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Abstract: We study the approach to obtaining least squares solutions to systems of linear
algebraic equations over networks by using distributed algorithms. Each node has access to one
of the linear equations and holds a dynamic state. The aim for the node states is to reach a
consensus as a least squares solution of the linear equations by exchanging their states with
neighbors over an underlying interaction graph. A continuous-time distributed least squares
solver over networks is developed in the form of the famous Arrow-Hurwicz-Uzawa flow. A
necessary and sufficient condition is established for the graph Laplacian, regarding whether
the continuous-time distributed algorithm can give the least squares solution. The feasibility
of different fundamental graphs is discussed including path graph, star graph, etc. Moreover,
a discrete-time distributed algorithm is developed by Euler’s method, converging exponentially
to the least squares solution at the node states with suitable step size and graph conditions.
The convergence rate is exponential for both the continuous-time and discrete-time algorithms
under the established conditions.
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1. INTRODUCTION

Systems of linear algebraic equations arise from vari-
ous practical engineering problems Garland et al. (2008);
Keckler et al. (2011); Partl et al. (2011); Preparata and
Vuillemin (1981); Elbirt and Paar (2005); Ayari et al.
(2016); De Rose et al. (2007). In recent years much interest
has developed in finding out how to solve linear equations
using multiple processing units or over a network. Major
efforts have been made in the development of parallel
algorithms and distributed algorithms as linear-equation
solvers.

Parallel algorithms have been developed, starting many
years ago, in the spirit of high-performance computing,
including Jacobi method Margaris et al. (2014); Yang
and Mittal (2014), successive over relaxations method
Young (1954), Kaczmarz method Kaczmarz (1937) and
randomized iterative method Gower and Richtárik (2015).
In these algorithms, the state of each node can give an
entry of the solution to a linear equation after a suitably
long time, via successive information exchange with other
nodes and parallel independent computing. There are
two restrictions in these parallel algorithms. The first
restriction is that often each node is implicitly required
to have access to all the other ones, i.e., the network
graph is naturally complete Margaris et al. (2014); Yang
and Mittal (2014); Kaczmarz (1937); Gower and Richtárik

(2015). Second, linear equations are restricted in many
parallel algorithms. It is somewhat unsatisfactory that, for
example in the Jacobi method, a sufficient condition for
convergence is that the linear equations must be strictly
or irreducibly diagonally dominant.

On the other hand, discrete and continuous-time algo-
rithms for linear equations are also established from the
point of view of distributed control and optimization. A
variety of distributed algorithms are presented, among
which discrete-time algorithms are given by Mou and
Morse (2013); Mou et al. (2015); Liu et al. (2013); Lu
and Tang (2009a,b) and continuous-time algorithms are
presented in Anderson et al. (2015); Shi et al. (2015).
In these network distributed algorithms, compared with
the development in parallel computing, each node state
asymptotically converges to the solution to the linear equa-
tion. However, most of the existing work for parallel and
distributed algorithms assumes that the linear equations
have exact solutions Margaris et al. (2014); Yang and
Mittal (2014); Young (1954); Kaczmarz (1937); Gower
and Richtárik (2015); Mou and Morse (2013); Mou et al.
(2015); Liu et al. (2013); Lu and Tang (2009a,b); Anderson
et al. (2015); Shi et al. (2015). In Wang and Elia (2012), a
distributed least squares solver is proposed for networks
with stochastically broken communication links. In Shi
et al. (2015), a continuous-time flow is shown to be able to
calculate approximations to least squares solutions with
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a high gain approach. However, some of them can only
produce the least squares solution in approximate sense,
or have strong requirements of the network topology, and
only a few results have been obtained on exact distributed
least squares solvers for network linear equations.

In this paper, distributed continuous and discrete-time
algorithms that can compute the least squares solution
to a linear equation over a network are presented. By
recognizing a least-squares problem for a linear equation
as a constrained optimization problem over a network, we
propose a continuous-time flow in the form of the classical
Arrow-Hurwicz-Uzawa flow Arrow et al. (1958). Necessary
and sufficient conditions for the underlying interaction
graphs regarding whether the continuous-time network
flow converges to the least squares solution are established.
Further, by Euler’s method, a discrete-time algorithm is
presented and the properties of its convergence are also
specified and proved.

The paper begins by the formulating the network linear
equations in Section 2, in addition to explaining how
the Arrow-Hurwicz-Uzawa flow can be used to derive a
continuous-time network flow. In Section 3, a necessary
and sufficient condition for the continuous-time flow to
converge to the least squares solution is established. In
Section 4, a discrete-time algorithm is obtained by Euler’s
method and the necessary and sufficient conditions for its
convergence conditions are proposed.

