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Abstract.

We determine the asymptotic number of labelled graphs with a given degree sequence for

the case where the maximum degree is o(|E(G)|1/3). The previously best enumeration, by the

first author, required maximum degree o(|E(G)|1/4). In particular, if k = o(n1/2), the number

of regular graphs of degree k and order n is asymptotically

(nk)!
(nk/2)! 2nk/2(k!)n

exp
(
−k2 − 1

4
− k3

12n
+ O(k2/n)

)
.

Under slightly stronger conditions, we also determine the asymptotic number of unlabelled

graphs with a given degree sequence. The method used is a switching argument recently used

by us to uniformly generate random graphs with given degree sequences.

1. Introduction.

Where it is suitable, we will use the notation of [1] or [4]. For any integer y ≥ 0, define

[x]y = x(x − 1) · · · (x − y + 1). Let k = k(n) = (k1, k2, . . . , kn) be a sequence of nonnegative

integers with even sum. Define kmax = maxn
i=1 ki and k̄ = (k1 + k2 + · · · + kn)/n. For r ≥ 0,

further define Mr = Mr(k) =
∑

i[ki]r and νr = νr(k) =
∑

i kr
i /(k̄

rn). It is easy to see

that 1 = ν0 = ν1 ≤ ν2 ≤ ν3 ≤ · · · , with the inequalities being equalities if and only if

k1 = k2 = · · · = kn. For simplicity, write M = M1.

Let G(k) be the set of all labelled simple graphs with degree sequence k, and define

G(k) = |G(k)|. We are concerned with the asymptotic value of G(k) as n → ∞. Many

authors have obtained results by restricting the growth of the maximum degree. Work prior

to [1] can be found summarised there. More recently, a completely different approach [3] has

born fruit for high degrees. Interestingly, the result in both these extreme cases can be cast

in a common form.

Theorem 1.1. Define λ = k̄/(n − 1) and γ2 = nk̄2(ν2 − 1)/(n − 1)2. Suppose that either of

the following is true:

(i) 1 ≤ kmax = o(M1/4), M →∞.
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(ii) |ki − k̄| = O(n1/2+ε) and min{k̄, n − k̄ − 1} > cn/ log n for sufficiently small ε > 0 and

any c > 2
3 .

Then

G(k) ∼
√

2
(
λλ(1− λ)1−λ

)(n
2)

n∏
i=1

(
n− 1

ki

)
exp

(1
4
− γ2

2

4λ2(1− λ)2
)
.

In this paper we will determine the asymptotic value of G(k) when kmax = o(M1/3). The

result will match Theorem 1.1 if some extra restrictions are imposed on the amount of variation

amongst the degrees. The method used closely resembles that of [1], the major improvement

being the use of switching operations which lend themselves to easier analysis. In Section 6,

we will consider the case of unlabelled graphs.

2. The model.

Consider a set of M points arranged in cells v1, v2, . . . , vn of size k1, k2, . . . , kn, respectively.

Take a partition P (called a pairing) of the M points into M/2 parts (called pairs) of size 2.

The degree of cell i is ki.

The multigraph G(P ) associated with P has vertices v1, v2, . . . , vn. The edges of G(P ) are

in correspondence with the pairs of P ; the pair (x, y) corresponds to an edge (vi, vj) if x ∈ vi

and y ∈ vj . A loop of P is a pair whose two points lie in the same vertex, while a link is

one involving two distinct vertices. Two pairs are parallel if they involve the same cells. The

multiplicity of a pair is the number of pairs (including itself) parallel to it. A single pair is a

pair of multiplicity one. A double pair is a set of two parallel pairs of multiplicity two, whilst

a triple pair is a set of three parallel pairs of multiplicity three.

If p is a point, then v(p) is the cell containing that point.

For l, d, t ≥ 0, define Cl,d,t = Cl,d,t(k) be the set of all pairings with degrees k, and exactly

l loops, d double pairs, and t triple pairs, but no loops of multiplicity greater than one nor

pairs of multiplictity greater than three.

We will make use of the following three operations on a pairing: the first two were intro-

duced in [4].

