Asymptotic Enumeration of Tournaments Containing a Specified Digraph

Zhicheng Gao
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada
zgao@alfred.carleton.ca

Brendan D. McKay
Department of Computer Science
Australian National University
Canberra 0200, Australia
bdm@cs.anu.edu.au

and

Xiaoji Wang
School of Mathematics
University of New South Wales
Sydney 2052, Australia
jxw@manta.dsto.defence.gov.au

May 5, 2000

Abstract

This paper studies the probability that a random tournament with specified score sequence contains a specified subgraph. The exact asymptotic value is found in the case that the scores are not too far from regular and the subgraph is not too large. An n-dimensional saddle-point method is used. As a sample application, we
prove that almost all tournaments with a given score sequence (not too far from regular) have a trivial automorphism group.
1 Introduction

A tournament is a digraph such that between every pair of vertices there is exactly one arc. Throughout this paper, we fix the vertex set to be \(V = \{1, 2, \ldots, n\} \). Let \(d_j^+, d_j^- \) be the in-degree and out-degree of vertex \(j \) in a tournament. Define \(\delta_j = d_j^+ - d_j^- \) and call \(\delta_1, \delta_2, \ldots, \delta_n \) the excess sequence of the tournament. Let \(\delta = \max\{|\delta_1|, \ldots, |\delta_n|\} \).

Let \(H \) be a digraph with vertex set \(V \) and arc set \(A(H) \) such that between every pair of distinct vertices there is at most one arc. We use \(d_j^+(H) \) and \(d_j^-(H) \) to denote the out-degree and in-degree, respectively, of vertex \(j \) in \(H \). Define \(\delta_j(H) = d_j^+(H) - d_j^-(H) \), \(d_j(H) = d_j^+(H) + d_j^-(H) \), \(\delta(H) = \max\{|\delta_1(H)|, \ldots, |\delta_n(H)|\} \), and \(d(H) = \max\{d_1(H), \ldots, d_n(H)\} \).

Let \(T(H; \delta_1, \ldots, \delta_n) \) be the number of tournaments that contain a specified digraph \(H \) and have excess sequence \(\delta_1, \ldots, \delta_n \). As special cases, we have \(T(\delta_1, \delta_2, \ldots, \delta_n) \) to denote the number of all tournaments that have excess sequence \(\delta_1, \ldots, \delta_n \), and \(T(n) = T(0, 0, \ldots, 0) \) to denote the number of labelled regular tournaments with \(n \) vertices.

Spencer [1] evaluated \(T(n) \) to within a factor of \((1 + o(1))^n\) and obtained the estimate

\[
T(\delta_1, \ldots, \delta_n) = T(n) \exp\left(-\frac{1}{2} + o(1)\right) \sum_{j=1}^{n} \frac{\delta_j^2}{n}
\]

for tournaments close to regular. The asymptotic value of \(T(n) \) was obtained much later by McKay [2], who showed that

\[
T(n) \sim \left(\frac{2^{n+1}}{n\pi} \right)^{(n-1)/2} \left(\frac{n}{e}\right)^{1/2} (n \text{ odd}).
\]

Recently, McKay and Wang [3] obtained the asymptotic value of \(T(\delta_1, \ldots, \delta_n) \) for \(\delta = o(n^{3/4}) \). The following is an immediate consequence of [3, Theorem 4.4].

Theorem 1 Suppose \(\delta = o(n^{2/3}) \). Then

\[
T(\delta_1, \ldots, \delta_n) \sim n^{1/2} \left(\frac{2^{n+1}}{n\pi} \right)^{(n-1)/2} \exp\left(-\frac{1}{2} - \left(\frac{1}{2n} - \frac{1}{n^2}\right) \sum_{j=1}^{n} \delta_j^2 \right)
- \frac{1}{12n^3} \sum_{j=1}^{n} \delta_j^4 - \frac{1}{4n^4} \left(\sum_{j=1}^{n} \delta_j^2\right)^2.
\]

McKay suggested that a similar argument can be used to obtain asymptotics for \(T(H; \delta_1, \ldots, \delta_n) \). We carry out this task in this paper. To simplify the analysis, we shall
restrict ourselves in the range \(\delta = o(n^{2/3}) \) and \(d(H) = O(n^{1/2-\epsilon'}) \), where \(\epsilon' \) is any positive constant.