2. PROBLEM DEFINITION

2.1 Linear Equation

Consider the following linear algebraic equation with re-
spect to y ∈ Rm:

z = Hy (1)

where z ∈ RN and H ∈ RN×m are known. Denote the
column space of a matrixM by colsp{M}. If z ∈ colsp{H},
then the equation (1) always has (one or many) exact
solutions. If z /∈ colsp{H}, the least squares solution
is defined by the solution of the following optimization
problem:

min
y∈Rm

‖z−Hy‖2. (2)

It is well known that if rank(H) = m, then (2) yields a
unique solution y∗ = (H�H)−1H�z.

2.2 Network

Denote

H =




h�
1

h�
2
...

h�
N


 , z =




z1
z2
...
zN


 .

We can rewrite (1) as

h�
i y = zi, i = 1, . . . , N.

Let G = (V, E) be a constant, undirected and connected
graph with the set of nodes V = {1, 2, . . . , N} and the
set of edges E ⊂ V × V. Each node i holds the equation
h�
i y = zi and also holds a vector xi(t) ∈ Rm that varies

as a function of time t. Note that xi(t) will turn out

to be part of the state of node i at time t. Let Ni be
the set of neighbor nodes that are connected to node i,
i.e., Ni = {j : (i, j) ∈ E}. Define a diagonal matrix
D = diag(|N1|, |N2|, . . . , |NN |) and an incidence matrix
A of the graph G by [A]ij = 1 if (i, j) ∈ E and [A]ij = 0
otherwise. Then L = D−A is the Laplacian of graph G.

2.3 Distributed Flows

Consider a cost function U(·) : Rm × · · · × Rm → R

U(x1, . . . ,xN ) =

N∑
i=1

|h�
i xi − zi|2. (3)

Let x(t) = [x�
1 (t) . . . x�

N (t)]� and introduce v(t) =
[v�

1 (t) . . . v�
N (t)]� with vi(t) ∈ Rm for i = 1, . . . , N .

The vector vi(t) is also held by node i, and [xi(t) vi(t)]
�

represents the state of node i.

We consider the following flow:

ẋ = −(L⊗ Im)v −∇U(x)

v̇ = (L⊗ Im)x.
(4)

We term (4) as “Oscillation + Gradient Flow” because the
equation

ẋ = −(L⊗ Im)v

v̇ = (L⊗ Im)x

yields oscillating trajectories for x(t), while ẋ = −∇U(x)
is a gradient flow.

Note that in the flow (4), the state variable [x�
i (t) v

�
i (t)]

�

of node i obeys the evolution

ẋi(t) = −
∑
j∈Ni

(vi(t)− vj(t))− (hih
�
i xi(t)− zihi)

v̇i(t) =
∑
j∈Ni

(xi(t)− xj(t))

Therefore, besides the equation h�
i y = zi that node i

possesses, it only needs to communicate with its neighbors
to obtain their states in order to implement (4). The flow
(4) is distributed in that spirit.

2.4 Discussion

Consider a constrained optimization problem as

min
x

f(x)

s.t. Fx = b
(5)

where f(·) : Rn → R is a differentiable function, F ∈ Rm×n

and b ∈ Rm. The well-known Arrow-Hurwicz-Uzawa (A-
H-U) flow introduced in Arrow et al. (1958) provides under
appropriate conditions a continuous-time solver defined by

ẋ = −∇xf(x)− F�v

v̇ = Fx− b.
(6)

In particular, if f is strictly convex and F has full rank,
then see Arrow et al. (1958)Wang and Elia (2011) along
the flow (6), x(t) will converge to an optimal point of (5)
and v(t) will converge to the unique Lagrangian multiplier
of (5).

As one can see, the flow (4) is a form of the A-H-U flow (6)
with the cost function f(x) being the given U(x) and the
constraint Fx = b given by (L ⊗ Im)x = 0. However,
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the Laplacian L is not a full-rank matrix. Therefore,
the sufficiency results and analysis for the A-H-U flow
established in Wang and Elia (2011) cannot be applied
directly to the flow (4).

3. CONTINUOUS FLOW

In this section, we study the behavior of the flow (4) in
terms of convergence to a least squares solution for the
xi(t), and present necessary and sufficient conditions for
convergence.

3.1 Convergence Result

We present the following result.

Theorem 1. Assume that N > m and rank(H) = m. Let
y∗ = (H�H)−1Hz be the unique least squares solution of
(1). Define SL as the set of all complex eigenvectors of L
and for α ∈ SL with α[i] denoting the i-th entry,

Iα := {i : α[i] �= 0, α =
[
α[1] α[2] . . . α[N ]

]�}.
Then :

(i) If span{hi : i ∈ Iα} = Rm for all α ∈ SL, there holds

lim
t→∞

xi(t) = y∗, i = 1, . . . , N

along the flow (4). Further v(t) along (4) converges
to a Lagrange multiplier associated with a solution
of the optimization problem

min
x

U(x)

s.t. (L⊗ Im)x = 0
(7)

(ii) If there exists α ∈ SL such that dim(span{hi : i ∈
Iα}) < m, then there exist trajectories of x(t) along
(4) which do not converge.