I `-switching: Take a loop {p1, p
′
1} and two links {p2, p

′
2} and {p3, p

′
3}, such that five

distinct cells are involved. Replace these three pairs by {p1, p2}, {p′1, p3} and {p′2, p′3}. It is

required that all of the pairs created or destroyed be single. (See Figure 1.)
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Figure 1. An `-switching.

II d-switching: Take a double link {{p1, p
′
1}, {p2, p

′
2}}, where v(p1) = v(p2), and two links

{p3, p
′
3} and {p4, p

′
4}, such that six distinct cells are involved. Replace these four pairs by

{p1, p3}, {p2, p4}, {p′1, p′3} and {p′2, p′4}. Other than the original double link, all of the pairs

created or destroyed must be single. (See Figure 2.)
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Figure 2. A d-switching.

III t-switching: Take a triple link {{p1, p
′
1}, {p2, p

′
2}, {p3, p

′
3}}, where v(p1) = v(p2) =

v(p3), and three other links {p4, p
′
4}, {p5, p

′
5} and {p6, p

′
6}, such that eight distinct cells are

involved. Replace these six pairs by {p1, p4}, {p2, p5}, {p3, p6}, {p′1, p′4}, {p′2, p′5} and {p′3, p′6}.
Other than the original triple link, all of the pairs created or destroyed must be single. (See

Figure 3.)

The inverse of an `-switching will be termed an inverse `-switching, and similarly with the

other switching types. Note that an `-switching reduces by one the number of loops, without

affecting the number of double or triple pairs. We will use this fact to estimate the relative

cardinalities of Cl,d,t and Cl−1,d,t. The numbers of double and triple links are similarly affected

by d-switchings and t-switchings, respectively.
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Figure 3. A t-switching.

3. Preliminary results.

Let P be a random pairing with degrees k1, k2, . . . , kn, where 1 ≤ kmax = o(M1/3). We

will begin with some elementary bounds on the probability that P has certain substructures.

The first follows from a simple count.

Lemma 3.1. The probability of t given pairs occurring in P is

[M/2]t2t

[M ]2t

≤ (M − 2t)−t.

Define P (k) to be the probability that P contains no loops, and no links of multiplic-

ity greater than one. Since each labelled simple graph with degree sequence k1, k2, . . . , kn

corresponds to exactly k1! k2! · · · kn! pairings, we have

G(k) =
M !

(M/2)! 2M/2k1! · · · kn!
P (k). (1)

Our task is thus reduced to computing P (k). We first show that we can ignore pairs of high

multiplicity, and bound the number of loops and other non-single links. Define

N1 = max
(dlog Me, d4M2/Me)

N2 = max
(dlog Me, d2M2

2 /M2e)
and

N3 = max
(dlog Me, dM2

3 /M3e).
In the following lemma, and for the remainder of the paper, the notations “O( )” and

“o( )” refer to the passage of M to infinity within the constraint that k3
max = o(M). The

implied constants will be uniform over all free variables unless otherwise stated.
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Lemma 3.2.
1

P (k)
=

(
1 + O(k3

max/M)
) N1∑

l=0

N2∑
d=0

N3∑
t=0

|Cl,d,t|
|C0,0,0|

.

Proof. By considering all the possibilities and applying Lemma 3.1, we find that the prob-

ability that P contains a loop of multiplicity greater than one is O(k3
max/M). Similarly, the

probability of a link of multiplicity greater than three is O(k6
max/M

2) = o(k3
max/M).

Consider the probability that there are more than N1 single loops. By Lemma 3.1, the

expected number of sets of l = N1 + 1 single loops is O
(
(M2/(2M))l/l!

)
= o

(
(e/8)log M

)
=

o(1/M). Similarly, the probability that there are more than N2 double links or more than N3

triple links is o(1/M). The lemma follows.

We will estimate |Cl,d,t|/|C0,0,0| via estimates on the terms of the expansion

|Cl,d,t|
|C0,0,0|

=
|Cl,d,t|
|Cl,d,t−1|

· · · |Cl,d,1|
|Cl,d,0|

|Cl,d,0|
|Cl−1,d,0|

· · · |C1,d,0|
|C0,d,0|

|C0,d,0|
|C0,d−1,0|

· · · |C0,1,0|
|C0,0,0|

.

Each of these terms can be estimated by means of one of the three switchings.

In the case of d-switchings, the analysis will be considerably more exacting, and we will

need the following result adapted from [1].