For a given digraph \(H \) and a given excess sequence \(\delta_1, \delta_2, \ldots, \delta_n \), define

\[
\beta_1 = \frac{1}{2n} \sum_{1 \leq j \leq n} (2\delta_j \delta_j(H) - \delta_j^2(H)) + \frac{1}{3n^3} \sum_{1 \leq j \leq n} \delta_j^3 \delta_j(H)
\]

\[
= \frac{1}{n^3} \sum_{1 \leq j \leq n} \delta_j \sum_{1 \leq j \leq n} \delta_j \delta_j(H),
\]

and

\[
\beta_2 = -\frac{1}{2n^3} \sum_{(j,k) \in A(H)} (\delta_j - \delta_k - \delta_j(H) + \delta_k(H))^2.
\]

We shall prove

Theorem 2 Suppose \(\delta = o(n^{2/3}) \), \(d(H) = O(n^{1/2-\epsilon}) \) and \(d(H) \delta = o(n) \), where \(\epsilon \) is any positive constant. Then

\[
T(H; \delta_1, \delta_2, \ldots, \delta_n)/T(\delta_1, \delta_2, \ldots, \delta_n) \sim 2^{-m} \exp(m/n + \beta_1 + \beta_2)
\]

uniformly as \(n \to \infty \).

The rest of the paper is organized as follows. In Section 2 we derive the asymptotic value of an integral. In Section 3, we use Cauchy’s Theorem to represent \(T(H; \delta_1, \delta_2, \ldots, \delta_n) \) as an integral and then apply the saddle point method and the results from Section 2 to obtain Theorem 2. In Section 4, we discuss several consequences of Theorem 2.

2 An Integral

In this section, we approximate the value of an \(n \)-dimensional integral we will need later. Define

\[U_n(t) = \{ \mathbf{x} = (x_1, x_2, \ldots, x_n) \mid |x_i| \leq t, i = 1, 2, \ldots, n \} \]

Lemma 1 Let \(E, F \) and \(0 < \epsilon < 1/20 \) be constants and let \(A_{jk}(n) \), \(B_k(n) \), \(C_{jk}(n) \), \(D_{jk}(n) \), \(\alpha_j(n) \) be real-valued functions.

Suppose

\[
(i) \quad \sum_{j=1}^{n-1} (|A_{jk} + A_{kj}|) = O(n^{1/2-3\epsilon})
\]

uniformly for all \(1 \leq k \leq n - 1 \), and
\[(ii) \ B_k(n) = O(n^{-4\epsilon}), \ C_{jk}(n) = O(n^{-4\epsilon}), \ D_{jk}(n) = O(n^{1/2-5\epsilon}), \ \alpha_j(n) = O(n^{-1/2-6\epsilon}) \text{ uniformly for } 1 \leq j, k \leq n-1.\]

Define
\[
f(x) = \exp \left(-\frac{1}{2} (n-1) \sum_{1 \leq j \leq n-1} (1 - \alpha_j(n))x_j^2 + \frac{1}{2} \sum_{j \neq k} x_j x_k + nE \sum_{1 \leq k \leq n-1} x_k^4 \right.
\]
\[
+ F \left(\sum_{1 \leq k \leq n-1} x_k^2 \right)^2 + \sum_{j \neq k} A_{jk}(n)x_j x_k + i n \sum_{1 \leq k \leq n-1} B_k(n)x_k^3
\]
\[
+ i \sum_{j \neq k} C_{jk}(n)x_k^2 x_j + \sum_{j \neq k} D_{jk}(n)x_k^3 x_j + o(1) \bigg),
\]
where \(x = (x_1, x_2, \ldots, x_{n-1})\). Then
\[
\int_{U_{n-1}(n^{-1/2+\epsilon})} f(x) \, dx = n^{1/2} \left(\frac{2\pi}{n} \right)^{(n-1)/2} \exp \left(\sum_{1 \leq j \leq n-1} \alpha_j(n)/2 + 3E + F + o(1) \right).\]

