robustness analysis on
double-integrator formation systems is still lacking (with
the exception of Garcia de Marina et al. (2017)). Note
that the paper Garcia de Marina et al. (2017) discussed
the robustness issue in rigid shape stabilization control
for second-order agents with distance mismatch, but did
not consider the inclusion of an additional flocking re-
quirement. Also, in contrast to the stability analysis of
Garcia de Marina et al. (2017), we will emphasize the
important issue of augmenting a self-contained formation
error system for the stability and perturbation analysis of
double-integrator formation systems.

Following the spirit of the above mentioned papers (espe-
cially Mou et al. (2016) and Deghat et al. (2016)), we aim
to provide a comprehensive analysis on robustness issues
in double-integrator formation systems with mismatched
distances. The aims and contributions of this paper are

• to revisit the stability results of formation systems
governed by a double-integrator version of the stan-
dard single-integrator control law in Krick et al.
(2009). Two types of double-integrator formation sys-
tems will be considered in this paper, namely, the
formation stabilization system and formation flocking
system (the definitions will be made clear in Section
2);

• to derive self-contained equations for the evolution of
distance error systems (the definition of such systems
will be made clear in Section 3). Compared to the case
of single-integrator system models discussed in Mou
et al. (2016), for the self-contained issue of double-
integrator formation systems, the angular momentum
get involved too;

• to establish the exponential stability of the linearized
distance error systems, which is crucial for the study
of the robustness property against distance pertur-
bations (i.e. small distance mismatches considered in
this paper);

• to determine the rigid body motion properties for
double-integrator formation systems for shape control
and double-integrator flocking systems in the pres-
ence of small and constant mismatched distances.

The paper is organized as follows. In Section 2, preliminary
concepts on graph theory, rigidity theory are introduced.
We also review in Section 2 two types of formation system
equations and a known convergence result. In Section 3,
we discuss the self-contained distance error systems by
augmenting additional state variables and further show its
local exponential stability at the origin via linearization
analysis. Section 4 focuses on the robustness issues of the
double-integrator formation systems and flocking systems.
Finally, Section 5 concludes this paper.

2. PRELIMINARIES

2.1 Graph rigidity and notations

Consider an undirected graph withm edges and n vertices,
denoted by G = (V, E) with vertex set V = {1, 2, . . . , n}
and edge set E ⊆ V × V . The neighbor set Ni of node i
is defined as Ni := {j ∈ V : (i, j) ∈ E}. We define an
orientated incidence matrix H ∈ Rm×n for the undirected
graph G by assigning an arbitrary orientation for each
edge. Note that for a rigid formation modelled by an
undirected graph considered in this paper, the orientation
of each edge for writing the incidence matrix can be
defined arbitrarily and the stability analysis in the next
sections remains unchanged. Following this, we define the
entries of H as hki = +1 if the k-th edge sinks at
node i, or hki = −1 if the k-th edge leaves node i, or
hki = 0 otherwise. The Laplacian matrix L(G) is also
often used for matrix representation of a graph G, which
is defined as L(G) = H�H for undirected graphs. For a
connected undirected graph, there holds rank(L) = n− 1
and null(L) = null(H) = span{1n}.
We denote by p = [p�1 , p

�
2 , . . . , p

�
n ]

� ∈ Rdn the stacked
vector of all the agents’ positions pi ∈ Rd where d = {2, 3}.
The pair (G, p) is said to be a framework of G in Rd. The
incidence matrix H defines the sensing topology of the for-
mation, i.e. it encodes the set of available relative positions
that can be measured by the agents. By introducing the
matrix H̄ := H ⊗ Id, one can construct the stacked vector
z of available relative positions by

z = H̄p, (1)

where each element zk ∈ Rd in z is the relative position
vector for the vertex pair defined by the edge Ek.
This paper focuses on formation control of rigid shapes.
The definition of graph rigidity can be found in e.g.
Hendrickson (1992). Define Z(z) = diag(z1, z2, . . . , zm) ∈
Rdm×m. With this notation at hand, we consider the
smooth distance map rG : Rdn −→ Rm, rG(p) = (‖pi −
pj‖2)(i,j)∈E = Z�z. A useful tool to study graph rigidity
is the rigidity matrix, which is defined as the Jacobian
matrix R(p) = 1

2∂rG(p)/∂(p) = Z(z)�H̄ ∈ Rm×dn. A
framework (G, p) is infinitesimally rigid if rank(R(z)) =
2n−3 when it is embedded in R2 or if rank(R(z)) = 3n−6
when it is embedded in R3. Additionally, if |E| = 2n − 3
in the 2-D case or |E| = 3n − 6 in the 3-D case then the
framework is called minimally rigid.

