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Abstract
In this article we describe a very efficient method to construct pairwise non-

isomorphic posets (equivalently, T0 topologies). We also give the results obtained
by a computer program based on this algorithm, in particular the numbers of non-
isomorphic posets on 15 and 16 points and the numbers of labelled posets and
topologies on 17 and 18 points.

1 Introduction

Various algorithms have been proposed and applied for the constructive enumeration of
posets (see [16],[5],[14],[4],[2],[3]). The fastest algorithm so far was developed by J. Heitzig
and J. Reinhold ([8]) who were able to determine the number of posets on 14 points. The
generation rate of the computer program based on their algorithm is about 90 000 posets
per second (scaling approximately from the computer they used to a 1 GHz Pentium III).
The number of posets on 14 points was later independently confirmed by N. Lygerōs and
P. Zimmermann [10]. The algorithm we will describe in this article is able to list more
than 4 million non-isomorphic posets per second (scaled to the same machine), with the
rate increasing with the number of points for these small sizes.

We will describe posets (V,≤) by their corresponding Hasse diagrams as directed
graphs, that is we have the directed graph P = (V, E) with (a, b) ∈ E iff a, b ∈ V , a < b
and there exists no c ∈ V with a < c < b. Points with indegree 0 are called the minimal
points while the points with outdegree 0 are called the maximal points. The level l(v)
of a point v is the length of a longest directed path from a minimal point to v. So the
minimal points are on level 0 and for l ≥ 1 for every point b on level l there is a point a
on level l − 1 such that (a, b) ∈ E.

2 The Construction of Posets

For every n ∈ N there is exactly one poset with n points and only one level, so we list that
first. To construct posets on n points with at least two levels from posets on n−1 points,
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we start with the unique posets with 1 to n− 1 isolated points on level 0 and recursively
add new points either on the highest level m (if m ≥ 1), or on a new highest level m + 1,
and connect them to the smaller poset in every possible way to form a larger poset.

Isomorphism rejection will be done by the canonical construction path method de-
scribed in [13]. In this method, a family of labelled posets, called candidates, is defined
that has the property that each isomorphism class of posets is represented in the family at
least once. Then, without any direct comparison of candidates, each candidate is subject
to an acceptance test which accepts exactly one from each isomorphism class. The basis
of the acceptance test is a function f from the set of all candidates (which are labelled
posets) on the points 0, . . . , n − 1 to the set 2{0,...,n−1} of subsets of {0, . . . , n − 1}, such
that, given such a poset P , f chooses an orbit of points under the automorphism group
of P . Precisely:

(a) For each candidate P , f(P ) is an orbit of the automorphism group of P consisting
of points on the highest level. (Note that the automorphism group preserves the
levels, so such an orbit exists.)

(b) For each pair of candidates P, P ′, any isomorphism P → P ′ maps f(P ) onto f(P ′).

A function f with both these properties will be called a canonical choice function and
f(P ) will be called the canonical orbit of P . If only (b) is satisfied, we just call f a choice
function.

Our implementation defines a canonical choice function f via a sequence of choice
functions f1, . . . , f6 = f where, for each candidate P , f1(P ) ⊇ f2(P ) ⊇ · · · ⊇ f6(P ),
f1(P ) is the set of all points of P on the highest level and f6(P ) is a single orbit. The
exact definition of f2, . . . , f6 will be given later, as the correctness of the algorithm depends
only on f being a canonical choice function.

We define the parent of a candidate to be the poset obtained when any vertex v of
the canonical orbit together with all edges ending in v is removed. Since this point is on
the highest level, the remaining part is again a (Hasse diagram of a) poset. Note that
the parent of a candidate is uniquely defined up to isomorphism. We accept a newly
constructed candidate iff it is constructed from its parent (that is: the last vertex added
belongs to the canonical orbit) and reject it otherwise. So – provided we have only
one member of every isomorphism class of smaller posets – if two isomorphic posets are
accepted, they were generated from the same parent.

In order to extend a poset P = (V, E) with maximum level m by adding a point on
level l ∈ {m, m + 1}, we compute the set A of all antichains S (that is, the set of all
S ⊆ V so that for all a, b ∈ S, a 6= b, neither a ≤ b nor b ≤ a), that contain at least
one point on level l − 1. We call these antichains l-antichains. These l-antichains are
exactly the subsets S of V , so that after connecting the new vertex v with all elements
of S the resulting graph represents a poset on |V |+ 1 points with v on the highest level.
If the automorphism group G of P maps two such sets S, S ′ onto each other, the posets
obtained by connecting the new point to all elements of S, resp. S ′ will be isomorphic, so
we compute the orbits of G on A and choose one representative of every orbit to connect
the new point with.
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Summarizing, the extension of a poset with maximum level m by adding a point on
level l ∈ {m, m + 1} can be described in three steps:

Step 1: Compute the orbits of l-antichains.

Step 2: Connect the new point with one representative of each orbit in turn.

Step 3: Compute the canonical choice function for the extended poset and accept it if
and only if the new point is in the canonical orbit.

Formally, we can define the candidates as those posets formed at Step 2, and the acceptance
test as that performed at Step 3.

Theorem 1 For any canonical choice function f , the algorithm described above accepts
exactly one element of every isomorphism class of posets.

Proof: The theorem is obviously true for posets on 1 point or with just one level, so
assume it has been proven for posets on up to p− 1 points.

For a given poset P on p points with at least two levels, let Pv denote the poset
obtained by removing a point v from the last level. By induction, a poset isomorphic
to Pv has been accepted and extended in all ways (up to isomorphism) by adding a
point at the highest level. Therefore, there are candidates isomorphic to P and we
might as well assume that P is a candidate. Choosing w ∈ f(P ), we now find that
a poset isomorphic to Pw is extended to a candidate P ′ isomorphic to P with the
isomorphism mapping w onto the last point of P ′. This candidate P ′ is accepted,
so we have that at least one member of each isomorphism class is accepted.

If there are two isomorphic candidates P , P ′ which are both accepted, there is an
isomorphism mapping the last points of P, P ′ onto each other. This induces an
isomorphism of the parents, so by induction these parents are the same and the
isomorphism is an automorphism which maps the neighbourhoods of the last points
onto each other. So the parent was extended using two antichains from the same
orbit, contradicting Step 2. �

Using e.g. nauty (see [11],[12]), a computer program which is able to compute the
automorphism group of a graph as well as a canonical numbering of the vertices one can
easily define a canonical choice function and hence a program for constructing posets by
this method. However, such a program would be much slower than can be obtained by
defining the canonical choice function more carefully, as we next show.

