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Abstract 
It appears that no NC algorithms have previ- 
ously appeared for testing a directed graph for 
k-edge connectivity or k-vertex connectivity, even 
for fixed k > 1. Using an elementary flow method 
we give such algorithms, with time complexity 
O(k1ogn) using nP(n,m) or (n+k2)P(n,m) pro- 
cessors, respectively. Here, n is the number of 
vertices, m is the number of edges, P(n,m) is the 
number of processors needed to find some path in 
time O(1og n) time between two specified vertices 
in a directed graph with O(n)  vertices and O(m)  
edges, and the computation model is a CRCW 
PRAM. These algorithms of course apply also to 
undirected graphs, but using sparse certificates we 
can improve the factors P(n,m) to P(n,kn) for 
both types of connectivity. This is better in time 
by a factor of O ( k )  over previous algorithms for 
undirected graphs. We also note that edge con- 
nectivity is NC-reducible to vertex connectivity 
even if k is not fixed. 

Keywords: k-edge connectivity, k-vertex con- 
nectivity, parallel algorithms, disjoint-paths, 
graph problems. 

1 Introduction 
Connectivity of graphs (vertex connectivity as 
well as edge connectivity) is considered to be one 
of the classic subjects in graph theory, and has 
many practical applications, e.g., in reliability of 
communication networks, chip and circuit design, 
and cluster analysis. Designing efficient parallel 
algorithms for testing graph connectivity is clearly 
a basic problem in parallel computation. In this 
paper we present parallel algorithms for vertex 
and edge connectivity for each of directed and 
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undirected graphs. In all four cases our algorithms 
have better theoretical complexity than previously 
published algorithms. 

The model of parallel computation used here 
is that of a concurrent read and concurrent write 
parallel random access machine (CRCW PRAM). 
In this model, simultaneous access by more than 
one processor to the same memory location for 
both read and write is allowed. In the event that 
several processors attempt to write to the same 
memory location simultaneously, an arbitrary one 
succeeds. 

We will write our complexity measures in terms 
of three basic quantities. P(n,m) is the number 
of processors needed to find a directed path in 
time O(1ogn) between two specified vertices in 
a directed graph with O(n) vertices and O(m) 
edges. Secondly, T(n,m) is the number of pro- 
cessors needed to determine the set of vertices 
reachable from a specified vertex in a directed 
graph with O(n) vertices and O(m)  edges, in time 
O(1ogn). The current best results for P(n,m) 
and T(n,m) are both n2.37e, using matrix mul- 
tiplication [3]. Finally, C(n,m) is the number of 
processors needed to find the connected compo- 
nents of an undirected graph with n vertices and 
m edges in time O(1ogn). In this case the current 
best result is C(n,m) = (n + m)a(n,m)/logn, 
where a(n, m) is a functional inverse of Adterman- 
n's function [2]. 

First consider the case of directed graphs. To 
our knowledge, there are no published NC algo- 
rithms for k-vertex connectivity or k-edge connec- 
tivity for any k except k = 1. (An NC algorithm 
is one which takes time O(logCn) for some con- 
stant c using a polynomial number of processors.) 
We give algorithms taking time O(k log n), using 
nP(n, m) processors in the case of edge connectiv- 
ity, and (n + kz)P(n,  m) processors in the case of 
vertex connectivity. These algorithms use simple 
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implementations of the Ford-Fulkerson network 
flow algorithm. In the case where the connectivity 
is less than k, we also find separating sets within 
the same time bound. The best deterministic se- 
quential algorithm for the edgeconnectivity is due 
to Gabow [6] and takes time O(Amlog(n2/m)) us- 
ing a matroid approach. Here, X is the value of 
the edge connectivity. 

Next consider the case of undirected graphs. 
Khuller and Schieber [7] present algorithms for 
k-edge connectivity and k-vertex connectivity us- 
ing time O(k’1ogn). The required number of 
processors is nkC(n, m) and (nk + k3)C(n,m), 
respectively. The number of processors needed 
in the latter case was recently reduced to (nk + 
k3)C(n, nk) by Cheriyan, Kao and Thurimella [I], 
using a sparse certificate technique. Our algo- 
rithms improve the time requirement to O(k logn) 
at some expense to the number of processors. 
Clearly, if an undirected edge is considered to be a 
pair of oppositely directed edges, our algorithms 
for directed graphs can be used with the same 
complexity. By using sparse certificates we can 
reduce the number of processors to nP(n,nk) for 
edge connectivity and (n + k2)P(n,  nk) for vertex 
connectivity. The best deterministic sequential al- 
gorithm for vertex connectivity takes time O(nm) 
for fixed IC (Even 141). For edge connectivity, the 
above mentioned algorithm of Gabow can be used, 
but for some values of the parameters one of the 
two algorithms of Matula [8] is better, as they use 
time O(nm) and O(An2) respectively. 

