Counting unlabelled topologies and transitive relations

Gunnar Brinkmann
Applied Mathematics and Computer Science
Ghent University
B-9000 Ghent, Belgium
Gunnar.Brinkmann@ugent.be

Brendan D. McKay*
Department of Computer Science
Australian National University
Canberra ACT 0200, Australia
bdm@cs.anu.edu.au

Keywords: transitive relation, finite topology, order, directed graph AMS Classifications: 06A99, 05C20, 05C30

Abstract

We enumerate isomorphism classes of several types of transitive relations (equivalently, finite topologies) up to 15 or 16 points.

1 Introduction

Pfeiffer [3] presented a classification of various types of order relations and determined their numbers up to 12 points. In this paper, we extend the counts to 15 or 16 points. We defer to [3] for historical survey, and only give enough background to precisely define the objects we are counting.

We consider only directed graphs (digraphs) that do not have multiple edges but may have up to one loop per point. A transitive relation digraph (TRD) is a digraph such that presence of edges (x, y) and (y, z) implies that (x, z) is also present (even if x, y, z are not distinct). (We cannot use the more natural term "transitive digraph" since its most common definition does not allow loops; this has the unfortunate consequence that transitive digraphs don't correspond to transitive relations.)

A strong component of a digraph is a maximal set of points P such that there is a directed path within P from x to y for each pair $x, y \in P$. (This permits the zero-length path from $x \in P$ to itself.)

If a strong component of a TRD has only one point, there may or may not be a loop on that point. However, larger strong components of a TRD have loops on every point and edges in both directions between each pair of points. If the strong components of a TRD are contracted to single points, the result is a TRD that has no directed cycles apart from loops.

[^0]Two digraphs are isomorphic if there is a bijection between their point-sets that induces a bijection between their edge-sets. Thus we can refer to isomorphism classes of digraphs.

Of course a digraph can be viewed as representing some kind of order relation \leq, where $x \leq y$ iff there is an edge (x, y). In the language and notation of Pfeiffer, we have the following correspondences:

- A transitive relation corresponds to an arbitrary TRD. Let $t(n)$ be the number of isomorphism classes of transitive relations.
- A quasi-order corresponds to a TRD such that every single-point strong component has a loop. Let $q(n)$ be the number of isomorphism classes of quasi-orders.
- A soft order corresponds to a TRD whose strong components each have only one point (with or without loop). Let $s(n)$ be the number of isomorphism classes of soft orders.
- A partial order corresponds to an TRD whose strong components are all single points with loops. Because we can remove and replace the loops in a unique fashion, the counts here are the same as for acyclic TRDs. Let $p(n)$ be the number of isomorphism classes of partial orders.

There are also relationships with finite topologies: general topologies are in bijective correspondence with quasi-orders, and T_{0}-topologies are in bijective correspondence with partial orders. These bijections preserve isomorphism, so we are also counting isomorphism classes of topologies.

For enumerative purposes, we will define some specialized numbers.

- $q(n, m)$ is the number of isomorphism classes of TRDs with n points and m strong components, such that each single-point strong component has a loop.
- $t(n, m)$ is the number of isomorphism classes of TRDs with n points and m strong components (with single-point strong components having a loop or not).

In terms of these specialized numbers, we have

$$
\begin{array}{ll}
q(n)=\sum_{m=1}^{n} q(n, m), & t(n)=\sum_{m=1}^{n} t(n, m), \\
p(n)=q(n, n), & s(n)=t(n, n) .
\end{array}
$$

2 Computing $t(n, m)$ and $q(n, m)$ for small n

Our main tool is a program which generates non-isomorphic partially ordered sets (posets). In our paper [1], we gave values of $p(n)$ up to $n=16$ based on output from that program.

Given a poset P, we can make a TRD G by replacing each point by a directed clique (perhaps of a single point). Such directed cliques become the strong components of G. If points v, w of P become strong components c_{v}, c_{w} of G, then an edge (v, w) of P becomes
the set of all possible edges from c_{v} to c_{w} in G. Clearly non-isomorphic posets lead to non-isomorphic TRDs, since G uniquely determines P. The only remaining issue is that some of the TRDs made from P may be isomorphic due to symmetries (automorphisms) of P.

Given a poset P, we can represent its expansion to a TRD by assigning a positive integer weight to each point. This weight corresponds to the size of the directed clique that the point will be expanded to. We also consider extended weights where there are two types of weight with value 1 (corresponding to loop and non-loop).