3 Improvements to the Basic Algorithm

Although our canonical choice function f ultimately relies on nauty, the nested sequence
f1, . . . , f6 = f of choice functions in our implementation is designed so that it is usually
possible to accept or reject candidates without calling nauty. Often we will also be able
to infer the orbits of antichains without calling nauty.
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Definition 1 Let P be a poset with maximum level m and automorphism group G. Then,
for l ≤ m, Pl denotes the poset induced by the points on levels 0, . . . , l and Gl denotes
its automorphism group. By G|l we denote the group G restricted to the points on levels
0, . . . , l, so G|l ⊆ Gl.

If we have a coloured poset, that is a poset with coloured vertices, and we only allow
automorphisms that do not map points of different colours onto each other (this group is
denoted by Gc, and the similar subgroup of Gl by Gc

l ), then G = Gc if each orbit of G
consists of points of the same colour. Nevertheless the colouring may help to compute G,
since it is easier to detect non-equivalent points.

So we need some simple criteria to determine which points are in different orbits of G
and therefore can be coloured differently:

Lemma 1 Let P be a poset with maximum level m and let G denote its automorphism
group.

(a) Points on different levels are in different orbits of G.

(b) If a, b are on level l < m, l ≥ 0, and they are in different orbits of Gl, then they are
in different orbits of G.

(c) If a, b are on level l ≤ m, l ≥ 1, and their neighbourhoods are in different orbits of
Gl−1 on the set of l-antichains, then a, b are in different orbits of G.

Though the information needed for (b) and (c) can not – unlike that for (a) – be
trivially deduced from the poset, it is information that the described algorithm has to
compute anyway: the information on the orbits of points needed for (b) is computed with
the canonical choice function for the last point in level l (Step 3) and the information on
the orbits of antichains is computed in Step 1.

Of course small groups are easier to handle, e.g. the number of differently coloured
points is larger and the operation of the groups on the set of points and antichains can
be computed faster. But, as known from [8][15], the ratio of posets with a trivial group
converges to 1 fairly slowly compared to some other classes of combinatorial structures.
E.g. only 71% of the posets on 14 points have a trivial group and from the number of
labelled posets on 16 points which was given in [8], we can deduce from our computations
that the harmonic mean of the automorphism group size for unlabelled posets on 16
points is 1.1236, which is quite large. Therefore it is helpful to use a subgroup of the
automorphism group instead:

Lemma 2 Let P be a poset with maximum level m and automorphism group G, such
that for some l < m the group Gl operates like the identity on the set of (l+1)-antichains.
Let Gco denote the automorphism group of the coloured poset with the vertices on levels
l + 1, . . . , m coloured according to the rules in Lemma 1 and each vertex on levels 0, . . . , l
having a unique colour.

Then two (m + 1)-antichains are equivalent under G if and only if they are equivalent
under Gco.
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Proof: Since Gco ⊆ G, it is clear that if they are equivalent under Gco, they are equivalent
under G, so we only have to show the other direction.

First note that Gl fixes points that are contained in (l + 1)-antichains: For every
point x on level l the set {x} is an antichain itself, so this is true by definition. Now
let y be a point on level l′ < l that occurs in an (l + 1)-antichain, say, together
with x on level l. Then {x, y} is an antichain which must be fixed as a set by every
automorphism of Gl, but since x and y are on different levels and therefore cannot
be mapped onto each other by an automorphism, it must also be fixed pointwise,
so y must be fixed too.

Now assume two (m+1)-antichains s, s′ to be equivalent by an automorphism γ ∈ G,
that is s = γ(s′). We have to show that there is an automorphism γ′ ∈ Gco, so that
s = γ′(s′). Define

γ′(x) :=

{
x if x is on level 0, . . . , l;
γ(x) if x is on level l + 1, . . . , n.

We show that γ(x) = γ′(x) for all x ∈ s′ and therefore s = γ′(s′): This is just by
definition if l(x) ≥ l + 1, so assume l(x) ≤ l. Let y ∈ s′ be on level m and z a point
on level l on the path from a minimal point to y. Then {x, z} is an (l +1)-antichain
and therefore fixed pointwise by γ, so γ(x) = x = γ′(x).

It remains to be shown that γ′ ∈ Gco. Since γ as well as the identity respect the
colouring, all that is left to be shown is the fact that if (x, y) is an edge in G, then
(γ′(x), γ′(y)) is an edge in G. For l(x), l(y) ≤ l it follows from the identity being an
automorphism of Pl and for l(x), l(y) > l it follows from γ being an automorphism,
so let l(x) ≤ l, l(y) = l′ > l. Again let z be a point on level l on the path from a
minimal point to y. Then {z, x} is an (l + 1)-antichain. In fact z = x is possible,
but in any case x occurs in an (l + 1)-antichain and therefore γ(x) = x. So we have
(γ′(x), γ′(y)) = (γ(x), γ(y)) which is an edge of G since γ is an automorphism. �

In Figure 1, we give an example of a poset with nontrivial group acting like the identity
on the set of all (m + 1)-antichains.

Figure 1: Example for Lemma 2
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The other time-critical part is the computation of the canonical choice function. We
have to choose the functions f1, . . . , f6 = f in such a way that in many cases we can
determine canonicity very fast and – if possible – even avoid adding points that would
not be canonical.

As the statistics we present at the end of this paper show, a very large fraction of the
posets generated contain just one point on the last level. In these cases our function f1

has a single point as the image, so all candidates with one point on the highest level are
accepted without having to compute the group or any more expensive canonical choice
functions.

Our function f2 is chosen as follows: Consider a poset with maximum level m. Number
the orbits of m-antichains of Gm−1 in an arbitrary (but fixed) way, e.g. in the order they
are found when doing Step 1 for the first point on level m (this way the numbering causes
very few additional costs). Denote the orbit number of an antichain s by o(s) and also
write o(x) for the orbit number of the neighbourhood of the point x. The image of our
function f2 is the set of all points x on level m for which o(x) is greatest.