Proof. Let \(I\) be the above integral and define the linear transformation \(T_1 : z_j = (1 - \alpha_j(n))^{1/2} x_j, \ 1 \leq j \leq n-1.\)

Let \(V_1\) be the image of \(U_{n-1}(n^{-1/2+\epsilon})\) under \(T_1\). It is clear that \(V_1\) is between \(U_{n-1}(n^{-1/2+\epsilon/2})\) and \(U_{n-1}(n^{-1/2+2\epsilon})\), and
\[
I = \prod_{1 \leq j \leq n-1} (1 - \alpha_j(n))^{-1/2} \times \int_{V_1} \exp \left(-\frac{1}{2} (n-1) \sum_{j \neq k} z_j^2 + \frac{1}{2} \sum_{j \neq k} z_j z_k \right)
\]
\[
+ nE \sum z_j^4 + F \left(\sum z_j^2 \right)^2 + \sum_{j \neq k} A'_{jk}(n)z_j z_k + i n \sum_{1 \leq k \leq n-1} B_k(n)z_k^3
\]
\[
+ i \sum_{j \neq k} C_{jk}(n)z_k^2 z_j + \sum_{j \neq k} D_{jk}(n)z_k^3 z_j + o(1) \bigg) \, dz,
\]
where \(A'_{jk}\) satisfies the same conditions as \(A_{jk}\).

Next we perform a second linear transformation \(T_2\) to diagonalise the major quadratic terms of the integrand:
\[
z_j = y_j - \beta \mu_1, \ 1 \leq j \leq n-1,
\]
where \(\beta = 1/(\sqrt{n} + 1)\) and \(\mu_m = \sum_{j=1}^{n-1} y_j^m\) for any \(m\). Let \(V_2\) be the image of \(V_1\) under \(T_2\). It is easily determined that the determinant of \(T_2\) is \(\sqrt{n}\), and so
\[
I = \sqrt{n} \prod_{1 \leq j \leq n-1} (1 - \alpha_j(n))^{-1/2} \times \int_{V_2} \exp \left(-\frac{1}{2} n \mu_2 + nE \mu_4 + F \mu_2^2 \right)
\]
5
+ \sum_{j \neq k} A'_{jk}(n)y_jy_k + in \sum_{1 \leq k \leq n-1} B_k(n)y_k^3
+ i \sum_{j \neq k} C_{jk}(n)y_k^2y_j + \sum_{j \neq k} D_{jk}(n)y_k^3y_j + o(1)\right)dy.

The region of integration \(V_2 \) is somewhat irregular, but by the same method as used in [2, Theorem 2.1], we can see that it can be replaced by \(U_{n-1}(n^{-1/2+\varepsilon}) \) with negligible change of value.

Finally we use an average technique introduced in [4, Lemma 3] to show that some unsymmetrical terms are negligible. Let \(f_0(y) = -\frac{1}{2}m\mu_2 + nE\mu_1 + F\mu_2^2 \) and let \(f(y) \) be the integrand of the previous integral.

For \(1 \leq m \leq n \), define

\[
\psi_m(y) = \exp\left(f_0(y) + \sum_{k=m}^{n-1} \sum_{j=m}^{n-1} A'_{jk}(n)y_jy_k + in \sum_{k=m}^{n-1} B_k(n)y_k^3
+ i \sum_{k=1}^{n-1} \sum_{j=m}^{n-1} C_{jk}(n)y_k^2y_j + \sum_{k=m}^{n-1} \sum_{j=m}^{n-1} D_{jk}(n)y_k^3y_j \right),
\]

where \(A'_{jj}(n), C_{jj}(n) \) and \(D_{jj}(n) \) are interpreted as zero for \(1 \leq j \leq n-1 \). Then

