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Abstract.

Let RT (n), ED(n) and EOG(n) be the number of labelled regular tournaments, labelled
loop-free simple Eulerian digraphs, and labelled Eulerian oriented simple graphs, respectively,
on n vertices. Then, as n →∞,

RT (n) =
(2n+1

πn

)(n−1)/2

n1/2e−1/2
(
1 + O(n−1/2+ε)

)
(n odd),

ED(n) =
( 4n

πn

)(n−1)/2

n1/2e−1/4
(
1 + O(n−1/2+ε)

)
, and

EOG(n) =
(3n+1

4πn

)(n−1)/2

n1/2e−3/8
(
1 + O(n−1/2+ε)

)
,

for any ε > 0. The last two families of graphs are also enumerated by their numbers of edges.
The proofs use the saddle point method applied to appropriate n-dimensional integrals.

1. Introduction.

A tournament is a digraph in which, for each pair of distinct vertices v and w, either
(v,w) or (w, v) is an edge, but not both. A tournament is regular if the in-degree is equal to
the out-degree at each vertex. Let RT (n) be the number of labelled regular tournaments with
n vertices. It is easy to see that RT (n) = 0 if n is even.

By an eulerian digraph we mean a digraph in which the in-degree is equal to the out-degree
at each vertex. (Thus, the regular tournaments are exactly the eulerian tournaments.) Let
ED(n) be the number of labelled loop-free simple eulerian digraphs with n vertices. Allowing
simple loops would multiply ED(n) by exactly 2n, since loops do not affect the eulerian
property. Let EOG(n) be the number of labelled loop-free simple eulerian digraphs in which
at most one of the edges (v,w) and (w, v) are permitted for any distinct v and w.

In this paper we determine the asymptotic values of RT (n), ED(n) and EOG(n), and the
last two classes by their numbers of edges (within limits). The method in each case will be
the same: we identify the required quantity as a coefficient in an n-variable power series, and
estimate it by applying the saddle-point method to the integral provided by Cauchy’s Theorem.
Since the parameter which is tending to ∞ is the number of dimensions, the application of
the saddle-point method has an analytic flavour different from that of most fixed-dimensional
problems. In particular, the choice of contour is trivial but substantial work is required to
demonstrate that the parts of the contour where the integrand is small contribute negligibly
to the result. For another calculation similar to those here, see McKay and Wormald [4].
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Exact values of RT (n) for n ≤ 21, ED(n) for n ≤ 16 and EOG(n) for n ≤ 15 can be
found in [2]. They are in excellent agreement with our estimates, if we note that the values of
ED(n) given in [2] do not permit loops (contrary to the claim made there). Exact formulas
for RT (n) and ED(n) can be found in [1]. However, they involve multiple summations over
roots of unity and do not seem suitable for asymptotic analysis.

The only previous directly related results that we are aware of are due to Joel Spencer
[5]. In particular, Spencer evaluates RT (n) to within a factor of (1 + o(1))n.

2. An integral.

In this section we will evaluate an n-dimensional integral which occurs in each of the
estimations we wish to perform. We will need the following lemma, which is well known.

Lemma 2.1. The surface area of the n-dimensional sphere of radius ρ is 2πn/2ρn−1/Γ (n/2).

For t ≥ 0 and n ≥ 1, define Un(t) =
{

(x1, x2, . . . , xn) ∈ R
n

∣∣ |xi| ≤ t for 1 ≤ i ≤ n
}
.

Theorem 2.1. Let a, b and c be real numbers with a > 0. Let 0 < ε < 1/8, and let n ≥ 2
be an integer. Define

J = J(a, b, n) =
∫

exp
(
−a

∑
1≤j<k≤n

(θj−θk)
2+b

∑
1≤j<k≤n

(θj−θk)4+
c

n2

( ∑
1≤j<k≤n

(θj−θk)
2
)2

)
dθ′,

where the integral is over θ′ = (θ1, θ2, . . . , θn−1) ∈ Un−1(n−1/2+ε) with θn = 0. Then, as
n →∞,

J = n1/2
( π

an

)(n−1)/2

exp
(6b + c

4a2
+ O(n−1/2+4ε)

)
.

Proof. Define V = Un−1(n
−1/2+ε). We begin by approximately diagonalising the integrand.