We have to show that f2 is a choice function. Assume P, P ′ are two isomorphic
candidates (not necessarily distinct) with maximum level m, say P = γ(P ′). Then
P |m−1 = P ′|m−1 since for each smaller poset there is only one isomorphic copy. So if
x ∈ P and y ∈ P ′ are on level m, x = γ(y), then the set sy of neighbours of y is mapped
onto the set sx of neighbours of x. So there is an automorphism of P |m−1 mapping sy onto
sx, implying that they are in the same orbit and therefore o(x) = o(y). Thus γ preserves
the values of o() and in particular maps f2(P

′) onto f2(P ).
This canonicity criterion allows us to avoid making a lot of candidates that would not

be accepted anyway. We know that points must be added in a way that the values of o()
are monotonically increasing on each level. In fact we have:

Lemma 3 Let P be a poset that was accepted by the algorithm with maximum level m
and x the last point added. Let y be a new point added to level m to form P ′.

(a) If o(y) < o(x), P ′ is rejected.

(b) If o(y) > o(x), P ′ is accepted.

(c) If all the points on level m with the maximum value of o() have the same neigh-
bourhood (which is always the case if e.g. Gm−1 acts like the identity on the set of
m-antichains), P ′ is accepted if and only if o(y) ≥ o(x).

While (a) and (b) are obvious from the definition, (c) follows since in this case the
set of all points with maximal value of o() forms an orbit (so f(P ′) cannot be a proper
subset of f2(P

′) and therefore y is in the canonical orbit).
Of course points that would be rejected due to criterion (a) will not be added by the

algorithm at all.
Summarizing, the only cases where nontrivial canonicity tests have to be applied are

when there are at least two points on the last level with different neighbourhoods but the
same, largest, orbit number and one of them is the last point added.
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In these cases we apply several further criteria before applying nauty. We will only
sketch them and leave it to the reader to prove that they are choice functions.

For an m-antichain s, let n(s) denote the number of points on level m with neigh-
bourhood s. Among all points in f2(P ) we choose those with the property that their
neighbourhood s has the maximum value of n(s). This set is f3(P ). If all elements of
f3(P ) have the same neighbourhood, they form an orbit, so f(P ) is determined.

If f(P ) is not determined yet and the last point is still contained in f3(P ) we compute
f4(P ). To this end let S denote the union of all points neighbouring a point on the
maximum level m that is not contained in f3(P ). For a point x ∈ f3(P ) let Sx denote the
intersection of S with the neigbours of x and for 0 ≤ j < m let Sx,j denote the set of all
points in Sx that are on level j. Note that every Sx,j is a (j +1)-antichain, so that o(Sx,j)
is well defined except for Sx,j = ∅ for which we define it as 0.

For all points x ∈ f3(P ) we define

p(x) :=
l−1∑
j=0

2jo(Sx,j)

and define f4(P ) to be the set of points in f3(P ) with the maximum value of p().

In unusual cases, there are points with different neighbourhoods even in f4(P ), so we
have an additional step. Let H be the underlying undirected graph of the Hasse diagram
of P , and let π be the colouring defined in Lemmas 1 and 2. Apply the partition refinement
algorithm of [11] to find the coursest equitable colouring π′ finer than π. (A colouring is
equitable if the number of neighbours of colour c of each vertex v depends only on c and
the colour of v.) We now define f5(P ) to be the last cell of π′ which includes points of
f4(P ). The isomorphism invariance nature of the refinement procedure (Lemma 2.8(b) of
[11]) implies that f5(P ) is a choice function.

Lemma 2.25 of [11] gives some sufficient conditions on π′ that imply that its cells
are orbits. These apply in the majority of cases at this point, enabling us to say that
f(P ) = f5(P ) is a canonical choice function. In the simplest cases (π′ having at least
n − 2 cells, which it usually does) generators for the automorphism group can be seen
immediately as well. In the few remaining instances we can apply nauty to H with
colouring π′ and define f(P ) = f6(P ) to be the orbit of the automorphism group which
contains the vertex of f5(P ) which has the highest number in the canonical labelling given
by nauty. It follows from Lemmas 1 and 2 that the orbits of points on the last level of
the coloured poset and of the uncoloured poset coincide, so that the coloured poset can
be used for the computations performed by nauty.

When computing the posets on 16 points, nauty had to be called for less than 1% of
the posets generated.

A last improvement of the algorithm comes from the following observation: Let P
be a poset on n points with exactly one minimal point (or equivalently: one point on
level 0). Then all points on level 1 are connected to it. Removing this point, a poset
on n− 1 points is obtained and two such posets on n points are isomorphic if an only if
the corresponding posets on n − 1 points are isomorphic. So the algorithm never starts
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with posets with just one point on the first level, but generates these by adding a point
to every poset on n − 1 points and connecting all points on level 0 to a new vertex. No
additional group or canonicity computations must be done for these posets.

4 Labelled and Derived Counts

In order to obtain the number T0(n) of labelled posets with n points, equal to the number
of T0 topologies, we used the following version of a formula given in [7]:

Let A(P ) denote the number of antichains of a poset P , Aut(P ) its automorphism
group, Pn the set of all non isomorphic posets on n points and

s(n, k) =
n∑

m=0

(
n + k − 1−m

k − 1

)(
n + k

m

) ∑
P∈Pm

m!

|Aut(P )|(−A(P ))n+k−m

then

T0(n + 1) = −s(n, 1)

T0(n + 2) = (n + 2)T0(n + 1) + s(n, 2)

T0(n + 3) =

(
n + 4

2

)
T0(n + 2)− s(n, 3)

These formulas were also used in [8] (where unfortunately some typos occurred in
print) in order to determine the labelled counts for up to 16 points.

To determine T0(n + 3), one has to know the size of the automorphism group as
well as the number of antichains for all posets on up to n points. We modified our
program to compute these numbers too, which slowed down the generation by a factor of
approximately 18.5 for n = 14, increasing with the number of points. So it was impossible
to run the modified program for as many points as the original one. We restricted ourselves
to n = 15.

From the numbers discussed so far, others can be computed. The counts of connected
posets, labelled and unlabelled, can be computed from the counts of all of them by
standard means (quoted incorrectly in [8]).

