Temporal logic motion planning for mobile robots

G. E. Fainekos, H. Kress-Gazit and G. J. Pappas

GRASP Laboratory,
Departments of CIS and ESE,
University of Pennsylvania.

{fainekos,hadaskg,pappasg}@grasp.upenn.edu
Why **temporal** logic for motion planning?

How do we navigate a robot (even with simple dynamics) in a (complicated) environment???

Continuous
- Design Controller
- Verify

Discrete
- Discretize environment
- Ignore robot dynamics

Complex dynamics but ...
NO complicated environments!

Complicated world but ...
Can robot do it??

Can we combine the two approaches? Yes

Spatial and temporal specifications?
Use **Temporal Logics**
Control and computer science

Temporal logic motion planning for mobile robots
[G. E. Fainekos, H. Kress-Gazit and G. J. Pappas '05]

Planning as model checking
[F. Giunchiglia and P. Traverso, '99]
[G. D. Giacomo and M. Y. Vardi, '99]
[F. Bacchus and F. Kabanza, '00]

Affine dynamical systems on simplexes
[L.C.G.J.M. Habets and J.H. van Schuppen., '04]
[C. Belta and L.C.G.J.M. Habets, '04]

Navigation functions
[E. Rimon and D. E. Kodischek, '92]
A simple example to guide us through

Input 1 (Environment)

Input 2 (Specification):
“Visit area a_2 then area a_3 then area a_4 and, finally, return to region a_1 while avoiding areas a_2 and a_3”

Input 3 (Robot position)

Output: A hybrid controller for the mobile robot that satisfies the specification by construction.
How about multi-robot navigation?

Input 1 (Environment):

- α_1
- α_2
- α_3
- α_4

Input 2 (Specification):

“Robot A and B cover areas α_1 and α_3 and if Robot A visits area α_3 then it should also go to area α_4”

Input 3

(Robots’ or groups of robots’ positions)

Output: A hybrid controller for each mobile robot that satisfies the specification by construction.
What can we express with temporal logics? (Single robot case)

Let the **atomic propositions** be π_j, where j is the area of interest a_j.

Go to goal (reachability)
\[
\varphi = \Diamond \pi_2
\]

Coverage
\[
\varphi = \Diamond \pi_2 \land \Diamond \pi_3 \land \Diamond \pi_4
\]

Sequencing
\[
\varphi = \Diamond (\pi_2 \land \Diamond \pi_3)
\]

Reachability with avoidance
\[
\varphi = \neg (\pi_2 \lor \pi_3) \lor \pi_4
\]

Recurrent Sequencing
\[
\varphi = [\Box] \Diamond (\pi_2 \land \Diamond \pi_3)
\]

The simple example: “Visit area π_2 then area π_3 then area π_4 and, finally, return to region π_1 while avoiding areas π_2 and π_3”
\[
\varphi = \Diamond (\pi_2 \land \Diamond (\pi_3 \land \Diamond (\pi_4 \land \neg \pi_2 \land \neg \pi_3) \lor \pi_1)))
\]
What can we express with temporal logics? (Multi robot case)

Let the **atomic propositions** be p_{ij}, here i is the robot (or group of robots) and j be the area of interest α_j.

Go to goal (reachability)

$\phi = \Diamond \pi_A \land \Diamond \pi_B$

Coverage

$\phi = \Diamond (\pi_A \lor \pi_B) \land \Diamond (\pi_A \lor \pi_B) \land \Diamond (\pi_A \lor \pi_B)$

Sequencing

$\phi = \Diamond (\pi_A \land \Diamond (\pi_A \lor \pi_B))$

The simple example: “Robot A and B cover areas α_1 and α_3 and if Robot A visits area α_3 then it should also go to area α_4”

$\phi = \Diamond (\pi_A \lor \pi_B) \land \Diamond (\pi_A \lor \pi_B) \land (\Diamond \pi_A \rightarrow \Diamond \pi_A)$
Problem formulation