2.2 System equations

Let dkij denote the desired length of edge k which links
agents i and j. We assume that the set of desired lengths
is realizable, i.e., there exists a formation in Rd whose
inter-agent distances correspond to the desired values.
In the following, the set of all formations (G, p) which
satisfies the distance constraints is referred to as the set
of target formations. In this paper we assume that all
target formations are infinitesimally and minimally rigid.
We further define (for an arbitrary formation) ekij

=

‖pi − pj‖2 − d2kij
= ‖zk‖2 − d2kij

to denote the squared

distance error for edge k. Note we may also use ek and dk
occasionally for notational convenience in the sequel if no
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confusion is expected. The distance error vector is denoted
by e = [e1, e2, . . . , em]�.

Define

ψ(p, v) :=
1

2

∑
i∈V

‖vi‖2 + V (p), (2)

where vi is the velocity of agent i (i.e. vi := ṗi), and
V (p) = 1

4

∑
(i,j)∈E(‖pi − pj‖2 − d2kij

)2 is the commonly-

used potential for shape stabilization (see e.g. Krick et al.
(2009)).

(i) Formation stabilization system The formation sta-
bilization system (without velocity consensus term) mod-
elled by double integrators is described by the following
equations:

ṗi = vi,

v̇i = −αvi −
∑
j∈Ni

(
‖pi − pj‖2 − d2kij

)
(pi − pj), (3)

where α is a positive velocity damping parameter. In a
compact form, the above system equation can be rewritten
as

ṗ = ∇vψ = v,

v̇ = −α∇vψ −∇pψ = −αv −R�(z)e(z),
(4)

where R is the rigidity matrix for the formation.

For the stability analysis it will be more convenient to
focus on the relative position dynamics (i.e. the system
żi). From (1) and (4) one can derive the relative position
dynamics as follows

ż =H̄ṗ = H̄v,

z̈ =H̄v̇ = −αH̄v − H̄R�(z)e(z)

=− αż − H̄R�(z)e(z). (5)

(ii) Formation flocking system The formation flocking
system (with a velocity consensus term in an undirected
interaction graph) can be written as

ṗi = vi,

v̇i = α
∑
j∈Ni

(vj − vi)−
∑
j∈Ni

(
‖pi − pj‖2 − d2kij

)
(pi − pj),

(6)

where α is a positive gain for velocity consensus. The above
system equation can be rewritten in a compact form

ṗ = ∇vψ = v,

v̇ = −αL̄v −R�(z)e(z),
(7)

where L̄ = L ⊗ Id and L is the Laplacian matrix for the
underlying undirected and connected graph.

By using the same approach of obtaining the relative
position dynamics in (5), one can also obtain the relative
position dynamics ż for the formation flocking system (7)
as follows

ż =H̄ṗ = H̄v,

z̈ =H̄v̇ = −αH̄L̄v − H̄R�(z)e(z)

=− αH̄H̄�ż − H̄R�(z)e(z). (8)

It is easy to see that this differs from the equations (5) for
formation shape stabilization in respect of only the term
involving ż.

2.3 A known result on asymptotic convergence

The following convergence result has been well established
in the literature under different contexts; see e.g. Dimarog-
onas and Johansson (2008); Deghat et al. (2016); Sun et al.
(2016a).

Lemma 1. The formation stabilization system (4) (with-
out velocity consensus term) is locally asymptotically sta-
ble in that e → 0 and all agents’ velocities converge to
zero asymptotically. Furthermore, the formation flocking
system (7) (with velocity consensus term) is locally asymp-
totically stable in that e → 0 and all the velocities reach
consensus asymptotically.

The proof can be found in e.g. Dimarogonas and Johansson
(2008); Deghat et al. (2016).

