
Fast Parallel Algorithms for Testing k-connectivity of Directed
and Undirected Graphs *

Weifa Liang, Brendan D. McKay
Department of Computer Science

The Australian National University
Canberra, ACT 0200, Australia
{wliaug, bdm)Qcs.anu.edu.au

Abstract
It appears that no NC algorithms have previ-
ously appeared for testing a directed graph for
k-edge connectivity or k-vertex connectivity, even
for fixed k > 1. Using an elementary flow method
we give such algorithms, with time complexity
O(k1ogn) using nP(n,m) or (n+k2)P(n,m) pro-
cessors, respectively. Here, n is the number of
vertices, m is the number of edges, P(n,m) is the
number of processors needed to find some path in
time O(1og n) time between two specified vertices
in a directed graph with O(n) vertices and O(m)
edges, and the computation model is a CRCW
PRAM. These algorithms of course apply also to
undirected graphs, but using sparse certificates we
can improve the factors P(n,m) to P(n,kn) for
both types of connectivity. This is better in time
by a factor of O (k) over previous algorithms for
undirected graphs. We also note that edge con-
nectivity is NC-reducible to vertex connectivity
even if k is not fixed.

Keywords: k-edge connectivity, k-vertex con-
nectivity, parallel algorithms, disjoint-paths,
graph problems.

1 Introduction
Connectivity of graphs (vertex connectivity as
well as edge connectivity) is considered to be one
of the classic subjects in graph theory, and has
many practical applications, e.g., in reliability of
communication networks, chip and circuit design,
and cluster analysis. Designing efficient parallel
algorithms for testing graph connectivity is clearly
a basic problem in parallel computation. In this
paper we present parallel algorithms for vertex
and edge connectivity for each of directed and

This work waa partially supported by ACSya grant.

undirected graphs. In all four cases our algorithms
have better theoretical complexity than previously
published algorithms.

The model of parallel computation used here
is that of a concurrent read and concurrent write
parallel random access machine (CRCW PRAM).
In this model, simultaneous access by more than
one processor to the same memory location for
both read and write is allowed. In the event that
several processors attempt to write to the same
memory location simultaneously, an arbitrary one
succeeds.

We will write our complexity measures in terms
of three basic quantities. P(n,m) is the number
of processors needed to find a directed path in
time O(1ogn) between two specified vertices in
a directed graph with O(n) vertices and O(m)
edges. Secondly, T(n,m) is the number of pro-
cessors needed to determine the set of vertices
reachable from a specified vertex in a directed
graph with O(n) vertices and O(m) edges, in time
O(1ogn). The current best results for P(n,m)
and T(n,m) are both n2.37e, using matrix mul-
tiplication [3]. Finally, C(n,m) is the number of
processors needed to find the connected compo-
nents of an undirected graph with n vertices and
m edges in time O(1ogn). In this case the current
best result is C(n,m) = (n + m)a(n,m)/logn,
where a(n, m) is a functional inverse of Adterman-
n's function [2].

First consider the case of directed graphs. To
our knowledge, there are no published NC algo-
rithms for k-vertex connectivity or k-edge connec-
tivity for any k except k = 1. (An NC algorithm
is one which takes time O(logCn) for some con-
stant c using a polynomial number of processors.)
We give algorithms taking time O(k log n), using
nP(n, m) processors in the case of edge connectiv-
ity, and (n + kz)P(n, m) processors in the case of
vertex connectivity. These algorithms use simple

0-7803-2018-2/95/$4.00 8 1995 IEEE
43 7

implementations of the Ford-Fulkerson network
flow algorithm. In the case where the connectivity
is less than k, we also find separating sets within
the same time bound. The best deterministic se-
quential algorithm for the edgeconnectivity is due
to Gabow [6] and takes time O(Amlog(n2/m)) us-
ing a matroid approach. Here, X is the value of
the edge connectivity.