\[
\psi_1(y) = f(y) \exp(o(1)), \quad \psi_n(y) = \exp(f_0(y)),
\]

and

\[
\psi_m(y) = \psi_{m+1}(y)\exp(Z),
\]

with

\[
Z = \sum_{j=m}^{n-1} (A'_{jm}(n) + A'_{mj})y_jy_m + inB_m(n)y_m^3
+ i \sum_{k=1}^{n-1} \sum_{j=m}^{n-1} C_{nk}y_k^2y_m + \sum_{j=m}^{n-1} D_{jm}y_m^3y_j + \sum_{k=m}^{n-1} D_{nk}y_m^3y_j.
\]

Define

\[
\bar{\psi}_m(y) = \frac{1}{2}\left(\psi_m(y) + \psi_m(y_1, \ldots, y_{m-1}, -y_m, y_{m+1}, \ldots, y_{n-1})\right).
\]

Since \(U_{n-1}(n^{-1/2+\varepsilon}) \) is symmetric about the origin, we have

\[
\int_{U_{n-1}(n^{-1/2+\varepsilon})} \bar{\psi}_m(y)\,dy = \int_{U_{n-1}(n^{-1/2+\varepsilon})} \psi_m(y)\,dy.
\]
Using
\[(e^Z + e^{-Z})/2 = \exp(O(Z^2))\]
we obtain, for \(y \in U_{n-1} (n^{-1/2+\epsilon})\), that
\[\widetilde{\psi}_m(y) = \psi_{m+1}(y) \exp(O(n^{-1-2\epsilon}))\]
uniformly over \(m\), and hence
\[
\left| \int_{U_{n-1}(n^{-1/2+\epsilon})} \psi_m(y) \, dy - \int_{U_{n-1}(n^{-1/2+\epsilon})} \psi_{m+1}(y) \, dy \right|
= \exp(O(n^{-1-2\epsilon})) \int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_{m+1}(y)| \, dy.
\]
Applying the same argument to \(|\psi_m(y)|\), we obtain
\[
\int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_m(y)| \, dy = \exp(O(n^{-1-2\epsilon})) \int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_{m+1}(y)| \, dy.
\]
Therefore
\[
\int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_1(y)| \, dy = \exp(O(n^{-2\epsilon})) \int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_n(y)| \, dy,
\]
and finally
\[
\left| \int_{U_{n-1}(n^{-1/2+\epsilon})} \psi_1(y) \, dy - \int_{U_{n-1}(n^{-1/2+\epsilon})} \psi_n(y) \, dy \right|
= \exp(O(n^{-2\epsilon})) \int_{U_{n-1}(n^{-1/2+\epsilon})} |\psi_n(y)| \, dy.
\]
Putting these results together, we find that
\[I \sim \sqrt{n} \prod_{1 \leq j \leq n-1} (1 - \alpha_j(n))^{-1/2} \times \int_{U_{n-1}(n^{-1/2+\epsilon})} f_0(y) \, dy,\]
which is covered by [3, Theorem 2.1]. This gives the desired result on noting that
\[\prod_{1 \leq j \leq n-1} (1 - \alpha_j(n))^{-1/2} \sim \exp\left(\frac{1}{2} \sum_{1 \leq j \leq n-1} \alpha_j\right).\]
3 Proof of Theorem 2

Throughout this section, we assume $\delta = o(n^{2/3})$, $d(H) = O(n^{1/2} \epsilon')$, $d(H) \delta = o(n)$, and that $\epsilon' < 1/100$ is a positive constant.