3. SELF-CONTAINED DISTANCE ERROR SYSTEMS
AND THEIR EXPONENTIAL STABILITY

3.1 System equations for distance errors e

The convergence result in Lemma 1 focuses on the forma-
tion position system (4) (or (7)) and confirms the asymp-
totic convergence of the distance error vector e; however, it
does not show whether the convergence of e to the origin is
exponentially fast. Since in this paper our main focus is on
the robustness analysis of the formation system under dis-
tance mismatches, it is natural to consider the dynamical
system which describes the evolution of the distance errors
e. For convenience of analysis we will adopt a compact
form for the distance error equation. In the following we
focus on the formation stabilization system (4) (without
velocity consensus). The case for the formation flocking
system (7) (with velocity consensus term) can be dealt
with in a similar manner.

Bearing in mind that ė = 2Rṗ, we derive the following
equations for ë

ë = 2Rp̈+ 2Ṙṗ = −2αRv − 2RR�e+ 2Ż�H̄v

= −2αRv − 2RR�e+ 2Ż�ż, (9)

where Ż�ż = [‖ż1‖2, . . . , ‖żk‖2, . . . , ‖żm‖2]�. It has been
proven in Mou et al. (2016); Sun et al. (2017) that when
the formation shape is close to the desired one, the entries
of the matrix R(z)R�(z) are continuously differentiable
functions of the distance error vector e. Hence we can
write M(e) := R(z)R�(z). Also note that 2αRv = αė.
By defining χ := ė, one can rewrite (9) as

ė = χ,

χ̇ = −αχ− 2M(e)e+ 2Ż�ż. (10)

The above equations will be particularly useful for con-
ducting stability and robustness analysis in later sections.
However, they do not constitute a set of self-contained
equations due to the presence of the additional term ‖żk‖2.
Note that from Lemma 1 and its proof using the standard
argument of Barbalat’s Lemma, one can conclude that
each ||ṗi|| is square integrable and tends to zero asymp-
totically, which implies that all ||żi|| also have the same
property. So the equation for ëi is self-contained in the
ei except for the addition of a nonnegative term which
converges to zero asymptotically, and which has a bounded
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integral. All these facts also justify the assumption in the
following analysis that it is legitimate to linearize (10)
around (e = 0, ė = 0), which will be discussed in the next
subsection through an augmented distance error system.

3.2 An augmented distance error system

Motivated in part by the above observation, we are now
going to deal with the terms ||żi||2 of (10) in a different
way, through arguing that they fall out when a certain
set of self-contained equations is linearized. These self-
contained equations contain more variables of course than
just the ei. This is a novel feature of the move from single
integrator to double integrator agents.

We introduce a new variable

fi = zi ∧ żi, (11)

and regard fi as a vector describing a quantity relating
to angular momentum associated with the i-th relative
position.

Next, note that

||zi||2||żi||2 = (z�i żi)
2 + ||zi ∧ żi||2 =

1

2
ė2i + |fi|2, (12)

or

||żi||2 =
1

||zi||2

(
1

2
ė2i + |fi|2

)
, (13)

which indicates that the term ||żi||, and in general all the

entries in the stacked vector Ż�ż, can be considered as a
function of e, ė and f .

Following the above argument, we associate an angular
momentum fi with each edge and then analyze the equa-
tion of ḟi for a general formation. Denote a vector f =
[f�

1 , . . . , f�
m]�. In the following, we define the ∧ operation

for two structured dm-dimensional vectors comprising a
collection of m d-dimensional subvectors. In particular, we
write

f =




z1 ∧ ż1
z2 ∧ ż2

...
zm ∧ żm


 =: z ∧ ż, and ḟ =




z1 ∧ z̈1
z2 ∧ z̈2

...
zm ∧ z̈m


 =: z ∧ z̈.

From the equation for the formation stabilization system
(5), one can obtain

ḟ = ż ∧ ż + z ∧ z̈ = z ∧ z̈ = z ∧
(
−αż − H̄R�(z)e

)

= −αz ∧ ż − z ∧ (H̄R�(z)e), (14)

where the entries of the vector function term z∧(H̄R�(z)e)
involve linear combinations of terms like ejzi ∧ zj . Ac-
cording to Lemma 1, the error vector e asymptotically
converges to zero, which implies that in the vicinity of
the limit e = 0, the term zi ∧ zj is close to some bounded
constant (actually its magnitude is twice the area of the
triangle formed by the three agents associated with zi and
zj). Following the same argument that the inner product
term z�i zj is a function of e, it is obvious that the wedge
product zi ∧ zj is also a function of e. The term z ∧
(H̄R�(z)e) is therefore of the form G(z)e for some matrix
G. From Lemma 1, the convergence of e to zero also implies
that the product ejzi ∧ zj will also converge to zero when
t → ∞, and we conclude that in the limit there will also
hold fi = 0.