Proof. By direct calculation, we know ∇U(x) = H̃x −
zH where H̃ = diag(h1h

�
1 , . . . ,hNh�

N ) and zH =
[z1h

�
1 . . . zHh�

N ]�. Then we rewrite (4) as

ẋ = −(L⊗ Im)v − H̃x+ zH
v̇ = (L⊗ Im)x.

(8)

Suppose there exists an equilibrium (x∗,v∗) of (8), i.e.

0 = −(L⊗ Im)v∗ − H̃x∗ + zH
0 = (L⊗ Im)x∗.

(9)

It is worth noting that (9) specifies exactly the Karush-
Kuhn-Tucker conditions on (x∗,v∗) for the optimization
problem (7) Bertsekas (1999). Since U(x) is a convex
function and the constraints in (7) are equality constraints,
Slater’s condition holds Boyd and Vandenberghe (2004).
Therefore the optimal points of the primal problem and
dual problem are the same, i.e., x∗ is an optimal solution
to (7) and any optimal solution of (7) must have the form

1⊗ y∗,

where y∗ is a least squares solution to (1). We know y∗

is unique because rank(H) = m. Since x∗ = 1 ⊗ y∗, then
x∗ is also unique. Note however that v∗ is not necessarily
unique. Define the variables x̂ = x−x∗, v̂ = v−v∗. Then

˙̂x = ẋ− ẋ∗ = −(L⊗ Im)v̂ − H̃x̂

˙̂v = (L⊗ Im)x̂.
(10)

Denote û(t) = [x̂(t)� v̂(t)�]� and

M =

[
−H̃ −L⊗ Im

L⊗ Im 0

]
.

Then (10) is a linear system with the form ˙̂u = Mû.
Consider the following Lyapunov function:

V (x̂, v̂) =
1

2
‖û‖2 =

1

2
(‖x̂‖2 + ‖v̂‖2).

Since
V̇ = −x̂�(L⊗ Im)v̂ − x̂�H̃x+ v̂�(L⊗ Im)x̂

= −x̂�H̃x̂ ≤ 0,
(11)

û(t) is bounded for any finite initial values x̂(0), v̂(0),
namely û(0). Therefore, we conclude:

C1. �(λ) ≤ 0 for all λ ∈ σ(M).

C2. If �(λ) = 0, then λ has equal algebraic and geometric
multiplicity.

(i). Suppose span{hi : i ∈ Iα} = Rm for all α ∈ SL. We
proceed to prove the convergence of x̂(t) and v̂(t). The
proof contains two steps.

Step 1. We prove M does not have a purely imaginary
eigenvalue if span{hi : i ∈ Iα} = Rm for all α ∈ SL, using
a contradiction argument. Suppose λ = ır �= 0 where r ∈ R
is an eigenvalue of M with a corresponding eigenvector
β = [β�

a β�
b ] ∈ C2Nm, where βa ∈ CNm, βb ∈ CNm. Let

û(0) = β. Then

û(t) = eMtû(0) = eırtû(0).

Therefore, ‖û(t)‖2 = ‖û(0)‖2 for all t.

On the other hand, according to (11),

d

dt
(
1

2
‖û(t)‖2) = −x̂�(t)H̃x̂(t)

= −x̂�(0)eırtH̃eırtx̂(0)

= −eı2rtβ�
a H̃βa.

Consequently, there must hold H̃βa = 0. Next, based on[
−H̃ −L⊗ Im

L⊗ Im 0

] [
βa

βb

]
= ır

[
βa

βb

]
,

we know
−(L⊗ Im)βb = ırβa

(L⊗ Im)βa = ırβb.
(12)

Since β �= 0, neither of βa nor βb can be zero. By simple
calculation, we have

(L⊗ Im)2βa = r2βa

(L⊗ Im)2βb = r2βb,
(13)

i.e., βa and βb are both eigenvectors of (L ⊗ Im)2 corre-
sponding to r2. From (13), we know

(L2 ⊗ Im)βa = r2βa.

Based on the properties for eigenvectors of the Kronecker
product of two matrices (Theorem 13.12 Laub (2005)), we
know there exist (r2,αa) and ηa such that L2αa = r2αa

and βa = αa ⊗ ηa with αa ∈ CN and ηa ∈ Cm. It is
trivial that if L2αa = r2αa, Lαa = |r|αa, i.e., αa is an
eigenvector of L corresponding to eigenvalue |r|. Denote

βa =




β[1]
a

β[2]
a
...

β[N ]
a


 , β[i]

a ∈ Cm, i = 1, 2, . . . , N
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the Laplacian L is not a full-rank matrix. Therefore,
the sufficiency results and analysis for the A-H-U flow
established in Wang and Elia (2011) cannot be applied
directly to the flow (4).

3. CONTINUOUS FLOW

In this section, we study the behavior of the flow (4) in
terms of convergence to a least squares solution for the
xi(t), and present necessary and sufficient conditions for
convergence.

3.1 Convergence Result

We present the following result.