Let T : R
n−1 → R

n−1 be the linear transformation defined by T : θ′ 7→ y = (y1, y2, . . . , yn−1),
where

yj = θj −
n−1∑
k=1

θk/(n + n1/2)

for 1 ≤ j ≤ n − 1. Let V1 = T (V ). For k ≥ 1 define µk = µk(y) =
∑n−1

j=1 yk
j . Items (1)–(5)

can be verified by straightforward calculations:

V1 =
{

y
∣∣ |yj + µ1/(n

1/2 + 1)| ≤ n−1/2+ε for 1 ≤ j ≤ n− 1
}
. (1)

µ1 = n−1/2
n−1∑
j=1

θj . (2)

∑
1≤j<k≤n

(θj − θk)2 = nµ2. (3)

∑
1≤j<k≤n

(θj − θk)4 = nµ4 + 3µ2
2 −

4n1/2

n1/2 + 1
µ1µ3 +

6
(n1/2 + 1)2

µ2
1µ2 +

n1/2 + 3
(n1/2 + 1)3

µ4
1. (4)

det(T ) = n1/2. (5)
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If y ∈ V1, it follows from (2) that |µ1| ≤ nε and from (1) that V1 ⊆ Un−1(2n−1/2+ε). The
latter implies that µ2 ≤ 4n2ε and µ3 ≤ 8n−1/2+3ε.

Since the integrand of J is real and positive, we conclude from (3), (4) and (5) that
J = n1/2 exp

(
O(n−1/2+4ε)

)
J1, where

J1 =
∫

V1

F (y) dy, F (y) = exp(−anµ2 + bnµ4 + 3bµ2
2 + cµ2

2).

Since V1 ⊆ Un−1(2n
−1/2+ε) we have that µ4 ≤ 4n−1+2εµ2. Thus

F (y) = exp
(−anµ2(1 + O(n−1+2ε))

)
. (6)

For ρ ≥ 0, define S′ρ = Sρ ∩ V1, where Sρ = {y | µ2 = ρ2}. The volume of S′ρ is
O(1)(2πe/n)(n−1)/2ρn−2 by Lemma 2.1, and is zero if ρ > 2nε. By (6),

∫
S′ρ

F (y) dy = O(1)
(2πe

n

)(n−1)/2

ρn−2 exp
(−anρ2(1 + O(n−1+2ε))

)
. (7)

The function g(ρ) = ρn−2 exp
(−anρ2(1 + O(n−1+2ε))

)
has its maximum near ρ = (2a)−1/2; if

|ρ− (2a)−1/2| > n−1/2+2ε and ρ ≤ 2nε, then g(ρ) ≤ (2ae)−n/2 exp(−c1n
4ε) for some constant

c1 > 0. Consequently, defining W = Un−1(2n−1/2+ε) ∩ {
y

∣∣ |µ1/2
2 − (2a)−1/2| ≤ n−1/2+2ε

}
,

we have J1 = J2 + ∆, where

J2 =
∫

V1∩W

F (y) dy, and |∆| ≤ O(n)
( π

an

)n/2

exp
(−c1n

4ε
)
.

Since µ2
2 = (2a)−2

(
1 + O(n−1/2+2ε)

)
if y ∈ W ,

J2 = exp
(3b + c

4a2
+ O

(
n−1/2+2ε

))
J3, where

J3 =
∫

V1∩W

exp(−anµ2 + bnµ4) dy

=
∫

W

exp(−anµ2 + bnµ4) dy −
∫

W\V1

exp(−anµ2 + bnµ4) dy. (8)

Let J4 and ∆′ denote the two integrals in (8), respectively. If V (ρ) denotes the volume of
(W \ V1) ∩ Sρ, then clearly

∆′ ≤
∫
|ρ−(2a)−1/2|≤n−1/2+2ε

V (ρ) exp
(−anρ2(1 + O(n−1+2ε))

)
dρ. (9)

We will bound V (ρ) with the help of a statistical argument. Let Y1, Y2, . . . , Yn−1 be indepen-
dent random variables with the normal density N(0, ρ2/n). Then

Z = (Z1, Z2, . . . , Zn−1) =
ρ (Y1, Y2, . . . , Yn−1)

(Y 2
1 + Y 2

2 + · · ·+ Y 2
n−1)1/2

is a random point on Sρ. From the weights of the tails of the normal and χ2 distributions
we find that the events |Yj | ≤ n−1/2+ε/2 (1 ≤ j ≤ n − 1), |∑Yj | ≤ nε/4 and

∑
Y 2

j < ρ2/2
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occur simultaneously with probability at least 1 − exp(−c2n
2ε) for some constant c2 > 0.