3.3 Local exponential convergence of distance error system
via linearization analysis

Now we exhibit the linearized equations of the augmented
system around the desired equilibrium point {(e, χ, f)|e =
0, χ = 0, f = 0}. The third observation that the term ‖żk‖2
is of second order in χ and fi will be a key to recording
a decoupled linearized system. The linearization equations
for (10) and ḟi around (ē = 0, χ̄ = 0, f̄ = 0) can be easily
calculated as

[
˙̄e
˙̄χ

]
=

[
0 I

−2M(0) −αI

]

︸ ︷︷ ︸
=:J(ē,χ̄)

[
ē
χ̄

]
, (15)

and

˙̄f = −αf̄ − z̄ ∧ (H̄R�(z̄)ē), (16)

where in the linearized system (16) the entries of the
vector function term z̄ ∧ (H̄R�(z̄)ē) involve the linearized
quantity ē and z̄i ∧ z̄j with z̄i referring to the relative
position from the resulted target formation with side
length di. Thus, the term z̄ ∧ (H̄R�(z̄)ē) is of the form
G(z̄)ē for some matrix G whose entries are functions of
z̄. It is clearly seen from the above linearized equations
that the first equation (15) is decoupled from the second
one (16). For the linearized error system (15), the matrix
−M(0) is negative definite (see e.g. Sun et al. (2016b) for
a proof), which further implies that all the eigenvalues of
the Jacobian matrix J(ē,χ̄) have negative real parts, i.e., the
Jacobian is a Hurwitz matrix (see e.g. Sun et al. (2016b) for
the proof). According to (Khalil, 2002, Theorem 4.13), this
proves the local exponential convergence of the distance
error system (10). The exponential convergence of (e =
0, ė = 0) from (15), together with the structure of the
linearized equation (16), also implies that f = 0 is locally
exponentially convergent. We summarize all these results
in the following theorem.

Theorem 1. The equilibrium state (e = 0, ė = 0, f = 0)
of the unperturbed augmented error system in (10) and
(14) is locally exponentially stable.

For the formation flocking system, one can also derive the
distance error system from (7) as follows

ë = 2Rp̈+ 2Ṙṗ = −2RH̄�ż − 2RR�e+ 2Ż�ż. (17)

By augmenting additional variable f = z ∧ ż with the
system ḟ being in a similar form as in (14), and follow-
ing a similar analysis to the above argument (which is
omitted here), one can also show the locally exponential
convergence of the equilibrium state (e = 0, ė = 0, f = 0)
for the augmented distance error system derived from the
formation flocking system (7). We summarize:

Theorem 2. The equilibrium state (e = 0, ė = 0, f =

0) of the unperturbed augmented error system ë and ḟ
derived from the flocking formation system in (7) is locally
exponentially stable.

The robustness property as a consequence of the exponen-
tial stability will be discussed in the next section.
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integral. All these facts also justify the assumption in the
following analysis that it is legitimate to linearize (10)
around (e = 0, ė = 0), which will be discussed in the next
subsection through an augmented distance error system.

3.2 An augmented distance error system

Motivated in part by the above observation, we are now
going to deal with the terms ||żi||2 of (10) in a different
way, through arguing that they fall out when a certain
set of self-contained equations is linearized. These self-
contained equations contain more variables of course than
just the ei. This is a novel feature of the move from single
integrator to double integrator agents.

We introduce a new variable

fi = zi ∧ żi, (11)

and regard fi as a vector describing a quantity relating
to angular momentum associated with the i-th relative
position.

Next, note that

||zi||2||żi||2 = (z�i żi)
2 + ||zi ∧ żi||2 =

1

2
ė2i + |fi|2, (12)

or

||żi||2 =
1

||zi||2

(
1

2
ė2i + |fi|2

)
, (13)

which indicates that the term ||żi||, and in general all the

entries in the stacked vector Ż�ż, can be considered as a
function of e, ė and f .
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[f�

1 , . . . , f�
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f =




z1 ∧ ż1
z2 ∧ ż2

...
zm ∧ żm


 =: z ∧ ż, and ḟ =




z1 ∧ z̈1
z2 ∧ z̈2

...
zm ∧ z̈m


 =: z ∧ z̈.
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ḟ = ż ∧ ż + z ∧ z̈ = z ∧ z̈ = z ∧
(
−αż − H̄R�(z)e