Next consider the case of undirected graphs.
Khuller and Schieber [7] present algorithms for
k-edge connectivity and k-vertex connectivity us-
ing time O(k’1ogn). The required number of
processors is nkC(n, m) and (nk + k3)C(n,m),
respectively. The number of processors needed
in the latter case was recently reduced to (nk +
k3)C(n, nk) by Cheriyan, Kao and Thurimella [I],
using a sparse certificate technique. Our algo-
rithms improve the time requirement to O(k logn)
at some expense to the number of processors.
Clearly, if an undirected edge is considered to be a
pair of oppositely directed edges, our algorithms
for directed graphs can be used with the same
complexity. By using sparse certificates we can
reduce the number of processors to nP(n,nk) for
edge connectivity and (n + k2)P(n, nk) for vertex
connectivity. The best deterministic sequential al-
gorithm for vertex connectivity takes time O(nm)
for fixed IC (Even 141). For edge connectivity, the
above mentioned algorithm of Gabow can be used,
but for some values of the parameters one of the
two algorithms of Matula [8] is better, as they use
time O(nm) and O(An2) respectively.

We also show that the k-edge connectivity prob-
lem is NC-reducible to the k-vertex connectivity
problem for both undirected graphs and directed
graphs, with k arbitrary. Therefore, if the solu-
tion for the k-vertex connectivity problem is in
NC, then the k-edge connectivity problem is also
in NC.

The paper is organized as follows. In Section 2
we give our algorithms for directed graphs, and in
Section 3 we give our improvements for undirected
graphs. In Section 4 we discuss the NC-reduction
of edge connectivity to vertex connectivity.

2 Directed graphs

Let G(V, E) be a directed graph with IV(= n and
IEl = m. Multiple edges will not be allowed, but
could be incorporated without much effort. We
will use (i ,j) to represent a directed edge from i
to j .

Let s and t be distinct vertices in G that are not

connected by an edge. An s-t uertez sepamtor is
a subset S C V-{s, t}, such that every path from
s to t contains at least one vertex from S. Defme
N (s , t) to be the minimum cardinality of an s-t
vertex separator. By Menger’s Theorem, N (s , t)
is also the maximum number of vertex disjoint
paths from s to t. The uertez connectivity n(G)
of G is defined to be n(G) = min{N(s, t) 1 s, t E
v, # t , (s, t) 4 E}.

Similarly, let s and t be distinct vertices of
G and define an s-t edge sepamtor to be a set
Q E E such that every path from s to t uses
at least one edge in Q. Define M (s , t) to be the
minimum cardinality of an s-t edge separator.
By Menger’s Theorem, M (s , t) is also the max-
imum number of edge disjoint paths from s to
t . The edge connectivity of G is defined to be
X(G) = min{M(s,t) I s , t E V,s # t}.

Our fundamental approach will be the use of
network flows to find disjoint paths. Consider
the directed graph G(V,E) to be a 0-1 network
in which the capacity of each edge is one. Sup-
pose G carries some 0-1 legalp-t flow t. Define
the auxiliary directed graph G = G(V,E) as fol-
lows: For each distinct u,v E V, (u,v) E E if
and only if either (u,u) E E and f(u,u) = 0, or
(v, U) E E and f(u, U) = 1. Note that G is similar
to the “residue network” of G and f, but has only
edges of capacity one. It is still true that paths in
6 are augmenting paths in G.

Theorem 2.1. The-flow f is a maximum s-t flow
in G if and only if G has no directed s-t paths,
Proof. See Chapter 6 in 151. 0

This theorem implies an algorithm for finding
an s- t flow of total value k, or proving there is
none. The details are as follows.