Theorem 1. Assume that N > m and rank(H) = m. Let
y∗ = (H�H)−1Hz be the unique least squares solution of
(1). Define SL as the set of all complex eigenvectors of L
and for α ∈ SL with α[i] denoting the i-th entry,

Iα := {i : α[i] �= 0, α =
[
α[1] α[2] . . . α[N ]

]�}.
Then :

(i) If span{hi : i ∈ Iα} = Rm for all α ∈ SL, there holds

lim
t→∞

xi(t) = y∗, i = 1, . . . , N

along the flow (4). Further v(t) along (4) converges
to a Lagrange multiplier associated with a solution
of the optimization problem

min
x

U(x)

s.t. (L⊗ Im)x = 0
(7)

(ii) If there exists α ∈ SL such that dim(span{hi : i ∈
Iα}) < m, then there exist trajectories of x(t) along
(4) which do not converge.

Proof. By direct calculation, we know ∇U(x) = H̃x −
zH where H̃ = diag(h1h

�
1 , . . . ,hNh�

N ) and zH =
[z1h

�
1 . . . zHh�

N ]�. Then we rewrite (4) as

ẋ = −(L⊗ Im)v − H̃x+ zH
v̇ = (L⊗ Im)x.

(8)

Suppose there exists an equilibrium (x∗,v∗) of (8), i.e.

0 = −(L⊗ Im)v∗ − H̃x∗ + zH
0 = (L⊗ Im)x∗.

(9)

It is worth noting that (9) specifies exactly the Karush-
Kuhn-Tucker conditions on (x∗,v∗) for the optimization
problem (7) Bertsekas (1999). Since U(x) is a convex
function and the constraints in (7) are equality constraints,
Slater’s condition holds Boyd and Vandenberghe (2004).
Therefore the optimal points of the primal problem and
dual problem are the same, i.e., x∗ is an optimal solution
to (7) and any optimal solution of (7) must have the form

1⊗ y∗,

where y∗ is a least squares solution to (1). We know y∗

is unique because rank(H) = m. Since x∗ = 1 ⊗ y∗, then
x∗ is also unique. Note however that v∗ is not necessarily
unique. Define the variables x̂ = x−x∗, v̂ = v−v∗. Then

˙̂x = ẋ− ẋ∗ = −(L⊗ Im)v̂ − H̃x̂

˙̂v = (L⊗ Im)x̂.
(10)

Denote û(t) = [x̂(t)� v̂(t)�]� and

M =

[
−H̃ −L⊗ Im

L⊗ Im 0

]
.

Then (10) is a linear system with the form ˙̂u = Mû.
Consider the following Lyapunov function:

V (x̂, v̂) =
1

2
‖û‖2 =

1

2
(‖x̂‖2 + ‖v̂‖2).

Since
V̇ = −x̂�(L⊗ Im)v̂ − x̂�H̃x+ v̂�(L⊗ Im)x̂

= −x̂�H̃x̂ ≤ 0,
(11)

û(t) is bounded for any finite initial values x̂(0), v̂(0),
namely û(0). Therefore, we conclude:

C1. �(λ) ≤ 0 for all λ ∈ σ(M).

C2. If �(λ) = 0, then λ has equal algebraic and geometric
multiplicity.

(i). Suppose span{hi : i ∈ Iα} = Rm for all α ∈ SL. We
proceed to prove the convergence of x̂(t) and v̂(t). The
proof contains two steps.

Step 1. We prove M does not have a purely imaginary
eigenvalue if span{hi : i ∈ Iα} = Rm for all α ∈ SL, using
a contradiction argument. Suppose λ = ır �= 0 where r ∈ R
is an eigenvalue of M with a corresponding eigenvector
β = [β�

a β�
b ] ∈ C2Nm, where βa ∈ CNm, βb ∈ CNm. Let

û(0) = β. Then

û(t) = eMtû(0) = eırtû(0).

Therefore, ‖û(t)‖2 = ‖û(0)‖2 for all t.

On the other hand, according to (11),

d

dt
(
1

2
‖û(t)‖2) = −x̂�(t)H̃x̂(t)

= −x̂�(0)eırtH̃eırtx̂(0)

= −eı2rtβ�
a H̃βa.

Consequently, there must hold H̃βa = 0. Next, based on[
−H̃ −L⊗ Im

L⊗ Im 0

] [
βa

βb

]
= ır

[
βa

βb

]
,

we know
−(L⊗ Im)βb = ırβa

(L⊗ Im)βa = ırβb.
(12)

Since β �= 0, neither of βa nor βb can be zero. By simple
calculation, we have

(L⊗ Im)2βa = r2βa

(L⊗ Im)2βb = r2βb,
(13)

i.e., βa and βb are both eigenvectors of (L ⊗ Im)2 corre-
sponding to r2. From (13), we know

(L2 ⊗ Im)βa = r2βa.