We also show that the k-edge connectivity prob- 
lem is NC-reducible to the k-vertex connectivity 
problem for both undirected graphs and directed 
graphs, with k arbitrary. Therefore, if the solu- 
tion for the k-vertex connectivity problem is in 
NC, then the k-edge connectivity problem is also 
in NC. 

The paper is organized as follows. In Section 2 
we give our algorithms for directed graphs, and in 
Section 3 we give our improvements for undirected 
graphs. In Section 4 we discuss the NC-reduction 
of edge connectivity to vertex connectivity. 

2 Directed graphs 

Let G(V, E) be a directed graph with IV( = n and 
IEl = m. Multiple edges will not be allowed, but 
could be incorporated without much effort. We 
will use (i ,j)  to represent a directed edge from i 
to j .  

Let s and t be distinct vertices in G that are not 

connected by an edge. An s-t uertez sepamtor is 
a subset S C V-{s, t}, such that every path from 
s to t contains at least one vertex from S.  Defme 
N ( s ,  t) to be the minimum cardinality of an s-t 
vertex separator. By Menger’s Theorem, N ( s ,  t )  
is also the maximum number of vertex disjoint 
paths from s to t. The uertez connectivity n(G) 
of G is defined to be n(G) = min{N(s, t )  1 s, t E 
v, # t ,  (s, t )  4 E}. 

Similarly, let s and t be distinct vertices of 
G and define an s-t edge sepamtor to be a set 
Q E E such that every path from s to t uses 
at least one edge in Q. Define M ( s , t )  to be the 
minimum cardinality of an s-t edge separator. 
By Menger’s Theorem, M ( s ,  t) is also the max- 
imum number of edge disjoint paths from s to  
t .  The edge connectivity of G is defined to be 
X(G) = min{M(s,t) I s , t  E V,s # t}. 

Our fundamental approach will be the use of 
network flows to find disjoint paths. Consider 
the directed graph G(V,E) to be a 0-1 network 
in which the capacity of each edge is one. Sup- 
pose G carries some 0-1 legalp-t flow t. Define 
the auxiliary directed graph G = G(V,E) as fol- 
lows: For each distinct u,v E V, (u,v)  E E if 
and only if either (u,u) E E and f(u,u) = 0, or 
(v, U) E E and f(u, U) = 1. Note that G is similar 
to the “residue network” of G and f, but has only 
edges of capacity one. It is still true that paths in 
6 are augmenting paths in G. 

Theorem 2.1. The-flow f is a maximum s-t flow 
in G if and only if G has no directed s-t paths, 
Proof. See Chapter 6 in 151. 0 

This theorem implies an algorithm for finding 
an s- t  flow of total value k, or proving there is 
none. The details are as follows. 

Lemma 2.2. Given a 0-1 network G(V,E) and 
s, t E V, testing whether the value of the flow from 
s to t is no less than k can be done in O(k1ogn) 
time with P(n,m) processors. 
Proof. The construction of G can be done in 
O(1ogn) time using (m + n ) / l o g n  processors. 
Finding an s-t path requires O(1ogn) time and 
P(n,m) processors. The updating of P can be 
finished in O(1ogn) time using O(kn) processors, 
as follows: firstly we sort the edges in P by their 
key ( u , ~ ) ,  which costs O(1ogn) time and O(kn) 
processors because (PI 5 kn. Then for each edge 
(u,v)  E P’, we look up the sorted list on P by 
binary searching to see whether (v,u) is in P. If 
it does, delete edges (u,u)  and (v ,u)  from these 
two lists, respectively. This step requires O(logn) 
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Procedure Rozu(G, k , i , s , t ) ;  
/* P is the set of edges with flow 1; and i is actual flow value */ 

Initialize P := 0; 
for i : = O  t o  k d o  

Form e= G(V,E), whereE:= ( E - P ) U { ( u , u )  I ( u , u ) ~ P } ;  
If there is no directed s-t path P' in G, re turn FAIL; 
E l s e P : = P U P ' - { ( u , u ) , ( u , u )  I ( u , u ) E P a n d ( u , u ) E P ' }  

endfor 
re turn P. 

time and O(n) processors because lP'l 5 n. The 
remaining elements in these two lists are merged 
into a new list P. 0 