Define a poset P to be vertically indecomposable if there is no proper subset A of
the points such that x ≤ y for all x ∈ A, y /∈ A. The numbers of such posets, labelled
and unlabelled, can be computed using the recurrences given in [8]. In addition, the
numbers of labelled quasiorders (equivalently, topologies) can be computed by the same
method as in [8]. Unfortunately, there seems to be no mechanical way to deduce the
numbers of unlabelled quasiorders (topologies), but these can be counted with additional
computations which we will describe in a future paper [1].

It was proved by Kleitman and Rothschild [9] that a large random poset typically
has three levels with approximately n/4, n/2 and n/4 vertices, respectively. Our results
do not show this behaviour, emphasizing again that the convergence of posets to their
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asymptotic behaviour is quite slow. A survey of other enumerative results for posets is
given by El Zahar [6].

5 Correctness

Some considerable effort was taken to ensure that the results were correct. The numbers of
unlabelled posets up to 14 points as well as labelled posets up to 16 points were checked
against previously known data and the labelled counts obtained in various ways were
compared against each other.

The correctness of the program is fairly confidently established by the computations
up to 14 points and the labelled counts, but we encountered another problem. A few
of the more than 200 computers employed in the task gave wrong answers during some
runs, without machine exceptions and without any obvious sign of error in the output. In
each case the answer was only slightly wrong and running the same task again gave the
right answer. A very small rate of random error due to cosmic rays is expected [17] but
the clustering of our errors in a few computers suggests more prosaic hardware causes.
In fact it turned out that all the computers that gave wrong answers sometimes crashed
with other programs. In some cases this seems to depend on the circumstances (load),
but some of them continuously failed memory test programs.

To deal with these problems as well as we could, the computation for 15 points was
performed more than once.

The case of 16 points is more of a problem since the computation is so long that
independent confirmation was not practical. We excluded all results by machines of the
type that had failed (not only the specific machines) and reran them on other machines.
We also ran about 10% of all cases twice to look for other failures, without finding any.

In addition, we collected some statistics as a check. Reversing the order in a poset
defines a bijection between the set of posets with fixed number of points and itself mapping
a poset with n1 maximal and n2 minimal points onto one with n1 minimal and n2 maximal
points, so the matrix of counts indexed by n1 and n2 must be symmetric. Moreover, the
posets counted by symmetrically opposite entries are usually distributed over different
subcases and so executed on different machines. The matrix accumulated by our many
runs was indeed symmetric, which we believe to be quite a good check (good enough to
have detected any of the known incorrect runs).

As noted by Heitzig and Reinhold [8], a lemma of Borevič shows that T0(17) ≡ 4557871
(mod 12252240), and by the same method we find that T0(18) ≡ 8352783 (mod 12252240).
Both congruences are satisfied by our results.

6 Results

In order to be able to run the program in parts on a large cluster of machines, we added an
option that for arbitrary r, m ∈ N, r < m when computing posets on n points generates
all posets on p− 4 points and numbers them in the order they occur, but only generates
successors of those posets whose number is equivalent to r mod m. This allowed us to
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split the generation of posets on 16 points into 30 000 parts. The total cpu time for 16
points, scaled to a 1 GHz Pentium III, was about 30 years.

Table 1 gives the number of isomorphism classes of posets up to 16 points. In the
tables following the references, much more information about these posets is given.

Tables 2–4 give the numbers of various types of labelled posets and topologies.

points all connected
vertically

indecomposable
1 1 1 1
2 2 1 1
3 5 3 2
4 16 10 7
5 63 44 31
6 318 238 184
7 2045 1650 1351
8 16999 14512 12524
9 183231 163341 146468
10 2567284 2360719 2177570
11 46749427 43944974 41374407
12 1104891746 1055019099 1008220289
13 33823827452 32664984238 31559446774
14 1338193159771 1303143553205 1269310589336
15 68275077901156 66900392672168 65562045668340
16 4483130665195087 4413439778321689 4345161435996517

Table 1: Numbers of unlabelled posets (equivalently, T0 topologies)
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points all connected
1 1 1
2 3 2
3 19 12
4 219 146
5 4231 3060
6 130023 101642
7 6129859 5106612
8 431723379 377403266
9 44511042511 40299722580
10 6611065248783 6138497261882
11 1396281677105899 1320327172853172
12 414864951055853499 397571105288091506
13 171850728381587059351 166330355795371103700
14 98484324257128207032183 96036130723851671469482
15 77567171020440688353049939 76070282980382554147600692
16 83480529785490157813844256579 82226869197428315925408327266
17 122152541250295322862941281269151 120722306604121583767045993825620
18 241939392597201176602897820148085023 239727397782668638856762574296226842

Table 2: Numbers of labelled posets (equivalently, T0 topologies)
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points all
1 1
2 1
3 7
4 97
5 2251
6 80821
7 4305127
8 332273257
9 36630174931
10 5711638291981
11 1249898984911567
12 381230073532620577
13 161042140788424003291
14 93667063572594041040421
15 74610767840852891620692727
16 80997478506602342803118178457
17 119313601058907927882431190269731
18 237541348427311374857037021264415741

Table 3: Numbers of vertically indecomposable labelled posets

points all connected
1 1 1
2 4 3
3 29 19
4 355 233
5 6942 4851
6 209527 158175
7 9535241 7724333
8 642779354 550898367
9 63260289423 56536880923
10 8977053873043 8267519506789
11 1816846038736192 1709320029453719
12 519355571065774021 496139872875425839
13 207881393656668953041 200807248677750187825
14 115617051977054267807460 112602879608997769049739
15 88736269118586244492485121 86955243134629606109442219
16 93411113411710039565210494095 91962123875462441868790125305
17 134137950093337880672321868725846 132524871920295877733718959290203
18 261492535743634374805066126901117203 259048612476248175744581063815546423

Table 4: Numbers of labelled topologies
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[3] C. Chaunier and N. Lygerōs. The number of orders with thirteen elements. Order,
9(3):203–204, 1992.

[4] J.C. Culberson and G.J.E. Rawlins. New results from an algorithm for counting
posets. Order, 7(4):361–374, 1991.

[5] S.K. Das. A machine representation of finite T0 topologies. J. ACM, 24:676–692,
1977.