However, these conditions together imply that Z ∈ V1, by (1). We conclude that V (ρ) is at
most exp(−c2n

2ε) times the volume of Sρ. Applying this to (9), we obtain

∆′ ≤ O(1)
( π

an

)n/2

exp(−c2n
2ε).

Finally, consider

J5 =
∫

Un−1(2n−1/2+ε)

exp(−anµ2 + bnµ4) dy.

By the same argument as before, J5 = J4 + ∆′′, where

∆′′ ≤ O(1)
( π

an

)n/2

exp(−c3n
2ε)

for some constant c3 > 0 and

J4 =
(∫ 2n−1/2+ε

−2n−1/2+ε

exp(−anx2 + bnx4) dx
)n−1

=
(∫ 2n−1/2+ε

−2n−1/2+ε

exp(−anx2)
(
1 + bnx4 + O(n2x8)

)
dx

)n−1

=
( π

an

)(n−1)/2(
1 +

3b
4a2n

+ O(n−2)
)n−1

=
( π

an

)(n−1)/2

exp
( 3b

4a2
+ O(n−1)

)
.

Combining our estimates now leads easily to the theorem.

3. Derivation of the principal theorems.

We begin with a technical lemma whose proof is too elementary to include.

Lemma 3.1.

(a) For |x| ≤ π/2, cos(x) ≤ exp(−x2/2).
(b) For 0 ≤ λ ≤ 1 and any real x,

∣∣1− λ + λ cos(x)
∣∣ ≤ exp

(− 1
2λx2 + 1

24λx4
)
.

We now have the necessary apparatus to perform the estimations we have promised. In
the case of RT (n) we will give the proof in detail, but in the other cases we will be content
with an outline.

Theorem 3.1. As n →∞ with n odd,

RT (n) =
2(n2−1)/2e−1/2

π(n−1)/2nn/2−1

(
1 + O(n−1/2+ε)

)

for any ε > 0.

Proof. Without loss of generality, take ε < 1/2. The generating function∏
1≤j<k≤n(x−1

j xk +xjx
−1
k ) enumerates tournaments by the excess of out-degree over in-degree

at each vertex. Thus, RT (n) is the constant term. By Cauchy’s Theorem,

RT (n) =
1

(2πi)n

∮
· · ·

∮ ∏
1≤j<k≤n(x−1

j xk + xjx
−1
k )

x1x2 · · · xn

dx1dx2 . . . dxn,

4



where each integration is around a simple closed contour encircling the origin once in the
anticlockwise direction. Substituting xj = eiθj (1 ≤ j ≤ n), we obtain

RT (n) =
2n(n−1)/2

(2π)n
I, I =

∫
Un(π)

∏
1≤j<k≤n

cos(θj − θk) dθ, (1)

where θ = (θ1, θ2, . . . , θn). Due to the periodic nature of the integrand, we will treat each θj

as having values mod 2π. Note that the integrand in (1) always lies in the real interval [−1, 1].
Also, translation of any θj by π leaves the integrand unchanged (since n is odd).

We will begin the evaluation of I with the part of the integrand which will turn out
to give the major contribution. Let I1 be the contribution to I of those θ such that either
|θj − θn| ≤ n−1/2+ε/4 or |θj − θn + π| ≤ n−1/2+ε/4 for 1 ≤ j ≤ n − 1, where θj values are
taken mod 2π as we stated earlier. The contributions to I1 with different values of θn are
clearly the same. Also, both the integrand and the region of integration are invariant under
translation of any θj by π. Thus

I1 = 2nπ

∫
Un−1(n−1/2+ε/4)

∏
1≤j<k≤n

cos(θj − θk) dθ′,

where the integration is with respect to θ′ = (θ1, θ2, . . . , θn−1) with θn = 0. Now we can
expand

∏
1≤j<k≤n

cos(θj − θk) = exp
( ∑

1≤j<k≤n

log cos(θj − θk)
)

= exp
(
− 1

2

∑
1≤j<k≤n

(θj − θk)2 − 1
12

∑
1≤j<k≤n

(θj − θk)4 + O(n−1+3ε/2)
)
.