Lemma 2.3.  If algorithm Flow fails because the 
maximum flow is k' < k, an edge separator of size 
k' can be found using an additional amount of 
O(1og n) time and max{m, T(n ,  m)}-processors. 
Proof. Consider the final value of G constructed 
by the algorithm. In time O(1ogn) using T(n,m) 
processors, compute the set W of vertices reach- 
able from s in G. Then, by standard flow theory, 
Q = { ( u , u )  E E I U E W,u 4 W} is an edge 
separator of size k'. 0 

Theorem 2.4. There is an algorithm to test 
whether a directed graph is k-edge connected, and 
if not to find an edge separator of size less than k. 
The running time is O(k log n) and the number of 
processors is nP(n,m). 
Proof. Let V = {v1,v2 ,... ,vn}. By a theo- 
rem of Schnorr [lo], the edge connectivity of G 
is X(G) = min{M(v;,v,+l) I 1 5 i 5 n},  where 
u,+1 = V I .  We can use procedure Flow to test 
in parallel if the n associated flow problems all 
have solution at  least k. If one does not, we can 
find an edge separator as described in Lemma 2.3. 
Obviously max{m,T(n,m)} = O(nP(n,m)), so 
nP(n,m) processors will suffice. 0 

We now consider vertex connectivity for di- 
rected graphs. The following lemma was inspired 
by a similar lemma of Even [4] for undirected 
graphs. 

Lemma 2.5. Suppose V = { v l ,u2 , .  . . ,un}. D e  
fine two auxiliary directed graphs G' = G( V', E') 
and G" = G(V",E") as follows. V' = V" = 
V U (2); E' = E U {(.qui) I 1 5 i 5 k}; 
E" = E U {(vi,%) I 1 5 i 5 k}. Then K(G) 2 k if 
and only if N(u;,u,)  2 k in G for 1 5 i # j 5 k, 
N ( z , u j )  2 k in G' for k + 1 5 j 5 n, and 

N(u,, z )  2 k in G" for k + 1 5 j 5 n. 
Proof. If K(G) < k, then we can partition V 
into non-empty subsets V = S U W U T such that 
IWI < k and W is an s-t vertex separator for 
any S E s and t E T. If v k  = { V i , t ~ o  ,... , ~ k }  
intersects both S and T, we have N(s ,  t) < IC in 
Gfor any S E S n  Vk, t E Tn Vk. If v k  S U  W ,  
N ( z ,  t) < k in G' for any t E T-Vk. If v k  E WUT, 
N ( s ,  z )  < k in G" for any s E S - vi. 0. 

In order to apply Lemma 2.5 we use the stan- 
dard method for finding vertex-disjoint paths with 
the help of flows. Define the auxiliary directed 
graph E - = G(T,E), where 7 = {u',u" I U E E}, 
and E =  { (u ' ,ur f )  I U E V}U((~",u'),(u'',u')} 
I (%U) E E) .  

Lemma 2.6. For any distinct vertices s , t  E G, 
the maximum number of vertex-disjoint s-t paths 
in G equals the maximum number of edge-disjoint 
s"-t' paths in E. 
Proof. See Chapters 5 and 6 in [5]. 0 

Theorem 2.7. There is an algorithm to test 
whether a directed graph is k-vertex connected, 
and if not to find a vertex separator of size less 
than k. The running time is O(k1ogn) and the 
number of processors is (n + kz)P(n,m) .  
Proof. The k(k - 1) + 2(n - IC) disjoint path 
problems defined in Lemma 2.5 can be solved in 
parallel using Lemma 2.6. We can form the three 
networks in 0(1) time using m + n processors 
and solve the flow problems in O(k1og n) time us- 
ing P(n, m) processors each, with procedure Flow. 
Since obviously m + n = O(nP(n,m)), the total 
number of processors required is (n+ kz)P(n,m).  

If all the flows have value at least k, we know 
that G is k-vertex connected. Otherwise it is 
easy to find a small vertex separator. Suppose 
G' = G(V',E') is the network with N(s",t') < 
k. Let W' be the_set of vertices reachable from 
s" in G ( V , E ;  U E), where E; is the subset of 
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E' con_sisting of edges of the form ( u " , ~ ' ) ,  and 
G(V*, E) is the final graph G made by procedure 
How. Then the set of all vertices U E V such that 
U' E W' and U'' $! W' is an s--t vertex separa- 
tor in G with size less than k. Finding it with 
the same number of processors in O(1ogn) time is 
easy. 

3 Undirected graphs 
An undirected graph can be considered as a di- 
rected graph in which the edges come in pairs 
( u , ~ ) ,  (v ,u ) .  Under that interpretation it is easy 
to see that the definitions of connectivity and 
separators given in the previous section corre- 
spond to the normal definitions given for undi- 
rected graphs. Consequentially, Theorems 2.4 and 
2.7 apply equally to undirected graphs. However, 
we can reduce the required number of processors 
by using %parse certificates". 