For any permutation γ, define

$$
\begin{aligned}
& C_{\gamma}(x)=\prod_{i=1}^{k}\left(1-x^{a_{i}}\right)^{-1} \\
& C_{\gamma}^{\prime}(x)=\prod_{i=1}^{k}\left(1+\left(1-x^{a_{i}}\right)^{-1}\right)
\end{aligned}
$$

where $a_{1}, a_{2}, \ldots, a_{k}$ are the cycle lengths of γ.
Theorem 1. Let $1 \leq m \leq n$. Then

$$
\begin{aligned}
& q(n, m)=\left[x^{n-m}\right] \sum_{P}\left(|\operatorname{Aut}(P)|^{-1} \sum_{\gamma \in \operatorname{Aut}(P)} C_{\gamma}(x)\right) \\
& t(n, m)=\left[x^{n-m}\right] \sum_{P}\left(|\operatorname{Aut}(P)|^{-1} \sum_{\gamma \in \operatorname{Aut}(P)} C_{\gamma}^{\prime}(x)\right)
\end{aligned}
$$

where the first sum in each case is over isomorphism class representatives P of posets on m points, $\operatorname{Aut}(P)$ is the automorphism group of P, and $\left[x^{n-m}\right]$ denotes extraction of the coefficient of x^{n-m}.

Proof. We prove the formula for $q(n, m)$; the other is similar. Let P be a poset with m points. By the Frobenius-Burnside Lemma, the number of equivalence classes under $\operatorname{Aut}(P)$ of weight assignments with total weight n is the average over $\gamma \in \operatorname{Aut}(P)$ of the number $w_{n}(\gamma)$ of such weight assignments fixed by γ.

Consider one such element $\gamma \in \operatorname{Aut}(P)$ with cycles of length $a_{1}, a_{2}, \ldots, a_{k}$. A weight assignment is fixed by γ iff it is constant on each cycle of γ, so $w_{n}(\gamma)$ is the coefficient of x^{n} in

$$
\prod_{i=1}^{k}\left(x^{a_{i}}+x^{2 a_{i}}+x^{3 a_{i}}+\cdots\right)=x^{m} C_{\gamma}(x)
$$

The result now follows by averaging over γ.
As mentioned earlier, $q(n, n)=p(n)$. We can also identify $q(n, n-1)$ as the total number of orbits of $\operatorname{Aut}(P)$ over all posets on $n-1$ points. Using our previously-computed value of $p(16)$, this enabled us to determine $q(n, m)$ for $n \leq 16$ and $t(n, m)$ for $n \leq 15$ by computing the automorphism groups of all the posets up to 15 points. Except in
some simple (but common) situations where the poset generator had already determined $\operatorname{Aut}(P)$, this was computed using nauty [2].

The resulting values are given in Tables 1-3. The programs were run twice in case of machine errors. We also successfully recovered the numbers given by Pfeiffer [3] and the values of $p(n)$ up to $n=15$ given by Brinkmann and McKay [1].

n	$q(n)$	$s(n)$	$t(n)$
1	1	2	2
2	3	7	8
3	9	32	39
4	33	192	242
5	139	1590	1895
6	718	198296	19051
7	4535	3398105	246895
8	35979	75734592	4145108
9	363083	2191591226	2552565550036
10	4717687	82178300654	93810648902
11	79501654	3984499220967	4461086120602
12	1744252509	249298391641352	274339212258846
13	49872339897	20089200308020179	21775814889230580
14	1856792610995	2081351202770089728	2226876304576948549
15	89847422244493		

Table 1: Quasi-orders, soft orders, and transitive relations

References

[1] G. Brinkmann and B. D. McKay, Posets on up to 16 points, Order, 19 (2002) 147-179.
[2] B. McKay, nauty - a program for graph isomorphism and automorphism, available at http://cs.anu.edu.au/~bdm/nauty/.
[3] G. Pfeiffer, Counting transitive relations, J. Integer Seq., 7 (2004) 11pp.