Based on the properties for eigenvectors of the Kronecker
product of two matrices (Theorem 13.12 Laub (2005)), we
know there exist (r2,αa) and ηa such that L2αa = r2αa

and βa = αa ⊗ ηa with αa ∈ CN and ηa ∈ Cm. It is
trivial that if L2αa = r2αa, Lαa = |r|αa, i.e., αa is an
eigenvector of L corresponding to eigenvalue |r|. Denote

βa =




β[1]
a

β[2]
a
...

β[N ]
a


 , β[i]

a ∈ Cm, i = 1, 2, . . . , N
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and

ηa =




ηa[1]
ηa[2]
...

ηa[N ]


 , ηa[i] ∈ C, i = 1, 2, . . . , N.

It is apparent that β
[i]
a = αa[i]ηa if i ∈ Iαa

and β
[i]
a = 0

otherwise. Then noting that

H̃βa =




αa[1]h1h
�
1 ηa

αa[2]h2h
�
2 ηa

...
αa[N ]hNh�

Nηa


 = 0,

we get αa[i]hih
�
i ηa = 0 for i = 1, 2, . . . , N , which implies

that
h�
i ηa = 0, i ∈ Iαa . (14)

Because span{hi : i ∈ Iαa
} = Rm, there must hold ηa = 0.

In turn, βa must be zero, leading to βb = 0 with (12).
Therefore M does not have purely imaginary eigenvalues.

Based on C1, C2 and the fact that M has no purely
imaginary eigenvalue, x̂(t) and v̂(t) converge.

Step 2. In this step, we establish the limits of x̂(t) and v̂(t)
by studying the zero eigenspace of M, thereby obtaining
the convergence property for x(t) and v(t). Suppose δ =
[δ�a δ�b ]� is one of the eigenvectors of M corresponding to
zero eigenvalue with δ ∈ R2Nm and δa, δb ∈ RNm, i.e.,
Mδ = 0. Consider a solution û(t) of (10) with û(0) = δ.
We see from the derivative of the Lyapunov function and
Mδ = 0 that

H̃δa = 0

(L⊗ Im)δa = 0

(L⊗ Im)δb = 0
Then there exist ηa ∈ Rm and ηb ∈ Rm such that δa = 1⊗
ηa and δb = 1 ⊗ ηb. Since H̃δa = 0 and rank(H̃) = m,
δa = 0, i.e., δ be in the form δ = [0 δ�b ]� with δb = 1⊗ηb.
Note that the algebraic and geometric multiplicity of the
zero eigenvalue of M is m. Now we decompose M into its
Jordan canonical form M = TJT−1:

T = [δ1 δ2 · · · δm · · · ],
T−1 = [δ′1 δ′2 · · · δ′m · · · ]�

where δi and δ′�i with i = 1, 2, . . . ,m are mutually
orthogonal right and left eigenvectors respectively of M all
corresponding to zero eigenvalues and all with the form of
δi = [0 δ�ib]

� and δ′�i = [0 δ′�ib ]. Then

lim
t→∞

û(t) =

m∑
i=1

δiδ
′�
i û(0),

which implies that

lim
t→∞

x̂(t) = 0;

lim
t→∞

v̂(t) =

m∑
i=1

δiδ
′�
i v̂(0).

Thus we can conclude that x(t) converges to x∗ = 1⊗ y∗

while v(t) converges to a constant associated with the
initial value v(0). This completes the proof of (i).

(ii). Suppose there exists αa ∈ SL with Lαa = rαa such
that dim(span{hi : i ∈ Iαa

}) < m. Then there must exist
ηa �= 0 satisfying that

hiηa = 0, i ∈ Iαa

Let β = [βa βb]
� with βa = αa ⊗ ηa and βb =

(L⊗Im)βa

ır .
It is easy to check that

Mβ =

[
−H̃ −L⊗ Im

L⊗ Im 0

] [
βa

βb

]

=

[
−(L⊗ Im)βb

(L⊗ Im)βa

]
= ır

[
βa

βb

]
.

(15)

Therefore, M has a purely imaginary eigenvalue. Hence,
x(t) and v(t) do not converge for generic initial conditions.

We have now completed the proof of Theorem 1.

3.2 Graph Feasibility

In this section, we consider a few fundamental graphs
to investigate the feasibility of the convergence condition
presented in Theorem 1. Suppose N > 2. For a number of
graphs we will first study determine the minimum value
of |Iα|. The collection of values and the implications for
solvability of the least squares problem will be interpreted
for all the graphs at the end of the calculations.

[Path Graph] It is known from Fuhrmann and Helmke
(2015) that all the eigenvalues of its Laplacian L are
distinct with eigenvectors in the set of SL = {αk : αk[v] =

cos (k−1)(2v−1)π
2N , v = 1, . . . , N ; k = 1, . . . , N}. We discuss

two cases:

(i) Let N = 2l, l = 2, 3, 4, . . . . Then it is obvious that
there do not exist v and k such that αk[v] = 0.
Therefore |Iα| = N for all α.