Thus, by Theorem 2.1,

I1 = 2nπ
(2π

n

)(n−1)/2

n1/2e−1/2
(
1 + O(n−1/2+ε)

)
. (2)

From (1) and (2) we see that I1 matches our claimed value for RT (n), so we must now show
that the other parts of the integral I are negligible.

For 0 ≤ j ≤ 31, define the interval Aj = [(j − 1)π/16, jπ/16]. For any θ ∈ Un(π), at least
one of the 16 intervals A0 ∪A1, A2 ∪A3, . . . , A30 ∪A31 contains n/16 or more of the θj . Let
us suppose that this is true of A0 ∪ A1 (thereby undercounting the possibilities by at most
a factor of 16). Define B = A3 ∪ · · · ∪ A14 ∪ A19 ∪ · · · ∪ A30. If θj ∈ B and θk ∈ A0 ∪ A1,
then |cos(θj − θk)| ≤ cos(π/16). From this it easily follows that, for sufficiently large n, the
contribution to I of all the cases where nε or more of the θj lie in B is at most exp(−c1n

1+ε)I1

for some c1 > 0. Thus, with an undercount of at most 16, we can suppose that at least n−nε

of the θj lie in A31 ∪A0 ∪A1 ∪A2 ∪A15 ∪ · · · ∪A18. At the expense of another factor of 2n,
we can suppose that |θj | ≤ π/2 for all j and that |θj | ≤ π/8 for at least n−nε of the θj . Now
define I2(r) to be the contribution to I of those θ such that
(i) 3π/16 ≤ |θj | ≤ π/2 for r values of j,
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(ii) |θj | ≤ π/8 for at least n− nε values of j, and
(iii) π/8 ≤ |θj | ≤ 3π/16 for any other values of j.
Clearly I2(r) = 0 if r > nε. If θj and θk are in classes (i) and (ii), respectively, then
|cos(θj − θk)| ≤ cos(π/16), while if they are both in classes (ii) or (iii), |cos(θj − θk)| ≤
exp

(− 1
2 (θj − θk)2

)
, by Lemma 3.1(a). Using |cos(θj − θk)| ≤ 1 for the other cases, we find

|I2(r)| ≤ πr

(
n

r

)
cos(π/16)r(n−nε)|I ′2(n− r)|, (3)

where

I ′2(m) =
∫

Um(3π/16)

exp
(
− 1

2

∑
1≤j<k≤m

(θj − θk)2
)

dθ1 · · · dθm.

Since θm ranges over [−3π/16, 3π/16] and the integrand is everywhere positive, we can apply
the transformation T of Theorem 2.1 (using m in place of n) to easily obtain

I ′2(m) ≤ 3
8πm1/2

(2π
m

)(m−1)/2

.

Substituting back into (3) we find that

2n
nε∑

r=1

|I2(r)| ≤ |I1| exp
(−c2n + o(n)

)

for some c2 > 0. We conclude that the only substantial contribution must come from the case
r = 0.

Next, define I3(h) be the contribution to I of those θ such that
(i) |θn| ≤ 3π/16,
(ii) n−1/2+ε/4 ≤ |θj − θn| ≤ 3π/8 for h values of j, and
(iii) |θj − θn| ≤ n−1/2+ε/4 for the remaining values of j.
Clearly |I3(h)| ≤ 3

16π|I ′3(h)|, where |I ′3(h)| is the same integral over θ′ with θn = 0. Now apply
the bound cos(θj−θk) ≤ exp

(− 1
2 (θj−θk)2

)
and transform the θ′ to y using the transformation

T of Theorem 2.1. The values of θ′ contributing to I ′3(h) for h ≥ 1 map to a subset of those
y such that either |µ1| > nε/4/2 or |yj | > n−1/2+ε/4/2 for some j. Since the contribution to

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(− 1

2nµ2) dy

of those y is O(n)(2π/n)(n−1)/2 exp(−c3n
ε/2) for some c3 > 0, we conclude that

2n
n−1∑
h=1

|I3(h)| ≤ O(n) exp
(−c3n

ε/2
)|I1|.

The remaining case, h = 0, is covered by I1. The theorem follows.