1	1	1	\| 10	1	1	$\begin{array}{\|l} 14 \\ 14 \end{array}$	12	120
2	1	1						
2	2	2	10	3	120	14	3	256
3	1	1	10	4	849	14	4	2790
3	2	3	10	5	5123	14	5	27637
3	3	5	10	6	27439	14	6	260840
4	1	1	10	7	127965	14	7	2385741
4	2	5	10	8	501591	14	8	21304106
4	3	11	10	9	1487301	14	9	184860968
4	4	16	10	10	2567284	14	10	1535230287
5	1	1	11	1	1	14	11	11832383054
5	2	6	11	2	15	14	12	80018898562
5	3	22	11	3	150	14	13	425004096962
5	4	47	11	4	1193	14	14	1338193159771
5	5	63	11	5	8406	15	1	1
6	1	1	11	6	53443	15	2	21
6	2	8	11	7	309719	15	3	299
6	3	35	11	8	1599822	15	4	3525
6	4	113	11	9	7040921	15	5	38420
6	5	243	11	10	23738557	15	6	401602
6	6	318	11	11	46749427	15	7	4124565
7	1	1	12	1	1	15	8	41997196
7	2	9	12	2	17	15	9	424381067
7	3	52	12	3	182	15	10	4221560826
7	4	213	12	4	1632	15	11	40603719604
7	5	682	12	5	13011	15	12	365485856203
7	6	1533	12	6	96226	15	13	2906408331804
7	7	2045	12	7	664467	15	14	18255153928204
8	1	1	12	8	4268404	15	15	68275077901156
8	2	11	12	9	24858756	16	1	1
8	3	71	12	10	124784466	16	2	23
8	4	367	12	11	484673601	16	3	343
8	5	1503	12	12	1104891746	16	4	4396
8	6	4989	13	1	1	16	5	52033
8	7	12038	13	2	18	16	6	597502
8	8	16999	13	3	218	16	7	6804011
9	1	1	13	4	2154	16	8	77823441
9	2	12	13	5	19320	16	9	897440095
9	3	95	13	6	162404	16	10	10402896209
9	4	570	13	7	1304373	16	11	119938485210
9	5	2923	13	8	10009358	16	12	1348204100877
9	6	12591	13	9	72589838	16	13	14281079724622
9	7	44842	13	10	483531684	16	14	134410089884839
9	8	118818	13	11	2803234294	16	15	1003992754517006
9	9	183231	13	12	12677658783	16	16	4483130665195087
			13	13	33823827452			

Table 2: Values of $q(n, m)$ for various n, m

1	1	2	9	1	1	13	1	1
2	1	1	9	2	15	13	2	21
2	2	7	9	3	174	13	3	335
3	1	1	9	4	1769	13	4	4852
3	2	6	9	5	17694	13	5	70797
3	3	32	9	6	170391	13	6	1066041
4	1	1	9	7	1577763	13	7	16906476
4	2	8	9	8	12823256	13	8	282183725
4	3	41	9	9	75734592	13	9	4922404711
4	4	192	10	1	1	13	10	87597193530
5	1	1	10	2	17	13	11	1521294651297
5	2	9	10	3	207	13	12	23426706135708
5	3	63	10	4	2380	13	13	249298391641352
5	4	332	10	5	26352	14	1	1
5	5	1490	10	6	294156	14	2	23
6	1	1	10	7	3243880	14	3	381
6	2	11	10	8	34592661	14	4	5964
6	3	84	10	9	325879156	14	5	93159
6	4	583	10	10	2191591226	14	6	1521101
6	5	3305	11	1	1	14	7	26315265
6	6	15067	11	2	18	14	8	486434324
7	1	1	11	3	248	14	9	9568317752
7	2	12	11	4	3068	14	10	197959166598
7	3	112	11	5	37919	14	11	4196507844123
7	4	883	11	6	472519	14	12	86930341478767
7	5	6537	11	7	6031290	14	13	1595279690032943
7	6	41054	11	8	77251333	14	14	20089200308020179
7	7	198296	11	9	960789368	15	1	1
8	1	1	11	10	10587762484	15	2	24
8	2	14	11	11	82178300654	15	3	435
8	3	139	12	1	1	15	4	7190
8	4	1294	12	2	20	15	5	120514
8	5	11096	12	3	288	15	6	2110489
8	6	90758	12	4	3911	15	7	39534004
8	7	643701	12	5	52415	15	8	798048843
8	8	3398105	12	6	724866	15	9	17393487215
			12	7	10377573	15	10	406531057397
			12	8	153952401	15	11	10041016241522
			12	9	2314756589	15	12	254873608116034
			12	10	33895893064	15	13	6326335208572503
			12	11	440211138507	15	14	138933427209562650
			12	12	3984499220967	15	15	2081351202770089728

Table 3: Values of $t(n, m)$ for various n, m

[^0]: *Research supported by the Australian Research Council