(ii) Let N = 3l, l = 1, 2, 3, . . . . Then any αk ∈ SL

contains at most l zero entries. Therefore min
α∈SL

|Iα| =
2
3N .

[Ring Graph] We know from Fuhrmann and Helmke
(2015) that if N is odd, then zero is the only eigenvalue
of multiplicity one with eigenvector [1 1 . . . 1]�, while all
the other eigenvalues have multiplicity two with a basis of
two orthogonal eigenvectors



1

cos
2kπ

N

cos
4kπ

N
...

cos
2(N − 1)kπ

N




,




0

sin
2kπ

N

sin
4kπ

N
...

sin
2(N − 1)kπ

N




(16)

with k = 1, . . . , N − 1. If N is even, then zero and
the largest eigenvalue are the only two eigenvalues of
multiplicity one with eigenvectors [1 1 . . . 1]� and [1 −
1 1 . . . 1]� respectively, while all the other eigenvalues
have multiplicity two with a basis of two orthogonal
eigenvectors with the same form (16) and k = 1, . . . , N −
1, k �= N

2 . Note that the eigenspaces of k = p and k = q
are the same if and only if p+ q = N and 1 ≤ p, q ≤ N .

(i) If N is a prime number, then any α ∈ SL contains
at most one zero entry. Therefore min

α∈SL

|Iα| = N −1.

(ii) If N = 3l, l = 1, 2, 3, . . . , then any α ∈ SL contains
at most l zero entries. Therefore min

α∈SL

|Iα| = 2
3N .
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(iii) If N = 2l, l = 3, 4, . . . , then any α ∈ SL contains at
most 2l−1 zero entries. Therefore min

α∈SL

|Iα| = 1
2N .

[Star Graph] We know that its Laplacian has an eigen-
value zero of multiplicity one with eigenvector α1 =
[1 . . . 1]�, an eigenvalue N of multiplicity one with eigen-
vector αN = [1 − N 1 . . . 1]� and eigenvalue one with
multiplicity N − 2 and a set of associated eigenvectors
{αk|1�αk = 0, αk �= p[1 − N 1 . . . 1]�, p ∈ R; k =
2, 3, . . . , N − 1}. Thus αk has at most N − 2 zero entries.
Therefore min

α∈SL

|Iα| = 2.

[Complete Graph] It is known from Kelner (2009 (ac-
cessed 11/10/2016) that its Laplacian has an eigenvalue
zero of multiplicity one with eigenvector α1 = [1 . . . 1]�

and eigenvalue N with multiplicity N − 1 and a set of
associated eigenvectors {αk|1�αk = 0; k = 2, 3, . . . , N}.
Then it can be concluded that αk has at most N − 2 zero
entries. Therefore min

α∈SL

|Iα| = 2.

For star and complete graphs, there holds that min
α∈SL

|Iα| =
2. This means that as long as m > 2, the sufficient
convergence condition in Theorem 1 will not hold. On the
other hand, for path and ring graphs,

min
α∈SL

|Iα| ≈ O(N).

Therefore, if N � m, it is relatively easy for the sufficient
condition in Theorem 1 to hold.

4. DISCRETE-TIME ALGORITHM

In this section, we investigate the discrete-time analog of
the flow (4). We index time as k = 0, 1, 2, . . . and propose
the following algorithm:

x(k + 1) = x(k)− ε(L⊗ Im)v(k)− ε∇U(x(k))

v(k + 1) = v(k) + ε(L⊗ Im)x(k).
(17)

For [x�
i (k) v

�
i (k)]

� held by node i, (17) gives

xi(k + 1) = xi(k)− ε
∑
j∈Ni

(vi(k)− vj(k))

− ε(hih
�
i xi(k)− zihi)

vi(k + 1) = vi(k) + ε
∑
j∈Ni

(xi(k)− vi(k)).

Therefore, the algorithm (17) inherits the same distributed
structure as the flow (4). Note that (17) is an Euler
approximation of (4). However, since dynamical system
(4) does not have all its modes exponentially stable, we
cannot immediately conclude that for a sufficiently small
ε, the solution to (17) will converge to the same consensus
as (4).

4.1 Convergence Result

Recall that y∗ is the unique least squares solution of (1)
and denote

M =

[
−H̃ −(L⊗ Im)

L⊗ Im 0

]
.

The following result holds.

Theorem 2. Suppose span{hi : α[i] �= 0} = Rm for all the

eigenvectors α =
[
α[1] . . . α[N ]

]� ∈ CN of L. Then there
exists a positive constant ε∗ such that

(i) If 0 < ε < ε∗, then along (17) we have

lim
k→∞

xi(k) = y∗, i = 1, . . . , N

which converge exponentially for all i. In this case
v(k) continues to converge to a constant.

(ii) If ε > ε∗, then along (17) there exist initial values
x(0) and v(0) under which [x(k) v(k)]� diverges.