In the case of ED(n) and EOG(n), we will omit the fine detail. The missing parts of the
calculations are essentially the same as the corresponding parts of Theorem 2.1.
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Theorem 3.2. As n →∞,

ED(n) =
2n2−ne−1/4

π(n−1)/2nn/2−1

(
1 + O(n−1/2+ε)

)
and

EOG(n) =
3(n2−1)/2e−3/8

2n−1π(n−1)/2nn/2−1

(
1 + O(n−1/2+ε)

)

for any ε > 0.

Proof. ED(n) is the constant term in
∏

1≤j<k≤n(1+x−1
j xk)(1+xjx

−1
k ). Applying Cauchy’s

Theorem as in Theorem 2.1, we find

ED(n) =
2n2−n

(2π)n

∫
Un(π)

∏
1≤j<k≤n

(
1
2

+ 1
2

cos(θj − θk)
)
dθ.

Arguments similar to those of Theorem 2.1 show that the dominant contribution to the integral
comes when the θj are clustered together. (The only substantial differences are that we don’t
have the invariance under translation by π and that we require Lemma 3.1(b) in place of
Lemma 3.1(a).) If the θj are clustered together, we can expand

∏
1≤j<k≤n

(
1
2

+ 1
2

cos(θj − θk)
)

= exp
(
− 1

4

∑
1≤j<k≤n

(θj − θk)2 − 1
96

∑
1≤j<k≤n

(θj − θk)4 − · · ·
)

and apply Theorem 2.1.

Similarly, EOG(n) is the constant term in
∏

1≤j<k≤n(1 + x−1
j xk + xjx

−1
k ). Application

of Cauchy’s Theorem gives

EOG(n) =
3n(n−1)/2

(2π)n

∫
Un(π)

∏
1≤j<k≤n

(
1
3 + 2

3 cos(θj − θk)
)
dθ,

and the same approach yields the desired result.

We turn now to the enumeration of eulerian digraphs by their numbers of edges. Define
EOG(n,m) to be the number of labelled loop-free simple eulerian oriented graphs with n

vertices and m edges, and ED(n,m) to be the number of labelled loop-free simple eulerian
digraphs with n vertices and m edges. We will compute asymptotic expressions for EOG(n,m)
and ED(n,m) via a common generalisation. Let us call (v,w) a type-1 edge if (w, v) is not
also present, and a type-2 edge if (w, v) is present. Thus, the pair {(v,w), (w, v)}, if both
present, comprises two type-2 edges. Now define F (n,m1,m2) to be the number of labelled
loop-free simple eulerian digraphs with exactly m1 type-1 edges and 2m2 type-2 edges. Clearly
EOG(n,m) = F (n,m, 0) and ED(n,m) =

∑
m1+2m2=m F (n,m1,m2). Write N =

(
n
2

)
.

Theorem 3.3. Let 0 < c1 < c2 < 1 and ε > 0. Then, as n →∞,

F (n, βN,m2) =
2βN−(n−1)/2e−1/2

πn/2nn/2ββN+n/2(1− β)(1−β)N+1/2

(
(1− β)N

m2

)(
1 + O(n−1/2+ε)

)
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uniformly for c1 ≤ β ≤ c2 and 0 ≤ m2 ≤ (1− β)N , provided βN is an integer.

Proof. Irrespective of which βN type-1 edges are present, there are exactly
(
(1−β)N

m2

)
choices

for the type-2 edges. Hence it will suffice to treat the case m2 = 0. F (n, βN, 0) is the
coefficient of tβNx0

1 · · · x0
n in

Φ(t,x) =
∏

1≤j<k≤n

(1 + tx−1
j xk + txjx

−1
k ).

We will extract this coefficient by Cauchy’s Theorem, as in the previous theorems, integrating
each xj around the unit circle and t around the circle of radius R, where R = β/(2(1 − β)).
Change variables to (φ, θ1, θ2, . . . , θn) by xj = eiθj and t = Reiφ. By methods basically the
same as those used in Theorem 3.1, we find that the integral is dominated by the contributions
where |θj − θk| ≤ n−1/2+ε/4 for 1 ≤ j < k ≤ n and |φ| ≤ n−1+ε/2. We will omit the proof of
this fact and proceed to the estimation of the dominant part.

We begin by integrating with respect to t. Let Θ(θ) be the coefficient of tβN in Φ(t,x).
Then

Θ(θ) =

∏
1≤j<k≤n

(
1 + 2R cos(θj − θk)

)
2πRβN

∫ π

−π

Ψ(θ) dφ,

where

Ψ(θ) = e−iβNφ
∏

1≤j<k≤n

(
1 + λjk(eiφ − 1)

)
, λjk =

2R cos(θj − θk)
1 + 2R cos(θj − θk)

.