For a given digraph H, define $\chi_{jk} = 1$ if $(j, k) \in A(H)$, and $\chi_{jk} = 0$ otherwise. Also define $\gamma_j = \delta_j - \delta_j(H)$. Let

$$G(x) = G(x_1, x_2, \ldots, x_n) = \prod_{1 \leq j < k \leq n} \left(x_j^{-1} x_k + x_j x_k^{-1} \right) \prod_{(j, k) \in A(H)} \frac{x_j x_k^{-1}}{x_j x_k^{-1} + x_j^{-1} x_k}.$$

Then $T(H; \delta_1, \ldots, \delta_n)$ is the coefficient of $x_1^{\delta_1} \cdots x_n^{\delta_n}$ in $G(x)$. Setting $x_j = r_j \exp(i \theta_j)$, we have by Cauchy’s Theorem that

$$T(H; \delta_1, \ldots, \delta_n) = (2\pi)^{-n} \prod_{1 \leq j \leq n} r_j^{-\delta_j} \int_{U_n(\pi)} G(r_1 e^{i \theta_1}, \ldots, r_n e^{i \theta_n}) \exp(-i \sum_{1 \leq j \leq n} \delta_j \theta_j) \, d\theta.$$

Define

$$T_{jk}(\theta) = \frac{r_j^2 \exp(i(\theta_j - \theta_k)) + r_k^2 \exp(i(\theta_k - \theta_j))}{r_j^2 + r_k^2},$$

$$g(\theta) = \exp\left(-i \sum_{1 \leq j \leq n} (\delta_j \theta_j)\right) \prod_{1 \leq j < k \leq n} T_{jk}(\theta) \prod_{(j, k) \in A(H)} \frac{e^{i(\theta_j - \theta_k)}/\theta_j}{T_{jk}(\theta)},$$

and

$$I = \int_{U_n(\pi/2)} g(\theta) \, d\theta. \quad (2)$$

Since $g(\theta)$ is invariant under the translation of any θ_j by π, we obtain

$$T(H; \delta_1, \ldots, \delta_n) = \pi^{-n} I \prod_{1 \leq j \leq n} r_j^{-\delta_j} \prod_{1 \leq j < k \leq n} (r_j/r_k + r_k/r_j) \times \prod_{(j, k) \in A(H)} r_j^2/(r_j^2 + r_k^2). \quad (3)$$

Since the integrand is invariant under a uniform translation of θ_j by θ_n, and $\sum_{j=1}^n \delta_j = 0$, we have

$$I = \pi \int_{U_{n-1}(\pi/2)} g(\theta_1, \theta_2, \ldots, \theta_{n-1}, 0) \, d\theta',$$

where $\theta' = (\theta_1, \ldots, \theta_{n-1})$. For a positive constant ϵ satisfying $\epsilon < \epsilon'/6$, let I_1 be the contribution to I from $\theta \in U_{n-1}(n^{-1/2+\epsilon})$. As in [3], we first estimate I_1 and then show
that $I_1 \sim I$. In the following analysis, we shall assume $\theta' \in U_{n-1}(n^{-1/2+\varepsilon})$ and $\theta_n = 0$. To apply the saddle point method, it is convenient to choose $r_j = (1 + b_j)/(1 - b_j)$, where

$$b_j = \gamma_j/n + d_j(H)\gamma_j/n^2 - \sum_{k=1}^{n}(\chi_{jk} + \chi_{kj})\gamma_k/n^2 + \gamma_j\sum_{k=1}^{n}\gamma_k^2/n^4. \quad (4)$$

It is important to note that $b_j = \gamma_j/n + o(1/n) = o(n^{-1/3})$ and $\sum_{1 \leq j \leq n} b_j = 0$. Let

$$a_{jk} = (r_j^2 - r_k^2)/(r_j^2 + r_k^2) = (b_j - b_k)/(1 - b_j b_k). \quad (5)$$

Using Taylor expansion, we have, for $\theta' \in U_{n-1}(n^{-1/2+\varepsilon})$, that

$$T_{jk}(\theta) = \exp\left(i a_{jk}(\theta_j - \theta_k) + \left(-\frac{1}{2} + \frac{1}{2} a_{jk}^2\right)(\theta_j - \theta_k)^2 + \frac{1}{3} a_{jk}i(\theta_j - \theta_k)^3 - \frac{1}{12}(\theta_j - \theta_k)^4 + O(n^{-2\varepsilon})\right). \quad (6)$$