Throughout this section, G(V,E) is an undi- 
rected graph with (VI = n and (El = m. A sparse 
Certificate for k-uertez connectivity is a subgraph 
H of G that has O(kn)  edges and such that every 
vertex separator of size less than k in H is also 
a vertex separator in G. A sparse certificate for 
k-edge connectivity is defined similarly. 

Now we recall a search technique on undirected 
graphs called scan-first search, due to Cheriyan, 
Kao and Thurimella [I]. Vertices are initially "un- 
marked". Then the following rules are applied re- 
peatedly until all vertices are marked: 
(i) If there is a marked vertex U with at least 
one unmarked neighbour, mark all the unmarked 
neighbours w of U ;  
(ii) If there is no such U ,  mark an unmarked ver- 
tex. 
The edges { v , w }  encountered in step (i) form a 
maximal spanning forest of G. 

Define Eo = E ,  and let 8; be the edges of 
a scan-fist spanning forest of G(V,E - E1 - 
... - Ei-1) for i = 1,. . . , I C .  Then define Gk = 
G(V,E,UEzU.. .UEk) . 
Lemma 3.1. Gk is a sparse certificate for both 
k-vertex connectivity and k-edge connectivity. 
Proof. For edge connectivity, this was proved 
in [7] and [9]; in fact we can use any maximal 
spanning forests, not necessarily scan-fist. For 
vertex connectivity, this lemma was proved in 111. 

Lemma 3.2. [l]. A scan-first search spanning 
forest of G can be found in O(1ogn) time using 
C(n,m) processors. 

Therefore, we have 

Theorem 3.3. Given an undirected graph 
G(V,E) ,  a k-vertex sparse certificate and k-edge 
sparse certificate can be found in O(k1ogn) time 
using C(n,m) processors. 
Proof. This follows immediately from the pre- 
ceding two lemmas. 0 

Theorem 3.4. There is an algorithm to test 
whether an undirected graph is k-edge connected, 
and if not to find an edge separator of size less 
than k. The running time is O(k1ogn) and the 
number of processors is nP(n,nk). 
Proof. Find a sparse certificate for k- 
edge connectivity, and test it as in Theorem 
2.4. The required number of processors is 
mw{C(n,m),nP(n,nk)}. However, as indi- 
cated in the introduction, C(n,m) = O ( ( n  + 
m)a(n,m)/logn) and also dearly P(n,nk)  = 
R(nk/logn). Hence the term nP(n,nk)  domi- 
nates. 0 

Theorem 3.5. There is an algorithm to test 
whether an undirected graph is k-vertex con- 
nected, and if not to find a vertex separator of 
size less than k. The running time is O(k1ogn) 
and the number of processors is (n + k2)P(n, nk). 
Proof. Use the same approach as for Theorem 
3.4. 0 

4 NC reduction of edge con- 
nectivity to vertex connec- 
t ivity 

Given the results in the previous sections, we 
know that k-edge and k-vertex connectivity are 
in NC for k = O(log"n), where c is any constant. 
The situation for arbitrary k = k(n) remains un- 
solved. In this section we note that, in order to 
prove that k-edge connectivity is in NC, it would 
suffice to prove that k-vertex connectivity is in 
NC, both for directed and for undirected graphs. 

Theorem 4.1. Let G be an undirected graph, 
and let L(G) be the line-graph of G. Then X(G) = 
min{J(G),+(G))} where 6(G) is the m i n i u m  
degree of G. 
Proof. By the definition of L(G), a k-vertex sep- 
arator of L(G) is a k-edge separator of G. Con- 
versely, a minium k-edge separator of G is either 
a k-vertex separator of L(G) or corresponds to the 
edges incident with a single vertex of G. 0 
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Essentially the same method works for directed 
graphs, if we are careful to use the correct line 
graph. For a directed graph G(V,E) define L(G) 
to be the directed graph with vertex set E, with 
an edge from (U, U )  to (U‘, U’) exactly when U = U’. 

Theorem 4.2. Let G be a directed graph, and 
let L(G)  be the linegraph of G. Then X(G) = 
min{J+( G), 6- (  G )  , K( L( G))} where 6+(G) and 
6 - ( G )  are the minimum in-degree and minimum 
out-degree of G ,  respectively. 
Proof. A k-vertex separator of L(G) is a k-edge 
separator of G. Conversely, a minimum k-edge 
separator of G is either a k-vertex separator of 
L(G) or corresponds to all the edges entering a 
single vertex of G or all the edges leaving a single 
vertex of G. 0 
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In both the undirected and directed cases, the 
construction of L(G) can be achieved in time 
O(1ogn) using n + m2 processors. 
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