[6] M.H. El-Zahar. Enumeration of ordered sets. In J. Rival, editor, Algorithms and
Order, pages 327–352. Kluwer, Dordrecht, 1987.
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[10] N. Lygerōs and P. Zimmermann. Computation of p(14); the number of posets with
14 elements : 1.338.193.159.771.
http://www.desargues.univ-lyon1.fr/home/lygeros/poset.html.

[11] B.D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

[12] B.D. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02,
Australian National University, Department of Computer Science, 1990.
http://cs.anu.edu.au/˜bdm/nauty.

[13] B.D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms, 26:306–
324, 1998.

[14] R.H. Möhring. Algorithmic aspects of comparability graphs and interval graphs.
In Graphs and Order: The Role of Graphs in the Theory of Ordered Sets and Its
Applications, volume 147 of NATO Adv. Stud. Ser. C: Math. Phys. Sci., pages 41–
102. 1984.
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points on highest level posets
1 3
2 1
3 1

Table 5: Numbers of posets on 3
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 3
3 1

Table 6: Numbers of posets on
3 points grouped with respect to
the number of levels.

relations posets
0 1
1 1
2 2
3 1

Table 7: Numbers of posets on 3 points
grouped with respect to the number of
nontrivial relations.

x\y 1 2 3
1 1
2 1 1
3 0 0 1

Table 8: Numbers of posets on 3 points
with x minimal and y maximal points
(symmetric upper half omitted)

points on highest level posets
1 9
2 5
3 1
4 1

Table 9: Numbers of posets on 4
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 8
3 6
4 1

Table 10: Numbers of posets on
4 points grouped with respect to
the number of levels.

relations posets
0 1
1 1
2 3
3 4
4 3
5 3
6 1

Table 11: Numbers of posets on 4
points grouped with respect to the
number of nontrivial relations.

x\y 1 2 3 4
1 2
2 2 4
3 1 1 1
4 0 0 0 1

Table 12: Numbers of posets on 4
points with x minimal and y maximal
points (symmetric upper half omitted)
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points on highest level posets
1 36
2 18
3 7
4 1
5 1

Table 13: Numbers of posets on 5
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 20
3 31
4 10
5 1

Table 14: Numbers of posets on
5 points grouped with respect to
the number of levels.

relations posets
0 1
1 1
2 3
3 6
4 10
5 10
6 12
7 9
8 6
9 4
10 1

Table 15: Numbers of posets on
5 points grouped with respect
to the number of nontrivial rela-
tions.

x\y 1 2 3 4 5
1 5
2 7 12
3 3 7 4
4 1 1 1 1
5 0 0 0 0 1

Table 16: Numbers of posets on
5 points with x minimal and y
maximal points (symmetric up-
per half omitted)

points on highest level posets
1 184
2 87
3 35
4 10
5 1
6 1

Table 17: Numbers of posets on 6
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 55
3 162
4 84
5 15
6 1

Table 18: Numbers of posets on
6 points grouped with respect to
the number of levels.
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relations posets
0 1
1 1
2 3
3 7
4 16
5 25
6 36
7 43
8 46
9 44
10 35
11 28
12 17
13 10
14 5
15 1

Table 19: Numbers of posets on 6
points grouped with respect to the
number of nontrivial relations.

x\y 1 2 3 4 5 6
1 16
2 27 59
3 15 36 29
4 4 11 7 4
5 1 1 1 1 1
6 0 0 0 0 0 1

Table 20: Numbers of posets on 6
points with x minimal and y maximal
points (symmetric upper half omitted)

points on highest level posets
1 1187
2 575
3 201
4 67
5 13
6 1
7 1

Table 21: Numbers of posets on 7
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 163
3 940
4 734
5 185
6 21
7 1

Table 22: Numbers of posets on
7 points grouped with respect to
the number of levels.
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relations posets
0 1
1 1
2 3
3 7
4 18
5 38
6 74
7 113
8 167
9 209
10 243
11 249
12 239
13 204
14 168
15 123
16 83
17 54
18 29
19 15
20 6
21 1

Table 23: Numbers of posets on 7
points grouped with respect to the
number of nontrivial relations.

x\y 1 2 3 4 5 6 7
1 63
2 134 334
3 88 251 213
4 27 79 78 29
5 5 15 11 7 4
6 1 1 1 1 1 1
7 0 0 0 0 0 0 1

Table 24: Numbers of posets on 7
points with x minimal and y maximal
points (symmetric upper half omitted)

points on highest level posets
1 9752
2 4891
3 1730
4 484
5 123
6 17
7 1
8 1

Table 25: Numbers of posets on 8
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 556
3 6372
4 7305
5 2380
6 356
7 28
8 1

Table 26: Numbers of posets on
8 points grouped with respect to
the number of levels.
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relations posets
0 1
1 1
2 3
3 7
4 19
5 44
6 107
7 208
8 381
9 619
10 915
11 1219
12 1506
13 1705
14 1792
15 1767
16 1621
17 1402
18 1136
19 874
20 629
21 434
22 274
23 166
24 94
25 46
26 21
27 7
28 1

Table 27: Numbers of posets on 8
points grouped with respect to the
number of nontrivial relations.

x\y 1 2 3 4 5 6 7 8
1 318
2 814 2404
3 642 2093 2068
4 221 777 839 392
5 43 149 170 78 29
6 6 20 15 11 7 4
7 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 1

Table 28: Numbers of posets on 8
points with x minimal and y maximal
points (symmetric upper half omitted)
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points on highest level posets
1 103926
2 52185
3 20487
4 5211
5 1178
6 221
7 21
8 1
9 1

Table 29: Numbers of posets on 9
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 2222
3 52336
4 86683
5 35070
6 6259
7 623
8 36
9 1

Table 30: Numbers of posets on
9 points grouped with respect to
the number of levels.

relations posets relations posets relations posets
0 1 13 8294 26 3551
1 1 14 10921 27 2386
2 3 15 13363 28 1528
3 7 16 15419 29 939
4 19 17 16687 30 541
5 46 18 17119 31 300
6 124 19 16578 32 153
7 287 20 15309 33 69
8 636 21 13421 34 28
9 1257 22 11253 35 8
10 2311 23 8999 36 1
11 3830 24 6897
12 5891 25 5054