Define σ∗(M) ⊂ σ(M) by σ∗(M) := {λ ∈ σ(M) : �(λ) �=
0}. Then ε∗ = min

λ∈σ∗(M)

[
− 2�(λ)

|λ|2
]
.

Proof. Let x∗ = 1 ⊗ y∗ and v∗ satisfy ∇U(x∗) + (L ⊗
Im)v∗ = 0. We continue to use the change of variables
defined by x̂(k) = x(k)−x∗ and v̂(k) = v(k)−v∗ so that
the equilibrium of (17) is shifted. We have

[
x̂(k + 1)
v̂(k + 1)

]
= (I+ εM)

[
x̂(k)
v̂(k)

]
.

It is straightforward that

σ(I+ εM) = {1 + ελ : λ ∈ σ(M)}.
and then the eigenvalues ofM , coupled with the continuity
of σ(1 + εM) as a function of ε, imply that there exists
ε∗ > 0 such that

(i) when 0 < ε < ε∗, there hold

• |λ| < 1 for all λ ∈ σ(1 + εM) with λ �= 1;
• 1 is an eigenvalue of 1+ εM with equal algebraic and
geometric multiplicity.

Moreover, the eigenspace of 1+εM corresponding to eigen-
value one is the same as the eigenspace ofM corresponding
to eigenvalue zero.

Consequently, [x̂(k) v̂(k)]� converges to a vector in
R2Nm, which implies, together with the structure of the
eigenspace for the eigenvalue 1, the desired convergence
for [x(k) v(k)]�.

(ii) when ε > ε∗, there exists λ ∈ σ(1 + εM) with
|λ| > 1. Therefore, [x̂(k) v̂(k)]� will diverge for certain
initial values, so in turn [x(k) v(k)]� will also diverge.

Finally, we compute the value of ε∗. Consider the following
set of functions of ε: σλ(ε) = 1 + ε(�(λ) + ı�(λ)) with
λ ∈ σ∗(M). According to the definition of ε∗, ε∗ must be
the smallest ε∗λ for which

|σλ(ε
∗
λ)| =

√
(ε∗λ�(λ) + 1)2 + (ε∗λ�(λ))2 = 1.

Therefore, we conclude ε∗ = min
λ∈σ∗(M)

[
− 2�(λ)

|λ|2
]
.

We have now completed the proof of Theorem 2.

When ε = ε∗, of course 1 + ε∗M might have complex
eigenvalues on the unit circle, leading to the possibility of
periodic trajectories for [x(k) v(k)]�. Based on Theorem 1.
(ii), one might also expect that periodic trajectories could
occur in discrete time when the dimensionality condition is
fulfilled. In contrast however, we have the following result,
whose proof is simple and omitted due to space limitations.

Theorem 3. If dim(span{hi : α[i] �= 0}) < m, then for any
ε > 0, there always exist trajectories x(k) for the algorithm
(17) that diverge as k tends to infinity.
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(iii) If N = 2l, l = 3, 4, . . . , then any α ∈ SL contains at
most 2l−1 zero entries. Therefore min

α∈SL

|Iα| = 1
2N .

[Star Graph] We know that its Laplacian has an eigen-
value zero of multiplicity one with eigenvector α1 =
[1 . . . 1]�, an eigenvalue N of multiplicity one with eigen-
vector αN = [1 − N 1 . . . 1]� and eigenvalue one with
multiplicity N − 2 and a set of associated eigenvectors
{αk|1�αk = 0, αk �= p[1 − N 1 . . . 1]�, p ∈ R; k =
2, 3, . . . , N − 1}. Thus αk has at most N − 2 zero entries.
Therefore min

α∈SL

|Iα| = 2.

[Complete Graph] It is known from Kelner (2009 (ac-
cessed 11/10/2016) that its Laplacian has an eigenvalue
zero of multiplicity one with eigenvector α1 = [1 . . . 1]�

and eigenvalue N with multiplicity N − 1 and a set of
associated eigenvectors {αk|1�αk = 0; k = 2, 3, . . . , N}.
Then it can be concluded that αk has at most N − 2 zero
entries. Therefore min

α∈SL

|Iα| = 2.

For star and complete graphs, there holds that min
α∈SL

|Iα| =
2. This means that as long as m > 2, the sufficient
convergence condition in Theorem 1 will not hold. On the
other hand, for path and ring graphs,

min
α∈SL

|Iα| ≈ O(N).

Therefore, if N � m, it is relatively easy for the sufficient
condition in Theorem 1 to hold.

4. DISCRETE-TIME ALGORITHM

In this section, we investigate the discrete-time analog of
the flow (4). We index time as k = 0, 1, 2, . . . and propose
the following algorithm:

x(k + 1) = x(k)− ε(L⊗ Im)v(k)− ε∇U(x(k))

v(k + 1) = v(k) + ε(L⊗ Im)x(k).
(17)

For [x�
i (k) v

�
i (k)]

� held by node i, (17) gives

xi(k + 1) = xi(k)− ε
∑
j∈Ni

(vi(k)− vj(k))

− ε(hih
�
i xi(k)− zihi)

vi(k + 1) = vi(k) + ε
∑
j∈Ni

(xi(k)− vi(k)).