If |φ| ≤ n−1+ε/2 and |θj − θk| ≤ n−1/2+ε/4 for 1 ≤ j < k ≤ n, we have

log Ψ(θ) = −βiNφ +
∑

1≤j<k≤n

(
λjkiφ− 1

2λjk(1− λjk)φ2 + O(n−3+3ε/2)
)
,

∑
1≤j<k≤n

λjk = βN − 1
2
β(1− β)

∑
1≤j<k≤n

(θj − θk)2 + O(nε), and

∑
1≤j<k≤n

λjk(1− λjk) = β(1 − β)N + O(n1+ε),

and so

log Ψ(θ) = − 1
2 iβ(1 − β)φ

∑
1≤j<k≤n

(θj − θk)2 − β(1 − β)Nφ2 + O(n−1+2ε).

Consequently,

∫ π

−π

Ψ(θ) dφ =
2π1/2

nβ1/2(1− β)1/2
exp

(
−β(1− β)

8N

( ∑
1≤j<k≤n

(θj − θk)2
)2

+ O(n−1+2ε)
)
,

which yields

Θ(θ) =
(1 + 2R)N

π1/2nβ1/2(1− β)1/2RβN

× exp
(
−β(1− β)

4n2

( ∑
1≤j<k≤n

(θj − θk)2
)2

+
∑

1≤j<k≤n

log
(1 + 2R cos(θj − θk)

1 + 2R

)
+ O(n−1+2ε)

)
.
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We can now expand

log
(1 + 2R cos(θj − θk)

1 + 2R

)
= − 1

2
β(θj − θk)2 + 1

24
β(1− 3β)(θj − θk)4 + O(n−3+3ε/2)

and complete the proof with the help of Theorem 2.1.

As earlier noted, EOG(n,m) = F (n,m, 0). For large fixed n, the maximum of EOG(n,m)
occurs at m = n2/3− n/2 + o(n). In fact, for |t| = o(n4/3),

EOG(n, n2/3− n/2 + t) =
3(n2+1)/2

2n−1/2πn/2nn/2
exp

(− 3
8
− 9

2
n−2t2 + O(n−4|t|3 + n−1/2+ε)

)
.

Summation over t recovers the formula for EOG(n) in Theorem 3.2.

Theorem 3.4. Let 0 < c1 < c2 < 2 and ε > 0. Then, as n →∞,

ED(n, αN) =
e−1/42n2−n+1/2

πn/2nn/2(2− α)n2

(2− α

α

)(αn−α+1)n/2(
1 + O(n−1/2+ε)

)

uniformly for c1 ≤ α ≤ c2.

Proof. As previously stated, ED(n, αN) =
∑

m1+2m2=αN F (n,m1,m2). From Theorem 3.3,
we find that the bulk of the sum comes when m1 is close to m(α)N , where
m(α) = α− α2/2− α(2 − α)/(2n). In fact, for small t,

F (n, (m(α) + t)N, (α−m(α)− t)N/2) =
e−1/22n2−n+5/2

πn/2+1/2nn/2+1(2− α)n2+2

(2− α

α

)(αn−α+1)n/2

× exp
(
− n2

α2(2− α)2
t2 + O(n2|t|3 + n−1/2+ε)

)
.

Summing this equation over those t for which the third argument is an integer, we obtain the
required expression.

The maximum of ED(n, αN) occurs when α = 1 + o(n−1). In fact, if t = o(n3/2),

ED(n,N + t) =
e−1/42n2−n+1/2

πn/2nn/2
exp

(−2n−2t2 + O(n−3t2 + n−1/2+ε)
)
.

Summing over t recovers our formula for ED(n).
Theorem 3.1 can be used in conjunction with a theorem of Spencer [5] to derive the

asymptotic number of tournaments with a given score sequence, provided the tournaments
are not very far from being regular. With a non-trivial amount of extra work, the proof method
of Theorem 3.1 can be used to widen that estimate [3]. Similarly, asymptotic enumeration of
eulerian digraphs with a given degree sequence (not too far from regular) is definitely within
reach of our methods. We hope to return to this question in a future paper.
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