If K is a multigraph, let e(K) denote its number of edges (including loops, counting

multiplicities), and let e1(K) denote its number of loops. If xx′ is an edge of K, then µK(xx′)

denotes its multiplicity, i.e., the number of edges parallel to xx′ including itself. If K and K ′

are multigraphs with the same vertex set, then K +K ′ is the multigraph with the same vertex

set such that µK+K′(xx′) = µK(xx′) + µK′(xx′) for all {x, x′}. Similarly, 2K means K + K

and K + xx′ is K with the multiplicity of xx′ increased by one.

Let L be a graph on n vertices which is simple apart from a loop on each vertex, and

let H be a multigraph on the same vertex set with the restriction that if any edge xx′ has

µH(xx′) ≥ 1, then xx′ is an edge of L. Let lmax denote the maximum degree of L. Define

C(L,H) = C(L,H;k) to be the set of all pairings P with degrees k such that the following are

true for all {x, x′}:
(a) If xx′ is an edge of L, then µG(P )(xx′) = µH(xx′).

(b) If xx′ is not an edge of L, then µG(P )(xx′) ≤ 1.

In other words, G(P ) must be simple outside L and match H inside L.

Lemma 3.3. Suppose that L is as defined above, and H and H + J satisfy the requirements

given above for H. Let h1, h2, . . . , hn be the degrees of H, and let j1, j2, . . . , jn be the degrees

of J . Then, if kmax(kmax + lmax)e(J) = o(M), e(H) = o(M), and C(L,H) 6= ∅, we have

|C(L,H + J)|
|C(L,H)|

=

∏n
i=1[ki − hi]ji

2e1(J)+e(J)[M/2 − e(H)]e(J)

∏
{x,x′}[µH+J (xx′)]µJ (xx′)

(
1 + O

(kmax(kmax + lmax)e(J)
M

))
.
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Proof. This is a special case of the combination of Theorems 3.3 and 3.6 of [1].

We will use Lemma 3.3 to analyse the structure of C0,d,0. For a pairing P ∈ C0,d,0, let

D(P ) be the simple graph with vertices v1, v2, . . . , vn and just those edges which correspond

in position to the d double links of P .

Lemma 3.4. Let D = D(P ) for some P ∈ C0,d,0, where 0 ≤ d ≤ N2. Let S be a simple

graph on v1, v2, . . . , vn which is edge-disjoint from D. Let d1, d2, . . . , dn be the degrees of D,

s1, s2, . . . , sn be the degrees of S, and suppose that e(S)k2
max = o(M). Then the probability

that S ⊆ G(P ) when P is chosen at random from those P ∈ C0,d,0 such that D(P ) = D is

∏n
i=1[ki − 2di]si

2e(S)[M/2]e(s)
exp

(
O

(e(S)(k2
max + d)
M

))
.

Proof. The lemma is clearly true if si > ki − 2di for any i, so suppose that that is not the

case. Define the graph L which has the edges of D and S as well as a loop on each vertex.

Then, for any J ⊆ S, Lemma 3.3 tells us that

|C(L, 2D + J)|
|C(L, 2D)| = f(J),

where

f(J) =

∏n
i=1[ki − 2di]ji

2e(J)[M/2− 2d]e(J)

exp
(
O

(k2
maxe(J)

M

))
,

and j1, j2, . . . , jn are the degrees of J . Now, the required probability can be written as

f(S)∑
J⊆S f(J),

and since the denominator is 1 + O
(
e(S)k2

max/M
)
, the lemma follows.

In the following, we will find it convenient to write kv in place of ki if v = vi.

Lemma 3.5. Suppose that 0 ≤ d ≤ N2 and M2 ≥ M . Choose v ∈ {v1, v2, . . . , vn} and r ≥ 0.

Then, if P is chosen at random from C0,d,0, cell v is incident with exactly r double links with

probability Qv(r)/
∑bkv/2c

i≥0 Qv(i), where

Qv(i) =
2i[d]i[kv]2i

i!M i
2

exp
(
O

( ik2
max

M
+

i2k2
max + idkmax

M2

))
.