Therefore, the algorithm (17) inherits the same distributed
structure as the flow (4). Note that (17) is an Euler
approximation of (4). However, since dynamical system
(4) does not have all its modes exponentially stable, we
cannot immediately conclude that for a sufficiently small
ε, the solution to (17) will converge to the same consensus
as (4).

4.1 Convergence Result

Recall that y∗ is the unique least squares solution of (1)
and denote

M =

[
−H̃ −(L⊗ Im)

L⊗ Im 0

]
.

The following result holds.

Theorem 2. Suppose span{hi : α[i] �= 0} = Rm for all the

eigenvectors α =
[
α[1] . . . α[N ]

]� ∈ CN of L. Then there
exists a positive constant ε∗ such that

(i) If 0 < ε < ε∗, then along (17) we have

lim
k→∞

xi(k) = y∗, i = 1, . . . , N

which converge exponentially for all i. In this case
v(k) continues to converge to a constant.

(ii) If ε > ε∗, then along (17) there exist initial values
x(0) and v(0) under which [x(k) v(k)]� diverges.

Define σ∗(M) ⊂ σ(M) by σ∗(M) := {λ ∈ σ(M) : �(λ) �=
0}. Then ε∗ = min

λ∈σ∗(M)

[
− 2�(λ)

|λ|2
]
.

Proof. Let x∗ = 1 ⊗ y∗ and v∗ satisfy ∇U(x∗) + (L ⊗
Im)v∗ = 0. We continue to use the change of variables
defined by x̂(k) = x(k)−x∗ and v̂(k) = v(k)−v∗ so that
the equilibrium of (17) is shifted. We have

[
x̂(k + 1)
v̂(k + 1)

]
= (I+ εM)

[
x̂(k)
v̂(k)

]
.

It is straightforward that

σ(I+ εM) = {1 + ελ : λ ∈ σ(M)}.
and then the eigenvalues ofM , coupled with the continuity
of σ(1 + εM) as a function of ε, imply that there exists
ε∗ > 0 such that

(i) when 0 < ε < ε∗, there hold

• |λ| < 1 for all λ ∈ σ(1 + εM) with λ �= 1;
• 1 is an eigenvalue of 1+ εM with equal algebraic and
geometric multiplicity.

Moreover, the eigenspace of 1+εM corresponding to eigen-
value one is the same as the eigenspace ofM corresponding
to eigenvalue zero.

Consequently, [x̂(k) v̂(k)]� converges to a vector in
R2Nm, which implies, together with the structure of the
eigenspace for the eigenvalue 1, the desired convergence
for [x(k) v(k)]�.

(ii) when ε > ε∗, there exists λ ∈ σ(1 + εM) with
|λ| > 1. Therefore, [x̂(k) v̂(k)]� will diverge for certain
initial values, so in turn [x(k) v(k)]� will also diverge.

Finally, we compute the value of ε∗. Consider the following
set of functions of ε: σλ(ε) = 1 + ε(�(λ) + ı�(λ)) with
λ ∈ σ∗(M). According to the definition of ε∗, ε∗ must be
the smallest ε∗λ for which

|σλ(ε
∗
λ)| =

√
(ε∗λ�(λ) + 1)2 + (ε∗λ�(λ))2 = 1.

Therefore, we conclude ε∗ = min
λ∈σ∗(M)

[
− 2�(λ)

|λ|2
]
.

We have now completed the proof of Theorem 2.

When ε = ε∗, of course 1 + ε∗M might have complex
eigenvalues on the unit circle, leading to the possibility of
periodic trajectories for [x(k) v(k)]�. Based on Theorem 1.
(ii), one might also expect that periodic trajectories could
occur in discrete time when the dimensionality condition is
fulfilled. In contrast however, we have the following result,
whose proof is simple and omitted due to space limitations.

Theorem 3. If dim(span{hi : α[i] �= 0}) < m, then for any
ε > 0, there always exist trajectories x(k) for the algorithm
(17) that diverge as k tends to infinity.
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5. CONCLUSIONS

We studied the problem of obtaining the least squares
solution to a linear algebraic equation using distributed
algorithms. Each node has the information of one scalar
linear equation and holds a dynamic state. Two distributed
algorithms in continuous time and discrete time respec-
tively were developed as least squares solvers for linear
equations. Under certain conditions, all node states can
reach a consensus, which gives the least square solution,
by exchanging information with neighbors over a network.
Besides, the feasibility of several fundamental graphs was
discussed. Future directions currently being contemplated
include establishing the convergence rate of the distributed
algorithms, distributed identification of the residual vec-
tor, which can be of practical interest and modifying the
underlying cost function or adding constraints on it to
reflect objective such as outlier suppression.
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