Model: We consider n fully actuated mobile robots operating in a planar polygonal environment P. The motion of each robot i is expressed as:

$$\frac{dx_i}{dt} = u_i(t) \quad \text{with} \quad x_i(t) \in P \subseteq \mathbb{R}^2 \quad \text{and} \quad u_i(t) \in U_i \subseteq \mathbb{R}^2$$

and for all the robots:

$$\frac{dX}{dt} = U(t) \quad \text{with} \quad X(t) = [x_1(t),...,x_n(t)]^T \quad \text{and} \quad U(t) = [u_1(t),...,u_n(t)]^T$$

Specification: A linear temporal logic (LTL$_X$) formula φ that captures the robots’ desired behavior.

Problem: Given n robot models, an environment P, initial conditions $X(0)$, and an LTL$_X$ temporal logic formula φ, find a control input $U(t)$ such that $X(t)$ satisfies φ.
Overview of the Algorithm (1)

Input 1: Polygonal Environment P

Input 2: Specification In Natural Language

Input 3: Robot model

1. Triangulation & Finite Transition Sys.
2. Linear Temporal Logic
3. Black Box

“Counter-example” discrete trail

Model Checker (SPIN or NuSMV)

Hybrid Controller

Continuous Implementation
Finite Transition Systems (FTS)

- A transition system for robot i

 $D_i = (Q, q_0, \rightarrow, \Pi, h_i)$

 consists of

 A set of states Q
 An initial state $q_0 \in Q$
 The transition relation $q_j \rightarrow q_j'$
 A set of observations Π
 The observation map $h_i(q_j) = \pi_{ik}$

- The language $L(D_i)$ of D_i is the set of all the sequences of observations i.e. $p = \pi_{i0}\pi_{i1}\pi_{i2}\pi_{i0} \in L(D_i)$
Discrete abstraction by triangulation

- Partition the environment, Obtain discrete abstraction
- Ensure that triangulation preserves regions of interest
Overview of the Algorithm (2)

Input 1: Polygonal Environment \(P \)

- Triangulation & Finite Transition Sys.

Input 2: Specification In Natural Language

- Linear Temporal Logic

Model Checker (SPIN or NuSMV)

"Counter-example" discrete trail

Hybrid Controller

Continuous Implementation

Linear Temporal Logic LTL$_X$ (informally – discrete semantics)

The propositional formulas are formed using the traditional operators of conjunction (\land), disjunction (\lor), negation (\neg), implication (\Rightarrow), and equivalence (\Leftrightarrow). LTL formulas are obtained from the standard propositional logic by adding temporal operators such as eventually (\Diamond), always (\Box), and until (U).

<table>
<thead>
<tr>
<th>Informally</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eventually π_{i2}</td>
<td>$\Diamond \pi_{i2}$</td>
</tr>
<tr>
<td>Eventually Always π_{i1}</td>
<td>$\Diamond \Box \pi_{i1}$</td>
</tr>
<tr>
<td>π_{i0} until π_{i2}</td>
<td>$\pi_{i0} \ U \pi_{i2}$</td>
</tr>
<tr>
<td>$\pi_{i0}\pi_{i1}\pi_{i2}$</td>
<td>$\pi_{i0}\pi_{i1}\pi_{i2}$</td>
</tr>
</tbody>
</table>
The input \(\text{LTL}_{-X} \) formulas are interpreted over \textbf{continuous} mobile robot trajectories. \(X[t] \) denotes the flow of \(X(s) \) under the inputs \(U(s) \) for \(t \leq s \).