Noting that $\sum_{k \geq 1}(\chi_{jk} + \chi_{kj}) = d_j(H) = O(n^{1/2-\varepsilon})$ and expanding the powers of $\theta_j - \theta_k$, we obtain

$$g(\theta) = \exp\left(i \sum_{1 \leq j \leq n} \left(\sum_{1 \leq k \leq n} a_{jk} - \delta_j + \delta_j(H) - \sum_{1 \leq k \leq n}(\chi_{jk} + \chi_{kj})a_{jk}\right)\theta_j^1 + \sum_{1 \leq j \leq n-1} \left(-\frac{1}{2}(n-1) + \sum_{1 \leq k \leq n} a_{jk}^2/2 + d_j(H)/2\right)\theta_j^2 + \frac{1}{2} \sum_{j \neq k} \theta_j\theta_k + \sum_{j \neq k} \left(-a_{jk}^2/2 - \chi_{jk}(1 - a_{jk}^2)\right)\theta_j\theta_k + i n \sum_{1 \leq j \leq n-1} O(n^{-1/3})\theta_j^3 + i \sum_{j \neq k} O(n^{-1/3})\theta_j\theta_k^2 + \frac{1}{12} n \sum_{1 \leq j \leq n-1} \theta_j^4 - \frac{1}{4} \left(\sum_{1 \leq j \leq n-1} \theta_j^2\right)^2 + \sum_{j \neq k} \theta_j\theta_k^2 + o(1)\right).$$

Using (4), (5) and the comment after (4), we have

$$\sum_{1 \leq k \leq n} a_{jk} = \gamma_j + d_j(H)\gamma_j/n - \sum_{1 \leq k \leq n}(\chi_{jk} + \chi_{kj})\gamma_k/n + o(n^{-2/3})$$

and

$$\sum_{1 \leq k \leq n} (\chi_{jk} + \chi_{kj})a_{jk} = d_j(H)\gamma_j/n - \sum_{1 \leq k \leq n}(\chi_{jk} + \chi_{kj})\gamma_k/n + o(n^{-2/3}),$$
and hence

\[g(\theta) = \exp \left(\sum_{1 \leq j \leq n-1} \left(-\frac{1}{2}(n-1) + \sum_{1 \leq k \leq n} a_{jk}^2/2 + d_j(H)/2 \right) \theta_j^2 \right. \]
\[+ \frac{1}{2} \sum_{j \neq k} \theta_j \theta_k + \left. \sum_{j \neq k} \left(-a_{jk}^2/2 - \chi_{jk}(1 - a_{jk}^2) \right) \theta_j \theta_k \right) \]
\[+ i n \sum_{1 \leq j \leq n-1} O(n^{-1/3})\theta_j^3 + i \sum_{j \neq k} O(n^{-1/3})\theta_j \theta_k \]
\[- \frac{1}{12} n \sum_{1 \leq j \leq n-1} \theta_j^4 - \frac{1}{4} \left(\sum_{1 \leq j \leq n-1} \theta_j^2 \right)^2 + \sum_{j \neq k} \theta_j \theta_k^3 + o(1) \right). \quad (7) \]

Applying Lemma 1 and using

\[\frac{1}{2(n - 1)} \sum_{1 \leq j \leq n-1} \sum_{1 \leq k \leq n} a_{jk}^2 = \frac{1}{n^2} \sum_{1 \leq j \leq n} \delta_j^2 + o(1) \]

and

\[\frac{1}{2(n - 1)} \sum_{1 \leq j \leq n-1} d_j(H) = \frac{m}{n} + o(1), \]

we obtain

\[I_1 \sim \pi n^{1/2} \left(\frac{2\pi}{n} \right)^{(n-1)/2} \exp \left(m/n + \sum_{1 \leq j \leq n} \delta_j^2/n^2 - 1/2 \right) \exp \left(m/n + \sum_{1 \leq j \leq n} \delta_j^2/n^2 - 1/2 \right). \quad (8) \]

The proof of the fact that the contribution to \(I \) from the region other than that of \(I_1 \) is negligible is essentially the same as that of [3] and will be omitted.