Table 31: Numbers of posets on 9 points grouped with respect to
the number of nontrivial relations.
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x\y 1 2 3 4 5 6 7 8 9
1 2045
2 6258 21360
3 5828 21775 24535
4 2319 9227 11518 5976
5 477 1978 2606 1472 392
6 64 253 329 170 78 29
7 7 25 20 15 11 7 4
8 1 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 1

Table 32: Numbers of posets on 9 points with x
minimal and y maximal points (symmetric upper
half omitted)

points on highest level posets
1 1441424
2 718566
3 301817
4 86274
5 15856
6 2941
7 378
8 26
9 1
10 1

Table 33: Numbers of posets on 10
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 10765
3 534741
4 1261371
5 619489
6 125597
7 14258
8 1016
9 45
10 1

Table 34: Numbers of posets on
10 points grouped with respect to
the number of levels.
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relations posets relations posets relations posets
0 1 16 90614 32 31401
1 1 17 119179 33 21414
2 3 18 148255 34 14096
3 7 19 174838 35 8974
4 19 20 196135 36 5492
5 47 21 209729 37 3240
6 130 22 214283 38 1836
7 329 23 209692 39 986
8 841 24 196824 40 506
9 1946 25 177576 41 237
10 4251 26 154148 42 99
11 8526 27 128998 43 36
12 15891 28 104101 44 9
13 27259 29 81200 45 1
14 43572 30 61145
15 64851 31 44566

Table 35: Numbers of posets on 10 points grouped with respect to
the number of nontrivial relations.

x\y 1 2 3 4 5 6 7 8 9 10
1 16999
2 60877 238134
3 66612 281051 361231
4 30698 137620 193546 115336
5 7015 32777 49981 32368 9811
6 931 4431 6913 4607 1472 392
7 90 401 581 329 170 78 29
8 8 31 25 20 15 11 7 4
9 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 1

Table 36: Numbers of posets on 10 points with x minimal and
y maximal points (symmetric upper half omitted)
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points on highest level posets
1 25927626
2 13005670
3 5561265
4 1838428
5 357724
6 50769
7 7286
8 626
9 31
10 1
11 1

Table 37: Numbers of posets on 11
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 64955
3 6915309
4 22902794
5 13452868
6 3012577
7 370057
8 29241
9 1569
10 55
11 1

Table 38: Numbers of posets on
11 points grouped with respect to
the number of levels.

relations posets relations posets relations posets
0 1 19 1190889 38 430451
1 1 20 1587016 39 300981
2 3 21 2015412 40 204974
3 7 22 2446957 41 135976
4 19 23 2844542 42 87786
5 47 24 3174558 43 55127
6 132 25 3405232 44 33614
7 346 26 3518608 45 19897
8 950 27 3505930 46 11385
9 2468 28 3374784 47 6306
10 6171 29 3141073 48 3351
11 14411 30 2831400 49 1694
12 31724 31 2473385 50 811
13 64772 32 2096755 51 353
14 123620 33 1725908 52 137
15 219868 34 1380922 53 45
16 366672 35 1074413 54 10
17 574347 36 813564 55 1
18 849968 37 599653

Table 39: Numbers of posets on 11 points grouped with respect to
the number of nontrivial relations.
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x\y 1 2 3 4 5 6 7 8 9 10 11
1 183231
2 755323 3338843
3 959941 4529404 6595603
4 514525 2561974 4033606 2722606
5 133610 693156 1182440 881608 310416
6 18836 100414 182730 144667 53123 9811
7 1686 9037 16416 12658 4607 1472 392
8 122 602 966 581 329 170 78 29
9 9 37 31 25 20 15 11 7 4
10 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 0 0 0 0 1

Table 40: Numbers of posets on 11 points with x minimal and y maximal
points (symmetric upper half omitted)

points on highest level posets
1 602712285
2 308959917
3 132633575
4 47610599
5 11295712
6 1487660
7 173235
8 17722
9 1002
10 37
11 1
12 1

Table 41: Numbers of posets on 12
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 501695
3 114388439
4 524615468
5 364407028
6 88556125
7 11417478
8 947791
9 55334
10 2320
11 66
12 1

Table 42: Numbers of posets on
12 points grouped with respect to
the number of levels.

24



relations posets relations posets relations posets
0 1 23 25468042 46 4491015
1 1 24 33157695 47 3100063
2 3 25 41495336 48 2094942
3 7 26 50008606 49 1386092
4 19 27 58130096 50 897535
5 47 28 65270723 51 568627
6 133 29 70888253 52 352196
7 352 30 74562234 53 213115
8 997 31 76042383 54 125818
9 2753 32 75275671 55 72382
10 7558 33 72402491 56 40515
11 19801 34 67726046 57 21985
12 49795 35 61666534 58 11545
13 117875 36 54699028 59 5808
14 263019 37 47302979 60 2779
15 550013 38 39908316 61 1249
16 1080422 39 32869931 62 509
17 1993865 40 26443898 63 184
18 3469819 41 20792175 64 55
19 5707944 42 15984309 65 11
20 8909624 43 12020498 66 1
21 13234277 44 8844848
22 18766663 45 6370240

Table 43: Numbers of posets on 12 points grouped with respect to
the number of nontrivial relations.

x\y 1 2 3 4 5 6 7 8 9 10 11 12
1 2567284
2 11988791 59171127
3 17501138 91355719 149736952
4 10872251 59594908 104246102 79146756
5 3259310 18541183 34850173 29246211 11991803
6 511239 2987994 6041859 5552773 2443800 510498
7 46358 276164 589070 562409 246756 53123 9811
8 2885 17170 35837 31690 12658 4607 1472 392
9 160 868 1532 966 581 329 170 78 29
10 10 44 37 31 25 20 15 11 7 4
11 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 0 0 0 0 0 1

Table 44: Numbers of posets on 12 points with x minimal and y maximal points
(symmetric upper half omitted)
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points on highest level posets
1 18079670883
2 9528171074
3 4174056737
4 1533639687
5 432497911
6 68658720
7 6466574
8 622505
9 41761
10 1555
11 43
12 1
13 1

Table 45: Numbers of posets on 13
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 5067145
3 2433814790
4 15262584657
5 12418379471
6 3235850114
7 429543249
8 36303228
9 2183161
10 98246
11 3311
12 78
13 1