Lemma 2.2. Given a 0-1 network G(V,E) and
s, t E V, testing whether the value of the flow from
s to t is no less than k can be done in O(k1ogn)
time with P(n,m) processors.
Proof. The construction of G can be done in
O(1ogn) time using (m + n) / l o g n processors.
Finding an s-t path requires O(1ogn) time and
P(n,m) processors. The updating of P can be
finished in O(1ogn) time using O(kn) processors,
as follows: firstly we sort the edges in P by their
key (u , ~) , which costs O(1ogn) time and O(kn)
processors because (PI 5 kn. Then for each edge
(u,v) E P’, we look up the sorted list on P by
binary searching to see whether (v,u) is in P. If
it does, delete edges (u,u) and (v ,u) from these
two lists, respectively. This step requires O(logn)

438

Procedure Rozu(G, k , i , s , t) ;
/* P is the set of edges with flow 1; and i is actual flow value */

Initialize P := 0;
for i : = O t o k d o

Form e= G(V,E), whereE:= (E - P) U { (u , u) I (u , u) ~ P } ;
If there is no directed s-t path P' in G, re turn FAIL;
E l s e P : = P U P ' - { (u , u) , (u , u) I (u , u) E P a n d (u , u) E P ' }

endfor
re turn P.

time and O(n) processors because lP'l 5 n. The
remaining elements in these two lists are merged
into a new list P. 0

Lemma 2.3. If algorithm Flow fails because the
maximum flow is k' < k, an edge separator of size
k' can be found using an additional amount of
O(1og n) time and max{m, T(n , m)}-processors.
Proof. Consider the final value of G constructed
by the algorithm. In time O(1ogn) using T(n,m)
processors, compute the set W of vertices reach-
able from s in G. Then, by standard flow theory,
Q = { (u , u) E E I U E W,u 4 W} is an edge
separator of size k'. 0

Theorem 2.4. There is an algorithm to test
whether a directed graph is k-edge connected, and
if not to find an edge separator of size less than k.
The running time is O(k log n) and the number of
processors is nP(n,m).
Proof. Let V = {v1,v2 ,... ,vn}. By a theo-
rem of Schnorr [lo], the edge connectivity of G
is X(G) = min{M(v;,v,+l) I 1 5 i 5 n}, where
u,+1 = V I . We can use procedure Flow to test
in parallel if the n associated flow problems all
have solution at least k. If one does not, we can
find an edge separator as described in Lemma 2.3.
Obviously max{m,T(n,m)} = O(nP(n,m)), so
nP(n,m) processors will suffice. 0

We now consider vertex connectivity for di-
rected graphs. The following lemma was inspired
by a similar lemma of Even [4] for undirected
graphs.

Lemma 2.5. Suppose V = { v l ,u2 , . . . ,un}. D e
fine two auxiliary directed graphs G' = G(V', E')
and G" = G(V",E") as follows. V' = V" =
V U (2); E' = E U {(.qui) I 1 5 i 5 k};
E" = E U {(vi,%) I 1 5 i 5 k}. Then K(G) 2 k if
and only if N(u;,u,) 2 k in G for 1 5 i # j 5 k,
N (z , u j) 2 k in G' for k + 1 5 j 5 n, and

N(u,, z) 2 k in G" for k + 1 5 j 5 n.
Proof. If K(G) < k, then we can partition V
into non-empty subsets V = S U W U T such that
IWI < k and W is an s-t vertex separator for
any S E s and t E T. If v k = { V i , t ~ o ,... , ~ k }
intersects both S and T, we have N(s , t) < IC in
Gfor any S E S n Vk, t E Tn Vk. If v k S U W ,
N (z , t) < k in G' for any t E T-Vk. If v k E WUT,
N (s , z) < k in G" for any s E S - vi. 0.

In order to apply Lemma 2.5 we use the stan-
dard method for finding vertex-disjoint paths with
the help of flows. Define the auxiliary directed
graph E - = G(T,E), where 7 = {u',u" I U E E},
and E = { (u ' ,ur f) I U E V}U((~",u'),(u'',u')}
I (%U) E E) .