Proof. Suppose that D = D(P ) for some P ∈ C0,d,0, and let w be a neighbour of v in D. Let

x and x′ be distinct vertices other than v, such that xx′ is not an edge of D. Let L be the

graph with the edges of D, plus xx′, plus a loop on each vertex. Let R = D − vw, 0 ≤ α ≤ 2

and 0 ≤ β ≤ 2, and, for vertex u, let ru denote the degree of u in R. Then

|C(L, 2R + αvw + βxx′)|
|C(L, 2R)| =

fR(α, β; v,w, x, x′)
2α+βα!β! [M/2 − 2d + 2]α+β

(
1 + O

(k2
max

M

))
,
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where, by Lemma 3.3,

fR(α, β; v,w, x, x′) =




[kv − 2rv ]α[kw − 2rw]α[kx − 2rx]β [kx′ − 2rx′ ]β , if w 6∈ {x, x′},
[kv − 2rv ]α[kw − 2rw]α+β [kx′ − 2rx′ ]β , if w = x, and
[kv − 2rv ]α[kw − 2rw]α+β [kx − 2rx]β , if w = x′.

For any simple graph X, let N [X] denote the number of pairings P ∈ C0,d,0 such that

D(P ) = X. Then N [R + vw] = |C(L, 2R + 2vw) ∪ C(L, 2R + 2vw + xx′)|, and similarly for

N [R + xx′]. Thus, when N [R + vw] 6= 0,

N [R + xx′]
N [R + vw]

=
fR(0, 2; v,w, x, x′)
fR(2, 0; v,w, x, x′)

(
1 + O

(k2
max

M

))

=
[kx − 2rx]2[kx′ − 2rx′ ]2
[kv − 2rv ]2[kw − 2rw]2

(
1 + O

(k2
max

M

))
, (2)

since the terms involving fR(1, 2; v,w, x, x′) and fR(2, 1; v,w, x, x′) are small enough to be

incorporated into the error term.

Suppose 1 ≤ i ≤ bkv/2c. Define R(i) to be the set of all simple graphs on V =

{v1, v2, . . . , vn} with exactly d − 1 edges, of which exactly i − 1 are incident with v. For

R ∈ R(i), let X (R) denote the set of all distinct pairs {x, x′} such that x 6= v, x′ 6= v and xx′

is not an edge of R. Similarly, let W(R) denote the set of all w ∈ V such that w 6= v and vw

is not an edge of R.

If ni denotes the number of pairings P ∈ C0,d,0 such that exactly i double links are incident

with v, then

ni−1 =
1

d− i + 1

∑
R∈R(i)

∑
xx′∈X (R)

N [R + xx′]

and

ni =
1
i

∑
R∈R(i)

∑
w∈W(R)

N [R + vw].

From (2) we find that, for any w and R ∈ R(i) for which the denominator is non-zero,∑
xx′∈X (R) N [R + xx′]

N [R + vw]
=

M2
2

2[kv − 2rv]2[kw − 2rw]2

(
1 + O

(k2
max

M
+

dkmax + k2
max

M2

))
.

(To see this, express the numerator as a sum over all ordered pairs xx′ ∈ V × V and subtract

those not in X (R).) We can sum over w in a similar way to obtain, for any R ∈ R(i) for

which the denominator is non-zero,∑
xx′∈X (R) N [R + xx′]∑
w∈W(R) N [R + vw]

=
M2

2[kv − 2(i− 1)]2

(
1 + O

(k2
max

M
+

ik2
max + dkmax

M2

))
.

(Note that for M sufficiently large, both the numerator and denominator must be non-zero

since d = o(M2/3).) Since this is uniform over R, we conclude that

ni

ni−1

=
2(d− i + 1)[kv − 2(i− 1)]2

iM2

(
1 + O

(k2
max

M
+

ik2
max + dkmax

M2

))
.

Identifying nr/n0 as the quantity Qv(r), we now obtain the lemma on taking the product

over i.

7



4. Analysis of the switchings.

We now analyse each of the switching types in turn, under the assumptions of Section 3.

Lemma 4.1. Suppose 0 ≤ l ≤ N1, 0 ≤ d ≤ N2 and 1 ≤ t ≤ N3. Then, if M3 > 0,

|Cl,d,t|
|Cl,d,t−1|

=
M2

3

12tM3

(
1 + O

(k2
max(k2

max + l + d + t)
M3

))
.