Table 46: Numbers of posets on
13 points grouped with respect to
the number of levels.
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relations posets relations posets relations posets
0 1 27 651206672 54 72028601
1 1 28 840404152 55 49849120
2 3 29 1048785819 56 33906587
3 7 30 1267416540 57 22666616
4 19 31 1484925018 58 14891283
5 47 32 1688672630 59 9613263
6 133 33 1865878896 60 6096379
7 354 34 2005172954 61 3796733
8 1014 35 2097659160 62 2320757
9 2874 36 2138021170 63 1391478
10 8305 37 2124818344 64 817624
11 23513 38 2060635454 65 470396
12 65215 39 1951423800 66 264558
13 173481 40 1805816407 67 145258
14 441249 41 1633935577 68 77647
15 1062532 42 1446444433 69 40260
16 2419194 43 1253457366 70 20165
17 5194267 44 1063880995 71 9660
18 10529510 45 884825225 72 4391
19 20169973 46 721452090 73 1862
20 36606102 47 576924933 74 714
21 63090851 48 452654555 75 241
22 103573457 49 348576046 76 66
23 162384152 50 263545083 77 12
24 243809985 51 195684307 78 1
25 351390204 52 142728742
26 487237576 53 102283393

Table 47: Numbers of posets on 13 points grouped with respect to the
number of nontrivial relations.
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x\y 1 2 3 4 5 6 7 8 9 10 11 12 13
1 46749427
2 243933969 1329542918
3 404358420 2312717460 4234403325
4 289254098 1730450968 3344379685 2838730365
5 100592501 623089510 1278525949 1188998944 556049771
6 18106243 114748355 251883423 258911191 134193604 34606532
7 1785349 11506533 27062777 30261059 16566570 4225741 510498
8 106801 699238 1723805 1965720 1023681 246756 53123 9811
9 4721 30824 73235 73837 31690 12658 4607 1472 392
10 205 1210 2338 1532 966 581 329 170 78 29
11 11 51 44 37 31 25 20 15 11 7 4
12 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 48: Numbers of posets on 13 points with x minimal and y maximal points
(symmetric upper half omitted)

points on highest level posets
1 699530381610
2 377985520266
3 172661066675
4 63789361847
5 19769331324
6 4008790354
7 415426688
8 30902911
9 2280740
10 94958
11 2346
12 50
13 1
14 1

Table 49: Numbers of posets on 14
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 67997749
3 66782709433
4 566229792680
5 535118128301
6 148207017576
7 19994749859
8 1686752496
9 101215375
10 4625995
11 165626
12 4588
13 91
14 1

Table 50: Numbers of posets on
14 points grouped with respect to
the number of levels.
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relations posets relations posets relations posets
0 1 31 20075844431 62 1770675277
1 1 32 25908418088 63 1239039207
2 3 33 32478923331 64 854569812
3 7 34 39592931224 65 580970065
4 19 35 46979502004 66 389321463
5 47 36 54307727007 67 257162269
6 133 37 61211924728 68 167425100
7 355 38 67323642504 69 107425128
8 1020 39 72305442194 70 67918114
9 2921 40 75882802702 71 42302121
10 8632 41 77869195951 72 25947267
11 25486 42 78181684187 73 15667333
12 75366 43 76844939859 74 9307819
13 217990 44 73984081629 75 5436986
14 613701 45 69807866652 76 3120222
15 1659796 46 64585100397 77 1757459
16 4290662 47 58617924003 78 970342
17 10541968 48 52215061893 79 524242
18 24574810 49 45668403312 80 276596
19 54282974 50 39234427091 81 142020
20 113695015 51 33122134980 82 70684
21 226043606 52 27486947185 83 33907
22 427434085 53 22430638497 84 15527
23 770364708 54 18005406984 85 6724
24 1326574992 55 14221396017 86 2701
25 2187816296 56 11055548408 87 978
26 3463953205 57 8461181255 88 309
27 5276878418 58 6376703312 89 78
28 7750426625 59 4733381232 90 13
29 10995675430 60 3461298437 91 1
30 15093556839 61 2493875402

Table 51: Numbers of posets on 14 points grouped with respect to the number of nontrivial
relations.
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x\y 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1104891746
2 6366721037 37963016310
3 11855130462 73662811179 149465890442
4 9683027437 62734061887 133247611504 125880710785
5 3899073218 26140403808 58283416727 59464742336 31178543111
6 816935110 5593236350 13182659058 14786975028 8709276857 2708547371
7 91976607 635987406 1599205404 1984290362 1292927965 425418235 64217336
8 5830593 40709212 109572564 147387203 99998975 31204532 4225741 510498
9 233526 1658023 4668582 6313845 3896030 1023681 246756 53123 9811
10 7446 52855 141798 162566 73837 31690 12658 4607 1472 392
11 257 1642 3458 2338 1532 966 581 329 170 78 29
12 12 59 51 44 37 31 25 20 15 11 7 4
13 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 52: Numbers of posets on 14 points with x minimal and y maximal points (symmetric upper half omitted)
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points on highest level posets
1 34893120378937
2 19204949481269
3 9252156316741
4 3496443516959
5 1115013740650
6 273523272107
7 37096135865
8 2601515187
9 165063601
10 8268404
11 207920
12 3457
13 57
14 1
15 1

Table 53: Numbers of posets on 15
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 1224275497
3 2365611469711
4 26848965254249
5 29244031053807
6 8551130657200
7 1161662376301
8 96523871906
9 5664856954
10 254650419
11 9161348
12 267456
13 6201
14 105
15 1