)

= −αz ∧ ż − z ∧ (H̄R�(z)e), (14)

where the entries of the vector function term z∧(H̄R�(z)e)
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t → ∞, and we conclude that in the limit there will also
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[
˙̄e
˙̄χ

]
=

[
0 I

−2M(0) −αI

]

︸ ︷︷ ︸
=:J(ē,χ̄)

[
ē
χ̄

]
, (15)
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0, ė = 0) from (15), together with the structure of the
linearized equation (16), also implies that f = 0 is locally
exponentially convergent. We summarize all these results
in the following theorem.

Theorem 1. The equilibrium state (e = 0, ė = 0, f = 0)
of the unperturbed augmented error system in (10) and
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ë = 2Rp̈+ 2Ṙṗ = −2RH̄�ż − 2RR�e+ 2Ż�ż. (17)

By augmenting additional variable f = z ∧ ż with the
system ḟ being in a similar form as in (14), and follow-
ing a similar analysis to the above argument (which is
omitted here), one can also show the locally exponential
convergence of the equilibrium state (e = 0, ė = 0, f = 0)
for the augmented distance error system derived from the
formation flocking system (7). We summarize:

Theorem 2. The equilibrium state (e = 0, ė = 0, f =

0) of the unperturbed augmented error system ë and ḟ
derived from the flocking formation system in (7) is locally
exponentially stable.

The robustness property as a consequence of the exponen-
tial stability will be discussed in the next section.
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4. ROBUSTNESS ISSUES AND MOTION
PROPERTIES WITH DISTANCE MISMATCHES

4.1 Modified system equations with distance mismatches

Following the problem setting in Belabbas et al. (2012);
Sun et al. (2014); Mou et al. (2016); Garcia de Marina
et al. (2016), we now assume in this section that the
perceived distances dij and dji for neighboring agents i
and j, respectively, are not necessarily equal. Furthermore,
the misbehavior actually stems from the mismatch (the
difference, or discrepancy) between dij and dji rather
than the assumption that both dij and dji are only
approximately equal to dkij

. In other words, only the
difference between mutual distances in each edge matters
in the modelling of distance mismatch. Without loss of
generality and to simplify the equations in the sequel, we
will henceforth assume that dij exactly equals dkij for
all adjacent vertex pairs (i, j) for which i is the head
of edge kij . Next, we denote µkij = d2ij − d2ji as the
constant distance mismatch corresponding to edge kij ;
clearly, one has d2ij = d2kij

, d2ji = d2kij
− µkij

. We also

denote by N+
i the set of all j ∈ Ni for which vertex i

is the head of the oriented edge kij , and denote by N−
i

the complement of N+
i in Ni. Thus, the double-integrator

formation stabilization system with distance mismatches
should be modified as

ṗi = vi,

v̇i = −αvi −
∑
j∈Ni

ekij
(pi − pj) +

∑

j∈N−
i

µkij
(pi − pj).

Following again the same procedure from Belabbas et al.
(2012); Mou et al. (2016); Garcia de Marina et al. (2016),
one can further define J and J̄ to be the matrices obtained
from −H and −H̄ by replacing all −1 entries by zeros.
With the definition of J̄ , we can define an m× 3n matrix
S(z) by S(z) = Z�J̄ , and the compact form of the
formation stabilization system with distance mismatches
is written as

ṗ = v,

v̇ = −αv −R�(z)e(z) + S�(z)µ,
(18)

where µ = [µ1, µ2, . . . , µm]� is a vector collecting all
mismatched values for all the edges. Also, the formation
distance error system should be modified as

ė = χ,

χ̇ = −αχ− 2M(e)e+ 2Ż�ż + 2R(z)S�(z)µ. (19)

Note that the mismatch term µ enters the distance er-
ror system in a linear sense, multiplied by the term
2R(z)S�(z). Furthermore, when the formation shape
is close to the desired one, the entries of the matrix
R(z)S�(z) are continuously differentiable functions of the
distance error vector e (see proofs in Mou et al. (2016);
Sun et al. (2017)).