- A \textbf{proposition} \(\pi_{ij} \in \Pi \) represents an area of interest in the environment which can be characterized by a convex set of the form:

\[
P_{ij} = \{ x \in R^2 \mid \sum_k a_{ijk}^T x + b_{ijk} \leq 0, a_{ijk} \in R^2, b_{ijk} \in R \}
\]

- \(X[t] \models \pi \) iff \(h_C(X(t)) = \pi \)
- \(X[t] \models \neg \varphi_1 \) iff \(X[t] \not\models \varphi_1 \)
- \(X[t] \models \varphi_1 \lor \varphi_2 \) iff \(X[t] \models \varphi_1 \) or \(X[t] \models \varphi_2 \)
- \(X[t] \models \varphi_1 U \varphi_2 \) iff
 \[
 \exists s \geq t \ X[s] \models \varphi_2 \quad \text{and} \quad \forall t \leq t' < s \ X[t'] \models \varphi_1
 \]

When a set of trajectories \(X \) satisfies the specification \(\varphi \), we write:

\[
X \models \phi \quad \text{iff} \quad X[0] \models \varphi
\]

where \(h_C \) is a function that maps the current state of the robot trajectories to a set of atomic propositions in \(\Pi \), i.e. \(h_C : P \rightarrow 2^\Pi \).
Overview of the Algorithm (3)

Input 1: Polygonal Environment P

1. Triangulation & Finite Transition Sys.

2. Model Checker (SPIN or NuSMV)

 "Counter-example" discrete trail

3. Hybrid Controller

4. Continuous Implementation

Input 2: Specification In Natural Language

1. Linear Temporal Logic

2. Hybrid Controller
Planning via Model Checking

Model checking is the algorithmic procedure for testing whether a specification formula holds over some semantic model. The model of the system is usually given in the form of a finite transition system. The specification formula is usually in the form of the temporal logics LTL or CTL.

Model checking problem

\[\forall p, p \models \varphi \]

Planning problem

\[\exists p, p \models \varphi \]

Dual Problems

Model Checking problem

\[\forall p, p \models \neg \varphi \]

Generate discrete trajectory, originating at the initial condition, satisfying the temporal formula \(\varphi \), using model checking tools (i.e. SPIN or NuSMV).
Example: NuSMV Model

\[\varphi = \neg \lozenge (\pi_2 \land \lozenge (\pi_3 \land \lozenge (\pi_4 \land (\neg \pi_2 \land \neg \pi_3) U \pi_1))) \]

\[\varphi = \neg \lozenge (\pi_2 \land \lozenge (\pi_3 \land \lozenge (\pi_4 \land (\neg \pi_2 \land \neg \pi_3) U \pi_1))) \]

The trajectory generated by NuSMV, satisfying this formula is:
33, 34, 24, 25, 27, 16, 15, 14, 3, 4, 5, 32, 23, 26, 29, 30, 3, 14, 33
Overview of the Algorithm (4)

Input 1: Polygonal Environment P

- Triangulation & Finite Transition Sys.

Input 2: Specification In Natural Language

- Linear Temporal Logic

- Model Checker (SPIN or NuSMV)

- “Counter-example” discrete trail

Hybrid Controller

- Continuous Implementation

C. Belta, V. Isler, and G. J. Pappas, "Discrete abstractions for robot motion planning and control," IEEE Transactions on Robotics, Accepted for publication.

Hybrid Controller Implementation

When is the partition (triangulation) consistent with the dynamics? If it is a **bi-simulation**.

- A triangulation is a **bisimulation** if the robot can move between any two adjacent triangles regardless of the initial state.
- For each triangle and for each robot, we design **three controllers** ensuring that the system exits the triangle from the desired facet to the adjacent triangle.

Thm: There exist (many) affine vector fields

\[
\frac{dx_p}{dt} = u_p \quad u_p = Ax + b \in U_p
\]

on any triangle, satisfying the bisimulation property.

- Affine functions on simplexes are uniquely defined on vertices.
- The set of all controllers can be parameterized by the values on the vertices.
Refinement

- Based on the discrete path, we design bi-simulation controllers driving the robot from one triangle to the adjacent triangle.
- We can take advantage of the non-unique affine solutions by matching affine vector fields on common facets, (if possible).
Overview of the Algorithm (5)

Input 1: Polygonal Environment P

Triangulation & Finite Transition Sys.