Proof. To simplify the consideration of equivalences, we will consider each of the points

involved in the t-switching to be separately labelled (with the labels pi and p′i used above in

the definition of a t-switching).

Choose an arbitrary P ∈ Cl,d,t, and let N = N(P ) be the number of t-switchings which

can be applied to P . We can choose a triple link and its labelling in 12t ways, and choose

three distinct labelled single links {p4, p
′
4}, {p5, p

′
5} and {p6, p

′
6} in [M − 2l − 4d− 6t]3 ways.

Of these choices, some are not satisfactory. Unwanted coincidences like v(p1) = v(p4) ac-

count for O(tkmaxM
2) choices , while those like v(p4) = v(p5) account for O(tMM2). The

forbidden cases where, for example, P already has a pair involving v(p1) and v(p4) account

for O(tk2
maxM

2). Overall, we find that

N = 12tM3
(
1 + O

(k2
max + l + d + t

M

))
.

Now choose an arbitrary P ′ ∈ Cl,d,t−1, and let N ′ = N ′(P ) be the number of inverse

t-switchings which can be applied to it. We can choose two distinct 3-stars in [M3]2 ways. Of

these choices, we must eliminate those not permitted. Unwanted coincidences, like v(p1) =

v(p′1), v(p4) = v(p′5) or v(p4) = v(p′1) account for O(k3
maxM3) choices. Cases where P ′ already

has a pair involving v(p1) and v(p′1) or v(p4) and v(p′4), for example, account for O(k4
maxM3)

choices. Finally, cases where either of the 3-stars include loops or non-single pairs account for

O
(
k2

max(l + d + t)M3) choices. Overall, we find that

N ′ = M2
3

(
1 + O

(k2
max(k2

max + l + d + t)
M3

))
.

The error term for N ′ dominates that for N , so the lemma follows on considering the

ratio N ′/N .

Lemma 4.2. Suppose 1 ≤ l ≤ N1 and 0 ≤ d ≤ N2. Then

|Cl,d,0|
|Cl−1,d,0|

=
M2

2lM

(
1 + O

(k2
max

M
+

kmaxd + k2
maxl

M2

))
.

Proof. We use the same method as for Lemma 4.1.

Let P be an arbitrary member of Cl,d,0, and let N = N(P ) be the number of `-switchings

which can be applied to it. We can choose and label the loop in 2l ways, then choose two
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single labelled links in [M−2l−4d]2 ways. This overcount needs to be corrected for unwanted

coincidences like v(p1) = v(p2) (O(lkmaxM) choices), and unwanted adjacencies like a pair

involving v(p1) and v(p2) (O(lk2
maxM)). Thus,

N = 2lM2
(
1 + O

(k2
max + l + d

M

))
.

Conversely, let P ′ be an arbitrary member of Cl−1,d,0, and let N ′ = N ′(P ) be the number

of inverse `-switchings which can be applied to it. We can choose the 2-star in M2 and

{p′2, p′3} in M ways. This overcount needs to be corrected for unwanted coincidences like

v(p2) = v(p′2) (O(kmaxM2) choices), unwanted adjacencies like a pair involving v(p2) and

v(p′2) (O(lk2
maxM + k2

maxM2) choices), and unwanted involvement of loops or non-single pairs

(O((l + d)kmaxM) choices). Thus

N ′ = MM2

(
1 + O

(k2
max

M
+

kmaxd + k2
maxl

M2

))
.

The lemma now follows on comparing N to N ′.

Lemma 4.3. Suppose 1 ≤ d ≤ N2. Then, if M2 > 0,

|C0,d,0|
|C0,d−1,0|

=
M2

2

4dM2

(
1 + O

(kmax(k
2
max + d)

M2

))
.

Proof. This can be proved by precisely the same method used for the previous two lemmas.

Details can be found in [4].

Whilst we will use Lemma 4.3 in one special case, it is not sufficiently accurate for us in

general. The reason is that the number of double links in a random pairing is in general much

higher than the numbers of loops or triple links. However, Lemma 4.3 is the best that can

be done using uniform counts over arbitrary members of C0,d,0 and C0,d−1,0. In order to do

better, we need to consider averages over C0,d,0 and C0,d−1,0.