Using (4) and (5) with some calculation, we obtain

\[\prod_{1 \leq j < k \leq n} \left(\frac{r_j / r_k + r_k / r_j}{r_j} \right) \prod_{1 \leq j \leq n} r_j^{-\delta_j} \]
\[= 2^{n(n-1)/2} \exp \left(-\frac{1}{2n} \sum_{1 \leq j \leq n} \delta_j^2 - \frac{1}{12n^3} \sum_{1 \leq j \leq n} \delta_j^4 - \frac{1}{4n^4} \left(\sum_{1 \leq j \leq n} \delta_j^2 \right)^2 \right. \]
\[+ \frac{1}{n^2} \sum_{(j,k) \in A(H)} (\delta_j(H)\gamma_k + \delta_k(H)\gamma_j) \]
\[\left. + \frac{1}{2n} \sum_{1 \leq j \leq n} \delta_j^2(H) - \frac{1}{n^2} \sum_{1 \leq j \leq n} d_j(H)\delta_j(H)\gamma_j + o(1) \right) \quad (9) \]
\[
\prod_{(j,k) \in A(H)} \frac{\gamma_j^2}{(\gamma_j^2 + \gamma_k^2)} \\
= 2^{-m} \exp \left(\frac{1}{n} \sum_{1 \leq j \leq n} \delta_j(H) \gamma_j + \frac{1}{n^2} \sum_{1 \leq j \leq n} d_j(H) \delta_j(H) \gamma_j \right) \\
+ \frac{1}{3n^3} \sum_{1 \leq j \leq n} \delta_j(H) \delta_j^3 + \frac{1}{n^4} \sum_{1 \leq j \leq n} \delta_j(H) \delta_j \sum_{1 \leq j \leq n} \delta_j^2 \\
- \frac{1}{n^2} \sum_{(j,k) \in A(H)} \left((\gamma_j - \gamma_k)^2 / 2 + \delta_j(H) \gamma_k + \delta_k(H) \gamma_j + o(1) \right).
\] (10)

Now Theorem 2 follows from (3) and (8)–(10).

4 Consequences

From Theorem 2, we see that \(T(H; \delta_1, \delta_2, \ldots, \delta_n) \) usually depends on the structure of the digraph \(H \). However, it can have much simpler form in some special cases. Noting that

\[
\beta_1 = \frac{1}{2n} \sum_{1 \leq j \leq n} (2 \delta_j(H) \delta_j - \delta_j^2(H)) + o(1), \quad \beta_2 = -\frac{1}{2n^2} \sum_{(j,k) \in A(H)} (\delta_j - \delta_k)^2 + o(1)
\]

when

\[
\sum_{1 \leq j \leq n} |\delta_j(H)| = O(n),
\]

we obtain the following two corollaries.

Corollary 1 Suppose \(\delta = o(n^{2/3}) \), \(d(H) = O(n^{1/2-\epsilon}) \), \(d(H) \delta = o(n) \) and \(\sum_{1 \leq j \leq n} |\delta_j(H)| = O(n) \). Then

\[
T(H; \delta_1, \delta_2, \ldots, \delta_n) / T(\delta_1, \delta_2, \ldots, \delta_n) \sim 2^{-m} \exp \left(\frac{m}{n} + \frac{1}{n} \sum_{1 \leq j \leq n} (2 \delta_j(H) \delta_j - \delta_j^2(H)) \right) \\
- \frac{1}{2n^2} \sum_{(j,k) \in A(H)} (\delta_j - \delta_k)^2
\]

Corollary 2 Suppose \(\delta = o(n^{2/3}) \), \(m = O(n^{1/2-\epsilon}) \), and \(\delta(H) \delta = o(n) \). Then

\[
T(H; \delta_1, \delta_2, \ldots, \delta_n) / T(\delta_1, \delta_2, \ldots, \delta_n) \sim 2^{-m} \exp \left(\frac{1}{n} \sum_{1 \leq j \leq n} \delta_j(H) \delta_j \right).
\]
In particular, \(T(H; \delta_1, \delta_2, \ldots, \delta_n)/T(\delta_1, \delta_2, \ldots, \delta_n) \sim 2^{-m} \)
uniformly for all \(\delta = o(n^{2/3}) \) and \(m = O(n^{1/3}) \).