Model Checker (SPIN or NuSMV)

Linear Temporal Logic

“Counter-example” discrete trail

Hybrid Controller

Continuous Implementation

Input 2: Specification In Natural Language
Main Result – Completeness

Single Robot case

If the robot is modeled as $\dot{x}(t) = u(t)$ and $\delta(0, \epsilon) \in U$ then

$$x|_0 = \mathcal{C}\varphi \iff p|_0 = \mathcal{D}\varphi$$

If the system is modeled as $\dot{x} = Ax + Bu$ and conditions (*) are met, then

$$x|_0 = \mathcal{C}\varphi \iff p|_0 = \mathcal{D}\varphi$$

Extensions to the main result

Single Robot:
In any case: \(x|\models \mathcal{C} \varphi \Rightarrow p|\models \mathcal{D} \varphi \)

Other dynamics: \(p|\models \mathcal{D} \varphi \Rightarrow x|\models \mathcal{C} \varphi \)

Multi-Robot:
With certain (*) composition semantics for the discrete system:
\[X|\models \mathcal{C} \varphi \Rightarrow p|\models \mathcal{D} \varphi \]

For a particular fragment of LTL (*):
\[p|\models \mathcal{D} \varphi \Rightarrow X|\models \mathcal{C} \varphi \]

For the full LTL (Synchronization primitives are required):
\[p|\models \mathcal{D} \varphi \nRightarrow X|\models \mathcal{C} \varphi \]

(*) Unpublished results
Continuous refinement

- Star: Start
- Green: Goal
Example

- **Spec:** Go to areas 1, 2, 3, 4, 5, 6 in no particular order.

Computation time (Pentium III M):
- Triangulation < 1 sec,
- Model checking < 1 sec,
- Hybrid Controller ~13 sec (MATLAB)
Examples

- **Spec:** Go to area 2, then to area 1 and then cover areas 3, 4, 5 – all this, while avoiding obstacles O₁, O₂, O₃

SPIN

NuSMV
Larger Example

Spec: Go to the two black rooms

Problem Size
- 1156 observables
- 9250 triangles
- Solution path: 145 triangles
- 145 controllers

Computation time
- Triangulation: A few seconds
- NuSMV: 55 seconds
- Matlab: 90 seconds
Future Extensions

- Assume two groups of robots A (Red) and B (Green)
 - Due to the construction of the hybrid controller, the same controller applies to a number of robots in the same neighborhood

- **Spec:** Coverage of the areas of interest

 \[\varphi = \Diamond (\pi_{A1} \lor \pi_{B1}) \land \Diamond (\pi_{A3} \lor \pi_{B3}) \land \Diamond (\pi_{A4} \lor \pi_{B4}) \]
Conclusions

✓ Presented a formal and compact way to capture complicated path planning specifications. Also, a unified specification language for many tasks.

✓ A connection between high level AI planning and low level controller design

✓ Completeness results (for certain cases)

✓ Computationally efficient approach

✓ Robustness with respect to the initial conditions within a class of the partition
Issues Under Investigation and Future Work

- More general decompositions/abstractions
 - Abstraction should depend on more complicated dynamics
 - Robust abstractions with respect to modeling/sensing noise
- Open-loop versus closed loop planning
 - Robust satisfaction of temporal formulas
 - Feedback plans will result in hybrid controllers
- Multi-robot logics
 - Composition semantics for multiple robots (unpublished results)
 - Hierarchical structure: Application of temporal logic specifications on the level of swarms or group of robots
 - Synchronization primitives for multi-robot applications
 - Collision avoidance resolution
- From natural language to robot motion
- Experiments (ground vehicles and UAVs)
Thank You!

- Questions?