Lemma 4.4. Suppose 1 ≤ d ≤ N2 and M2 ≥ M . Then

|C0,d,0|
|C0,d−1,0|

=
M2

2

4dM2

(
1 +

4M3

M2
+

8d
M

− M2
3

MM2
2

− 2M2
2

M3
− 16dM3

M2
2

+ O
(k2

max + d

M2

))
.

Proof. Define N to be the average number of possible d-switchings, where the average is over

all P ∈ C0,d,0. We can choose {p1, p
′
1, p2, p

′
2} in 4d ways and then {p3, p

′
3, p4, p

′
4} in at most

[M−4]2 ways. This gives us the initial overcount N ≤ N∗ = 4d[M−4]2 = 4dM2
(
1+O(1/M)

)
.

However, some of these choices are not legal. We can divide the set of illegal choices into three

families:

X1: These are choices involving too few vertices, for example if v(p1) = v(p3) or v(p3) = v(p′4).

X2: These are the choices for which the pairing already has a link involving v(p1) and v(p3)

or the three other similar cases. However, we exclude any choice which belongs to X1.
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X3: These are choices for which either {p3, p
′
3} or {p4, p

′
4} has multiplicity two. However, we

exclude any choice which belongs to X1.

In each of these three cases, we will consider the probability that randomly choosing one of the

N∗ possibilities described above gives that case, where the probability is taken over random P .

We will also bound the probability that X2 and X3 occur together.

Case X1: The probabilty of landing in X1 is easily seen to be at most O(kmax/M), by just

counting the cases.

Case X2: Let Pi (i = 1, 2) be the probability that there is a pair {x, x′} of multiplicity i such

that v(x) = v(p1) and v(x′) = v(p3). Note that our conditions on d, kmax, M and M2 imply

that dk2
max/M2 = o(1). From Lemma 3.5, the expected number of pairs of adjacent double

links is O(d2M4/M
2
2 ) = O(d2k2

max/M2). Allowing kmax for the choices of p′3 and M for the

choice of {p4, p
′
4}, we find that P2 = O

(
dk3

max/(MM2)
)

= O(kmax/M).

P1 is more involved. For any choice of D(P ), p1, p′1, p2 and p′2, there are on average

M2(kv − 2r)
(
1 + O

(k2
max

M
+

dkmax

M2

))

choices for p3, p′3, p4 and p′4, where v = v(p1) and r is the number of double links incident

with v. This follows from Lemma 3.4 on summing over all the possibilities. If K denotes the

expected number of configurations included in the value of P1, then by Lemma 3.5,

K = 2M2

(
1 + O

(k2
max

M
+

dkmax

M2

)) ∑
v

∑
r≥1

r(kv − 2r)
Qv(r)∑
i≥0 Qv(i)

= 4d
(
1 + O

(k2
max

M
+

dkmax

M2

)) ∑
v

[kv ]3

∑
i≥0 Sv(i)∑
i≥0 Qv(i)

,

where

Sv(i) =
2i[d− 1]i[kv − 3]2i

i!M i
2

exp
(
O

( ik2
max

M
+

i2k2
max + idkmax

M2

))
.

Since
∑

i≥0 Qv(i) ≥ 1,
∑

i≥0 Sv(i)∑
i≥0 Qv(i)

= 1 + O
(∑

i≥0

(Qv(i)− Sv(i))
)
.

Using the inequality |ex − 1| < |x|e|x|, we find that

Qv(i)− Sv(i) =
2i[d− 1]i−1[kv − 3]2i−3

i!M i
2

O
(
eO(z)(ik3

v + dik2
v + dk3

vz)
)
,

where z = ik2
max/M +(i2k2

max + idkmax)/M2. Hence the terms of the series
∑

i≥1

(
Qv(i)−Sv(i)

)
are bounded in magnitude by those of a geometric series with ratio o(1), and thus by a constant

multiple of the bound on the first term, that is by O
(
kmax(kmax + d)/M2). Overall, we find

that

P1 =
M3

M2
+ O

(kmax

M
+

dk2
max

M2

)
.
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Any two of the eight events counted in X2 (single or double link in any of four positions) occur

together with probability O(kmax/M), so altogether we find that X2 occurs with probability

4M3

M2
+ O

(kmax

M

)
.