Table 54: Numbers of posets on
15 points grouped with respect to
the number of levels.
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relations posets relations posets relations posets
0 1 36 968292512943 72 32718529348
1 1 37 1224860865896 73 22689363476
2 3 38 1511663110403 74 15543903659
3 7 39 1821590242855 75 10520260606
4 19 40 2144804502345 76 7034463466
5 47 41 2469204340113 77 4647004975
6 133 42 2781195285381 78 3032775681
7 355 43 3066670032486 79 1955278120
8 1022 44 3312121994235 80 1245196819
9 2938 45 3505735430841 81 783203830
10 8759 46 3638355413459 82 486455510
11 26352 47 3704194540655 83 298296646
12 80667 48 3701232395160 84 180536275
13 246029 49 3631243264510 85 107805875
14 743726 50 3499498739062 86 63487758
15 2196960 51 3314170353212 87 36853838
16 6293046 52 3085547401437 88 21073614
17 17331079 53 2825141576761 89 11861055
18 45677285 54 2544803900420 90 6564648
19 114772936 55 2255915243141 91 3568480
20 274516141 56 1968736493888 92 1902199
21 624577059 57 1691935910960 93 992262
22 1352399184 58 1432323100830 94 505213
23 2789759597 59 1194762477976 95 250105
24 5491144190 60 982251643492 96 119854
25 10332084297 61 796114254015 97 55229
26 18622307970 62 636275137247 98 24242
27 32218765020 63 501569106336 99 10025
28 53620482381 64 390055996001 100 3827
29 86015906434 65 299310153475 101 1312
30 133256946201 66 226671448238 102 389
31 199726182784 67 169445230529 103 91
32 290081890065 68 125051716992 104 14
33 408865932583 69 91125892656 105 1
34 559997138829 70 65575816940
35 746178128487 71 46606485237

Table 55: Numbers of posets on 15 points grouped with respect to the number of nontrivial
relations.
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x\y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 33823827452
2 213138659769 1379395251754
3 441411111230 2958162317549 6599173835521
4 407935285336 2842002522615 6598278270417 6910409836249
5 189072354434 1363910599153 3295053573741 3668501150154 2131419142311
6 46255308910 341232392927 860699630256 1039056210280 676615932644 243878724103
7 6098509077 45284694670 120298824744 160202474475 117793069283 47383620103 9694440854
8 439497398 3256278783 9217469242 13612010889 11073974378 4668660480 884807585 64217336
9 18105035 134888703 409543545 655880725 549912393 211010642 31204532 4225741 510498
10 489411 3726292 11862922 18917065 13848587 3896030 1023681 246756 53123 9811
11 11388 87200 262459 341513 162566 73837 31690 12658 4607 1472 392
12 317 2177 4986 3458 2338 1532 966 581 329 170 78 29
13 13 67 59 51 44 37 31 25 20 15 11 7 4
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 56: Numbers of posets on 15 points with x minimal and y maximal points (symmetric upper half omitted)
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points on highest level posets
1 2241667678990734
2 1248591486850771
3 634172561373830
4 251723045196005
5 80707015937796
6 21992038897136
7 3914575788228
8 343227318249
9 18053106884
10 952204516
11 29086987
12 438907
13 4977
14 65
15 1
16 1

Table 57: Numbers of posets on 16
points grouped with respect to the
number of points on the highest level.

levels posets
1 1
2 29733449509
3 108202550561783
4 1629158711278940
5 2030394404859309
6 623385524584982
7 84687296694936
8 6866110095603
9 388876221560
10 16850129605
11 589739135
12 17154919
13 416480
14 8204
15 120
16 1

Table 58: Numbers of posets on
16 points grouped with respect to
the number of levels.
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relations posets relations posets relations posets
0 1 41 55836016178502 82 920803479394
1 1 42 69912711566335 83 638663233321
2 3 43 85687690625967 84 438383565830
3 7 44 102863454246219 85 297806418975
4 19 45 121011175452828 86 200228176126
5 47 46 139584511784057 87 133240295007
6 133 47 157945973168869 88 87753807189
7 355 48 175404254305947 89 57201841370
8 1023 49 191259320332441 90 36902250854
9 2944 50 204850995061806 91 23559777068
10 8806 51 215606091115193 92 14884395519
11 26694 52 223079280730975 93 9304399446
12 82995 53 226983540149572 94 5754198387
13 260378 54 227207348359286 95 3520045581
14 822366 55 223817358905730 96 2129555791
15 2580062 56 217046992906415 97 1273789835
16 7975769 57 207272866974585 98 753082629
17 24043721 58 194982128680769 99 439910631
18 70185724 59 180734419028653 100 253790516
19 197154614 60 165122329113286 101 144526273
20 530859423 61 148733927337996 102 81191237
21 1366423376 62 132120240174366 103 44960494
22 3357919175 63 115769717435331 104 24519498
23 7875025845 64 100090696305987 105 13153589
24 17631961542 65 85402009661905 106 6931176
25 37722769048 66 71931057198939 107 3580785
26 77220026691 67 59818161377709 108 1809403
27 151480418620 68 49125643296315 109 891588
28 285258548460 69 39850014233762 110 426658
29 516616044791 70 31935695429053 111 197308
30 901468446817 71 25288952861798 112 87538
31 1518385135369 72 19790967333965 113 36906
32 2473045797606 73 15309336855707 114 14604
33 3901491671598 74 11707566302920 115 5312
34 5971161534217 75 8852415906032 116 1728
35 8878571583162 76 6619148512049 117 482
36 12842633026541 77 4894902114503 118 105
37 18092835277333 78 3580468527005 119 15
38 24852135710100 79 2590825272279 120 1
39 33315075467438 80 1854739482749
40 43622621481836 81 1313754264463

Table 59: Numbers of posets on 16 points grouped with respect to the number of nontrivial
relations.
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x\y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1338193159771
2 9146521421660 63827832364661
3 20882716706672 150031400188209 365205996831511
4 21640672903228 161115708920775 406569659513010 470098000227809
5 11454003722027 88373060271526 230738148047255 279586261548307 178772616534766
6 3260005461782 25820662747738 69697079557248 90023141662542 63691426906292 25804518119613
7 507672701692 4055581632806 11368030861207 15977859262185 12773765357901 5926433367339 1527479040250
8 43221401853 342165092735 1006867109447 1566627161192 1422328779334 738854762915 199503215876 23397419986
9 2015339894 15744151300 49366535022 85563616233 86237937130 46672289943 11264027805 884807585 64217336
10 54075336 424363585 1434411081 2708549807 2798390306 1329607443 211010642 31204532 4225741 510498
11 989872 8007478 28564679 53434156 46520033 13848587 3896030 1023681 246756 53123 9811
12 16969 139241 467444 689643 341513 162566 73837 31690 12658 4607 1472 392
13 385 2831 7026 4986 3458 2338 1532 966 581 329 170 78 29
14 14 76 67 59 51 44 37 31 25 20 15 11 7 4
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 60: Numbers of posets on 16 points with x minimal and y maximal points (symmetric upper half omitted)
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