Lemma 2.6. For any distinct vertices s , t E G,
the maximum number of vertex-disjoint s-t paths
in G equals the maximum number of edge-disjoint
s"-t' paths in E.
Proof. See Chapters 5 and 6 in [5]. 0

Theorem 2.7. There is an algorithm to test
whether a directed graph is k-vertex connected,
and if not to find a vertex separator of size less
than k. The running time is O(k1ogn) and the
number of processors is (n + kz)P(n,m) .
Proof. The k(k - 1) + 2(n - IC) disjoint path
problems defined in Lemma 2.5 can be solved in
parallel using Lemma 2.6. We can form the three
networks in 0(1) time using m + n processors
and solve the flow problems in O(k1og n) time us-
ing P(n, m) processors each, with procedure Flow.
Since obviously m + n = O(nP(n,m)), the total
number of processors required is (n+ kz)P(n,m).

If all the flows have value at least k, we know
that G is k-vertex connected. Otherwise it is
easy to find a small vertex separator. Suppose
G' = G(V',E') is the network with N(s",t') <
k. Let W' be the_set of vertices reachable from
s" in G (V , E ; U E), where E; is the subset of

43 9

E' con_sisting of edges of the form (u " , ~ ') , and
G(V*, E) is the final graph G made by procedure
How. Then the set of all vertices U E V such that
U' E W' and U'' $! W' is an s--t vertex separa-
tor in G with size less than k. Finding it with
the same number of processors in O(1ogn) time is
easy.

3 Undirected graphs
An undirected graph can be considered as a di-
rected graph in which the edges come in pairs
(u , ~) , (v ,u) . Under that interpretation it is easy
to see that the definitions of connectivity and
separators given in the previous section corre-
spond to the normal definitions given for undi-
rected graphs. Consequentially, Theorems 2.4 and
2.7 apply equally to undirected graphs. However,
we can reduce the required number of processors
by using %parse certificates".

Throughout this section, G(V,E) is an undi-
rected graph with (VI = n and (El = m. A sparse
Certificate for k-uertez connectivity is a subgraph
H of G that has O(kn) edges and such that every
vertex separator of size less than k in H is also
a vertex separator in G. A sparse certificate for
k-edge connectivity is defined similarly.

Now we recall a search technique on undirected
graphs called scan-first search, due to Cheriyan,
Kao and Thurimella [I]. Vertices are initially "un-
marked". Then the following rules are applied re-
peatedly until all vertices are marked:
(i) If there is a marked vertex U with at least
one unmarked neighbour, mark all the unmarked
neighbours w of U ;
(ii) If there is no such U , mark an unmarked ver-
tex.
The edges { v , w } encountered in step (i) form a
maximal spanning forest of G.

Define Eo = E , and let 8; be the edges of
a scan-fist spanning forest of G(V,E - E1 -
... - Ei-1) for i = 1,. . . , I C . Then define Gk =
G(V,E,UEzU.. .UEk) .
Lemma 3.1. Gk is a sparse certificate for both
k-vertex connectivity and k-edge connectivity.
Proof. For edge connectivity, this was proved
in [7] and [9]; in fact we can use any maximal
spanning forests, not necessarily scan-fist. For
vertex connectivity, this lemma was proved in 111.

Lemma 3.2. [l]. A scan-first search spanning
forest of G can be found in O(1ogn) time using
C(n,m) processors.

Therefore, we have

Theorem 3.3. Given an undirected graph
G(V,E) , a k-vertex sparse certificate and k-edge
sparse certificate can be found in O(k1ogn) time
using C(n,m) processors.
Proof. This follows immediately from the pre-
ceding two lemmas. 0

Theorem 3.4. There is an algorithm to test
whether an undirected graph is k-edge connected,
and if not to find an edge separator of size less
than k. The running time is O(k1ogn) and the
number of processors is nP(n,nk).
Proof. Find a sparse certificate for k-
edge connectivity, and test it as in Theorem
2.4. The required number of processors is
mw{C(n,m),nP(n,nk)}. However, as indi-
cated in the introduction, C(n,m) = O ((n +
m)a(n,m)/logn) and also dearly P(n,nk) =
R(nk/logn). Hence the term nP(n,nk) domi-
nates. 0