Case X3: With the help of Lemmas 3.4 and 3.5, a routine calculation gives the probability

of this case as 8d/M + O(kmax/M).

Events X2 and X3 occur together with probability O(kmax/M), by similar reasoning. Thus

we have altogether that

N = 4dM2
(
1− 4M3

M2
− 8d

M
+ O

(kmax

M

))
.

Conversely, define N ′ to be the average number of possible inverse d-switchings, where

the average is over all P ∈ C0,d−1,0. For each choice of v = v(p1), there are at most [kv ]2 ways

to choose p1 and p2. A similar bound holds for v(p′1), and so we an initial overcount N ′ ≤ M2
2 .

However, some of these choices are not legal and, as before, we divide these into a number of

cases:

Y1: These are choices involving too few vertices, for example v(p1) = v(p′1) or v(p3) = v(p′3).

Y2: These are choices where there is already a link involving v(p1) and v(p′1), excluding any-

thing in Case Y1.

Y3: These are choices where there is already a link involving v(p3) and v(p′3), or v(p4) and

v(p′4). Again, we exclude anything in case Y1.

Y4: These are choices for which one or more of the pairs chosen have multiplicity two, except

any choice in case Y1.

These four cases can be analysed using the same method used for X1–X3. For cases Y2

and Y3, we can simply sum over all the possibilities using Lemma 3.4. For Case Y4, we need

Lemma 3.5. We will merely state the probability in each case, leaving the details to the reader.

Case Y1: O
(k2

max

M2

)
.

Case Y2:
M2

3

MM2
2

+ O
(k2

max

M2

)
.

Case Y3:
2M2

2

M3
+ O

(k2
max

M2

)
.

Case Y4:
16dM3

M2
2

+ O
( d

M2

)
.

The conjunction of any two of these cases gives no new error terms, so overall we have

N ′ = M2
2

(
1− M2

3

MM2
2

− 2M2
2

M3
− 16dM3

M2
2

+ O
(k2

max + d

M2

))
.

The lemma now follows on comparing N to N ′.
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5. Consolidation.

With the aid of the lemmas in Section 4, we can now apply Lemma 3.2 to estimate P (k).

As before, we assume that 1 ≤ k3
max = o(M).

Lemma 5.1.

P (k) = exp
(
−M2

2M
− M2

2

4M2
− M2

2 M3

2M4
+

M4
2

4M5
+

M2
3

6M3
+ O

(k3
max

M

))
.

Proof. Let 0 ≤ l ≤ N1, 0 ≤ d ≤ N2 and 0 ≤ t ≤ N3.

If M3 = 0, then clearly |Cl,d,t| = 0 if t > 0. Suppose instead that M3 > 0. By Lemma 4.1,

|Cl,d,t|
|Cl,d,0|

=
M2t

3

12tt!M3t
exp

(
O

( tk2
max(k2

max + l + d) + t2k2
max

M3

))
.

Summing over t, we obtain

N3∑
t=0

|Cl,d,t|
|Cl,d,0|

= exp
( M2

3

12M3
+ O

(kmax(k2
max + l + d)
M

))
, (3)

which just happens to be true also for M3 = 0.

Similarly, from Lemma 4.2, we have

|Cl,d,0|
|C0,d,0|

=
M l

2

2ll!M l
exp

(
O

( lk2
max

M
+

lkmaxd + k2
maxl

2

M2

))
.

Combining this with (3) and summing over l, we obtain

N1∑
l=0

N3∑
t=0

|Cl,d,t|
|C0,d,0|

= exp
( M2

3

12M3
+

M2

2M
+ O

(kmax(k
2
max + d)
M

))
. (4)

Now suppose that M2 ≥ M . From Lemma 4.4, we have that

|C0,d,0|
|C0,0,0|

=
M2d

2

4dd!M2d
exp

(4dM3

M2
+

4d2

M
− dM2

3

MM2
2

− 2dM2
2

M3
− 8d2M3

M2
2

+ O
(d(k2

max + d)
M2

))
.