In a similar way, one can derive the mismatched version of
the flocking formation system from (7) as

ṗ = v,

v̇ = −L̄v −R�(z)e(z) + S�(z)µ.
(20)

and its associated distance error system in the following
form

ë = −2RH̄�ż − 2RR�e+ 2Ż�ż + S�(z)µ. (21)

4.2 Convergence of perturbed distance error system

From the exponential stability shown in Theorem 1 and
Theorem 2, one can conclude the following convergence
results for the distance error e. Note that the following lem-
mas hold for both formation stabilization system (19) and
formation flocking system (21) with constant mismatches
µ.

Lemma 2. Suppose initial conditions (e(0), ė(0), f(0)) are
sufficiently close to the equilibrium (e = 0, ė = 0, f = 0)
for the error system (i.e. the system (19) or (21)). Then for
sufficiently small and constant µ, the distance error e(t) =
e(H̄p(t)) converges exponentially fast to an equilibrium
close to the origin.

It is well known that exponentially stable systems are
robust to small perturbations, and the bounds of nonvan-
ishing perturbations which do not destroy the exponential
stability of the nominal systems can be given an inequality
formula (see (Khalil, 2002, Lemma 9.3)). In our case the
bounds depend on the exponential rate of the distance
error system, the region of attraction, and the evolution
of the rank of the rigidity matrix as well as the formation
shape; unsurprisingly therefore, an explicit formula of the
bound is hard to obtain. Returning now to the main
argument, we denote the equilibrium of the error system
under small and constant mismatches µ as ē(µ), or shortly
as ē, which is a continuously differentiable function of µ. A
further consequence of e → ē(µ) is stated in the following
lemma.

Lemma 3. Given the convergence of the distance error
e(t) to the equilibrium state ē, the inner product term,
z�k zk for all k and z�i zj for i �= j, will also converge to
constants.

4.3 Rigid motions in double-integrator formation shape
stabilization systems

The aim of this subsection is to show the formation be-
havior and motion property of the formation stabilization
system modelled by double integrators in the presence of
mismatched distances. From the expression of the mis-
matched version of formation stabilization system (18) and
the convergence results shown in the above Subsection 4.2,
one can prove the following facts.

Lemma 4. The norm of each agent’s velocity, i.e. ‖ṗi‖,
is constant when e(H̄p(t)) = ē as described by (21).
Furthermore, the norm of the formation centroid’s velocity,
i.e. ‖ṗc‖ = ‖ 1

n

∑n
i=1 ṗi‖, is constant at the equilibrium

motion when e(H̄p(t)) = ē.

Lemma 4 implies that the speed of the agents and the
norm of their accelerations are non-zero constants. Thus
the velocity and acceleration vectors are perpendicular.
By combining the above results, we derive the motion
behavior of the formation stabilization caused by constant
mismatches.

Theorem 3. In the presence of small and constant µ
in the modified formation stabilization system (18), the
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formation shape converges exponentially fast to a rigid
one, and p(t) converges exponentially fast to a circular
orbit (in the 2-D case) or a helical orbit (in the 3-D
case) of the overall system (18) along which e(H̄p(t)) = ē.

The proofs for Lemma 4 and Theorem 3 follow similarly
the proof and analysis in Sun et al. (2017) and are omitted
here due to space limit.

4.4 Rigid motions in double-integrator formation flocking
systems

The aim of this subsection is to show the formation behav-
ior and motion property of the double-integrator formation
flocking system induced by mismatched distance. From the
system equation of the mismatched version of formation
flocking system (20) and the convergence results shown in
Subsection 4.2, one can prove the following facts.

Lemma 5. The norm of each agent’s acceleration, i.e.
‖p̈i‖, is constant when e(H̄p(t)) = ē. Furthermore, the
norm of the formation centroid’s acceleration, i.e. ‖p̈c‖, is
constant at the equilibrium motion when e(H̄p(t)) = ē.

By combining the result in the above lemma and the
convergence results in Section 4.2, we conclude the motion
behavior of the formation stabilization caused by constant
mismatches in the following theorem.

Theorem 4. In the presence of small and constant µ in
the modified formation flocking system (20), the formation
shape converges exponentially fast to a rigid one, and ṗ(t)
converges exponentially fast to a circular orbit (in the 2-
D case) or a helical orbit (in the 3-D case) of the overall
system (20) along which e(H̄p(t)) = ē.