For regular tournaments, we have

Corollary 3 Let \(T_n(H) \) be the number of regular tournaments with \(n \) vertices containing the digraph \(H \). Suppose \(d(H) = O(n^{1/2-\varepsilon}) \). Then, for odd \(n \),

\[
T_n(H) \sim \left(\frac{2n+1}{n\pi} \right)^{(n-1)/2} \left(\frac{n}{e} \right)^{1/2} \left(\frac{1}{2} \right)^m
\times \exp \left(\frac{m}{n} - \frac{1}{2n} \sum_{1 \leq j \leq n} \delta_j^2(H) - \frac{1}{2n^2} \sum_{(j,k) \in A(H)} (\delta_j(H) - \delta_k(H))^2 \right).
\]

A simple application of Theorem 2 is the unsurprising fact that very few tournaments with \(\delta = o(n^{2/3}) \) have nontrivial automorphisms. This allows us to estimate the number of isomorphism types.

Corollary 4 Suppose \(\delta = o(n^{2/3}) \). Then the number of unlabelled tournaments with excess sequence \(\delta_1, \delta_2, \ldots, \delta_n \) is asymptotically \(T(\delta_1, \delta_2, \ldots, \delta_n)/n! \).

Proof. Consider a random (labelled) tournament \(T \) with excess sequence \(\delta_1, \delta_2, \ldots, \delta_n \). It suffices to prove that the expected number of automorphisms of \(T \) is asymptotically 1.

We know that \(|\text{Aut}(T)| \) is odd, because \(T \) is a tournament. Let \(g \) be a non-trivial permutation of \(V \) of odd order. Define \(S = S(g) \) to be the set of vertices moved by \(g \), and let \(k = |S| \).

Consider the set \(E \) of pairs of distinct vertices defined by

\[
E = \{ \{i, j\}, \{i^g, j^g\} \mid i \in S, 1 \leq j - i \leq 12 \lfloor \ln n \rfloor \mod n \}.
\]

It is easy to see that \(E \) (considered as an undirected graph) has maximum degree at most \(48 \lfloor \ln n \rfloor \), and that \(|E| = m \) for \(6k \lfloor \ln n \rfloor \leq m \leq 48k \lfloor \ln n \rfloor \). Define a simple undirected graph \(G = G(E, g) \) whose vertices are the elements of \(E \) and whose edges are the pairs \(\{e, e^g\} \) for which both \(e \) and \(e^g \) are in \(E \). From the definition of \(E \), \(G \) has at most \(m/2 \) components.

Now consider digraphs \(H \) which are orientations of \(E \). Within each component of \(G \), there are only two orientations that are consistent with \(g \) being an automorphism of \(T \), and so there are at most \(2^{m/2} \) possibilities for \(H \) with that consistency. From Theorem 2,
we have that each such \(H \) is a subgraph of \(T \) with probability less than \(2^{-m} \exp(mn^{-1/3}) \) for sufficiently large \(n \). Consequently, the probability that \(g \) is an automorphism of \(T \) is at most
\[
2^{-m/2} \exp(mn^{-1/3}) \leq n^{-2k}
\]
for large \(n \).

There are less than \(n^k \) permutations of \(V \) that move exactly \(k \) vertices, so the total expected number of nontrivial automorphisms of \(T \) is asymptotically at most
\[
\sum_{k=3}^{n} n^{-k} = O(n^{-3}) = o(1).
\]

This completes the proof. Note that the bound \(O(n^{-3}) \) is much larger than the real value; we have been content to find a bound tending to 0.

References