Theorem 3.5. There is an algorithm to test
whether an undirected graph is k-vertex con-
nected, and if not to find a vertex separator of
size less than k. The running time is O(k1ogn)
and the number of processors is (n + k2)P(n, nk).
Proof. Use the same approach as for Theorem
3.4. 0

4 NC reduction of edge con-
nectivity to vertex connec-
t ivity

Given the results in the previous sections, we
know that k-edge and k-vertex connectivity are
in NC for k = O(log"n), where c is any constant.
The situation for arbitrary k = k(n) remains un-
solved. In this section we note that, in order to
prove that k-edge connectivity is in NC, it would
suffice to prove that k-vertex connectivity is in
NC, both for directed and for undirected graphs.

Theorem 4.1. Let G be an undirected graph,
and let L(G) be the line-graph of G. Then X(G) =
min{J(G),+(G))} where 6(G) is the m i n i u m
degree of G.
Proof. By the definition of L(G), a k-vertex sep-
arator of L(G) is a k-edge separator of G. Con-
versely, a minium k-edge separator of G is either
a k-vertex separator of L(G) or corresponds to the
edges incident with a single vertex of G. 0

440

Essentially the same method works for directed
graphs, if we are careful to use the correct line
graph. For a directed graph G(V,E) define L(G)
to be the directed graph with vertex set E, with
an edge from (U, U) to (U‘, U’) exactly when U = U’.

Theorem 4.2. Let G be a directed graph, and
let L(G) be the linegraph of G. Then X(G) =
min{J+(G), 6- (G) , K(L(G))} where 6+(G) and
6 - (G) are the minimum in-degree and minimum
out-degree of G , respectively.
Proof. A k-vertex separator of L(G) is a k-edge
separator of G. Conversely, a minimum k-edge
separator of G is either a k-vertex separator of
L(G) or corresponds to all the edges entering a
single vertex of G or all the edges leaving a single
vertex of G. 0

[9] H. Nagamochi and T. Ibaraki, Linear time
algorithm for finding k-edgeconnected and k-
vertex-connected spanning subgraphs, Algorith-
mica, Vol. 7, 1992, pp. 583-596.
[lo] C. P. Schnorr, Bottlenecks and edge connec-
tivity in unsymmetrical networks, SIAM J. Com-
put. , vol. 8, N ~ . 2, 1979, 265-274.

In both the undirected and directed cases, the
construction of L(G) can be achieved in time
O(1ogn) using n + m2 processors.

References

[I] J. Cheriyan, M-Y Kao and R. Thurimella,
Scan-first search and sparse certificates: an im-
proved parallel algorithm for k-vertex connectiv-
ity, SIAM J. Comput., Vol. 22, No. 1, 1993, pp.

[2] R. Cole and U. Vishkm, Approximate and ex-
act parallel scheduling with applications to list,
tree and graph problems, Pmc. 27th Annual IEEE
Symp. of Foundations of Computer Science, 1986,

[3] D. Coppersmith and S. Winograd, Matrix mul-
tiplication via arithmetic progressions, P m . 19th
Annual ACM Symp. on Theory Computing, 1987,

[4] S. Even, An algorithm for determiningwhether
the connectivity of a graph is at least I C , SIAM J.
Comput., Vol. 4, No. 3, 1975, pp.393-395.
[5] S. Even, Graph Algorithms, Computer Science
Press, New York, 1979.
161 H. N. Gabow, A matroid approach to find-
ing edge connectivity and packing arborescences,
P m . 23rd Annual AGM Symp. on Theory of
Computing, 1991, pp. 112-122.
[7] S. Khuller and B. Schieber, Effiuent paral-
lel algorithms for testing connectivity and finding
disjoint s - t paths in graphs, SIAM J. Comput.,

[8] D. W. Matula, Determining edge connectivity
in O(nm), Proc. 28th Annual Symp. of Founda-
tions of Computer Science, 1987, pp.249-251.

157-174.

pp. 478-491.

pp. 1-6.

Vol. 20, NO. 2, 1991, pp.352-375.

44 1