Note that as compared to Theorem 3 on the motion prop-
erty for the formation stabilization system described by
agents’ positions p(t), the above theorem on the forma-
tion flocking system establishes a similar result on agents’
velocities ṗ(t), while the steady-state trajectories p(t) for
all agents will be governed by the motion rule for ṗ(t)
along which e(H̄p(t)) = ē. The proofs for Lemma 5 and
Theorem 4 follow similarly the proof and analysis in Sun
et al. (2017) and are omitted here due to space limit, which
will be provided in the full version of this paper.

5. CONCLUSIONS

In this paper we have discussed the robustness issues of
formation control systems modelled by double integrators
with distance mismatches. Two kinds of double-integrator
formation control systems are considered, one with veloc-
ity damping term (termed the formation stabilization sys-
tem) and the other with velocity consensus term (termed
formation flocking system). We discussed in detail the self-
contained issue of the distance error system, by adding
additional terms to obtain an augmented distance error
system. Then the linearization analysis around the equi-
librium of the origin reveals the exponential stability of the
distance error system, which further implies the robustness
property of double-integrator formation systems in the
presence of small distance mismatches.

We have also discussed the effect of small constant mis-
match term on the formation system, and show that (i) for

double-integrator formation stabilization systems, the in-
duced rigid motion is identical to that in single-integrator
case (described by agents’ positions); and (ii) for double-
integrator formation flocking systems, the orbit of steady-
state velocity displays the same type of trajectories as
the motion property in single-integrator formation systems
described by agents’ position variables.
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formation shape converges exponentially fast to a rigid
one, and p(t) converges exponentially fast to a circular
orbit (in the 2-D case) or a helical orbit (in the 3-D
case) of the overall system (18) along which e(H̄p(t)) = ē.

The proofs for Lemma 4 and Theorem 3 follow similarly
the proof and analysis in Sun et al. (2017) and are omitted
here due to space limit.

4.4 Rigid motions in double-integrator formation flocking
systems

The aim of this subsection is to show the formation behav-
ior and motion property of the double-integrator formation
flocking system induced by mismatched distance. From the
system equation of the mismatched version of formation
flocking system (20) and the convergence results shown in
Subsection 4.2, one can prove the following facts.

Lemma 5. The norm of each agent’s acceleration, i.e.
‖p̈i‖, is constant when e(H̄p(t)) = ē. Furthermore, the
norm of the formation centroid’s acceleration, i.e. ‖p̈c‖, is
constant at the equilibrium motion when e(H̄p(t)) = ē.

By combining the result in the above lemma and the
convergence results in Section 4.2, we conclude the motion
behavior of the formation stabilization caused by constant
mismatches in the following theorem.

Theorem 4. In the presence of small and constant µ in
the modified formation flocking system (20), the formation
shape converges exponentially fast to a rigid one, and ṗ(t)
converges exponentially fast to a circular orbit (in the 2-
D case) or a helical orbit (in the 3-D case) of the overall
system (20) along which e(H̄p(t)) = ē.

Note that as compared to Theorem 3 on the motion prop-
erty for the formation stabilization system described by
agents’ positions p(t), the above theorem on the forma-
tion flocking system establishes a similar result on agents’
velocities ṗ(t), while the steady-state trajectories p(t) for
all agents will be governed by the motion rule for ṗ(t)
along which e(H̄p(t)) = ē. The proofs for Lemma 5 and
Theorem 4 follow similarly the proof and analysis in Sun
et al. (2017) and are omitted here due to space limit, which
will be provided in the full version of this paper.

5. CONCLUSIONS

In this paper we have discussed the robustness issues of
formation control systems modelled by double integrators
with distance mismatches. Two kinds of double-integrator
formation control systems are considered, one with veloc-
ity damping term (termed the formation stabilization sys-
tem) and the other with velocity consensus term (termed
formation flocking system). We discussed in detail the self-
contained issue of the distance error system, by adding
additional terms to obtain an augmented distance error
system. Then the linearization analysis around the equi-
librium of the origin reveals the exponential stability of the
distance error system, which further implies the robustness
property of double-integrator formation systems in the
presence of small distance mismatches.

We have also discussed the effect of small constant mis-
match term on the formation system, and show that (i) for

double-integrator formation stabilization systems, the in-
duced rigid motion is identical to that in single-integrator
case (described by agents’ positions); and (ii) for double-
integrator formation flocking systems, the orbit of steady-
state velocity displays the same type of trajectories as
the motion property in single-integrator formation systems
described by agents’ position variables.
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