Combining this with (4) and summing over d with the help of the approximation d2 ≈
dM2

2 /(4M2), we obtain

N2∑
d=0

N1∑
l=0

N3∑
t=0

|Cl,d,t|
|C0,0,0|

= exp
( M2

2M
+

M2
2

4M2
+

M2
2 M3

2M4
− M4

2

4M5
− M2

3

6M3
+ O

(k3
max

M

))
. (5)

In the case where 0 < M2 < M , Lemma 4.3 gives the same result to within the same error.

In the trivial case M2 = 0 (which implies M3 = 0) Equation (5) again holds.

The desired estimate now follows from Lemma 3.2.

We now have the result we have been seeking.
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Theorem 5.2. If 1 ≤ kmax = o(M1/3), then

G(k) =
M !

(M/2)! 2M/2k1! · · · kn!
exp

(
−M2

2M
− M2

2

4M2
− M2

2 M3

2M4
+

M4
2

4M5
+

M2
3

6M3
+ O

(k3
max

M

))

=
M !

(M/2)! 2M/2k1! · · · kn!
exp

(
− k̄2ν2

2 − 1
4

− k̄3(6ν2
2ν3 − 3ν4

2 − 2ν2
3 )

12n
+ O

(k3
max

M

))
,

uniformly as M →∞.

Proof. The first expression follows from Lemma 5.1 and Equation (1), and the second from

the first using the simple bound k̄ν2 = O(kmax).

Corollary 5.3. If 1 ≤ k = o(n1/2), the number of labelled regular graphs of degree k and

order n is asymptotically

(nk)!
(nk/2)! 2nk/2(k!)n

exp
(
−k2 − 1

4
− k3

12n
+ O(k2/n)

)

as n →∞.

Corollary 5.4. Define kmin = minn
i=1 ki. Then Theorem 1.1 holds in the additional case

(iii) 1 ≤ kmax = o(M1/3) and |kmax − kmin| = o
(
min(n1/8k̄5/8, n1/6k̄1/2)

)
.

Proof. For kmax = o(M1/3), the estimate of G(k) in Theorem 1.1 can be expanded as

M !
(M/2)! 2M/2k1! · · · kn!

exp
(
− k̄2ν2

2 − 1
4

− k̄3(5 + 2ν3 + 6ν2
2 − 12ν2)

12n
+ O

(k3
max

M

))
.

Since ν2 = 1 + σ2 and ν3 = 1 + 3σ2 + σ3, where σr = 1
n

∑n
i=1(ki/k̄ − 1)r, we find that

Theorem 1.1 holds provided

k̄3(6σ3
2 + 6σ2

2σ3 − 3σ4
2 − 2σ2

3)
n

= o(1).

Since |σr| ≤ ((kmax − kmin)/k̄)r, the claim follows after a routine calculation.

Corollary 5.4 adds additional support to the following conjecture, which first appeared

in [3]. In fact, for kmax = o(M1/3) we can take ε = 1/8.

Conjecture. There is some absolute constant ε > 0 such that the conclusion of Theo-

rem 1.1 holds whenever 0 < k̄ < n − 1, |kmax − kmin| = o
(
nε min{k̄, n − k̄ − 1}1/2

)
and

min{M,
(
n
2

)−M} → ∞ as n →∞.

6. Unlabelled graphs.

Under some additional constraints, Theorem 5.2 can be applied to estimate the number

of unlabelled graphs with a given degree sequence.
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Theorem 6.1. Let k be a graphical degree sequence with no entries of value 0, n1 entries

of value 1, and n2 entries of value 2. Then, under any one of the following conditions, the

number of unlabelled simple graphs with degree sequence k is asymptotically G(k)/n!.

(i) n1 = O(n1/3), n2 = O(n2/3), and kmax ≤ 1
3

log n/ log log n;

(ii) kmin ≥ 4 and kmax = o(k̄1/2n1/12);

(iii) kmin ≥ 5 and kmax = o(k̄1/2n2/15);

(iv) kmin ≥ 6 and kmax = o(k̄1/2n1/4−1/(2kmin)).

Proof. Under each of the conditions given, a slight weakening of Theorem 2.4 and Corol-

lary 3.4 of [2] shows that the expected number of non-trivial automorphisms of a random

member of G(k) is o(1), which implies the theorem.

Note that Theorem 6.1 covers the case of regular graphs of degree k for all k = k(n) such

that 3 ≤ k = o(n1/2).
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