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Abstract

A graph G is said to be hypohamiltonian if G is not hamiltonian but

for each v ∈ V (G) the vertex deleted subgraph G − v is hamiltonian.

In this paper we show that there is no hypohamiltonian graph on 17

vertices and thereby complete the answer to the question, “for which

values of n do there exist hypohamiltonian graphs on n vertices?”. In

addition we present an exhaustive list of hypohamiltonian graphs on

fewer than 18 vertices and extend previously obtained results for cubic

hypohamiltonian graphs.

1. Introduction

Definition. A graph G is said to be hypohamiltonian if it is not hamiltonian

but for each v ∈ V (G) the vertex deleted subgraph G − v is hamiltonian.

Hypohamiltonian graphs first appeared in the literature in response to a problem

of Sousselier [9]. The solution, due to Gaudin, Herz and Rossi [5] established that

the Petersen graph is the smallest hypohamiltonian graph. Since that time Herz

Duby and Vigué [6] have used exhaustive computer searches to show that there are

no hypohamiltonian graphs on 11 or 12 vertices. A later exhaustive search by Collier

and Schmeichel [3] showed that there is no hypohamiltonian graph on 14 vertices.

For n = 10, 13, 15, 16 and for n ≥ 18 it is known that there are hypohamiltonian

graphs of order n (see [1], [2], [4], [6], [8], [10], [11]) leaving only the case of n = 17

to be determined. (A fuller rundown of the evolution of the problem may be found
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in Chapter 7 of [7].) In section 2 we present details of a computer search employed

by the authors to establish the following result.

Theorem. There is no hypohamiltonian graph on 17 vertices.

The search techniques were also employed to search exhaustively for hypohamil-

tonian graphs on 13, 15, and 16 vertices thereby yielding a complete list of hypo-

hamiltonian graphs on fewer than 18 vertices. Exhaustive searching of graphs on

more than 17 vertices is too costly using the current methods but when applied to

cubic graphs, with some girth restrictions, the procedure is reasonably quick and

efficient. This application has been pursued and the results have been included in

tabular form in Section 3. For other studies of cubic, planar and infinite hypohamil-

tonian graphs, the reader might consult [12], [13], [14].

2. The Computation Method

This is a summary of our computation method for generating small hypohamil-

tonian graphs.

Definition. A graph G is hypocyclic if G − v is Hamiltonian for each v ∈ V G.

Thus, hypohamiltonian = nonhamiltonian + hypocyclic .

Definition. For a possibly empty graph G, define p(G) to be the minimum number

of vertex disjoint paths needed to cover V G.

Definition. Define an invariant k(G) for possibly empty G as follows.

(1) If G is empty, k(G) = 0.

(2) Else, if G has no isolated vertices or edges,

k(G) = max {1, ⌈((number of vertices of degree 1)/2)⌉}.

(3) Else, k(G) = number of isolated vertices and edges + k(remainder of G).

Lemma 1. k(G) ≤ p(G).

Proof. The truth of the lemma is easily seen.

We next describe some “obstructions” for hypocyclicity. In each case, an ob-

struction is a disjoint non-trivial partition V G = W ∪ X .

Type-A Obstruction: p(〈W 〉) ≥ |X |.
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Type-B Obstruction: k(〈W 〉) ≥ |X |.

Type-C Obstruction: W is an independent set. Furthermore, for some

vertex v ∈ X , defining n
1

and n
2

to be the number of vertices of X −v joined

to one or more than one vertex of W (respectively), we have 2n
2
+n

1
< 2|W |.

Lemma 2. If G has an obstruction (W, X) of type-A, -B or -C, then G is not

hypocyclic.

Proof. Let v be in X , and consider a hamiltonian cycle C in G − v. The number

of components of C restricted to W must be at least p(〈W 〉), so the number of

components in C restricted to X − v must also be at least p(〈W 〉). This handles

type-A and, by Lemma 1, type-B obstructions. For type-C, consider the same cycle

C. The number of edges of C between W and X must be 2|W |, but X can supply

at most 2n
2
+ n

1
.

Lemma 3([C-S 78]). If a hypohamiltonian graph has a vertex v of degree 3, then

v lies on no triangles.

Definition. Let G be a nonhamiltonian graph, with maximum degree D. Let

top(G) denote any graph T obtainable by the following process:

(a) set T := G

(b) add to T every edge uv such that uv is not an edge of G, G + uv is non-

hamiltonian, u and v have degree < D in G. Note that T need not be

nonhamiltonian.

(c) Repeat this any number of times you please: Choose one vertex of degree 3

in T , and delete from T any edges joining two of its neighbours.

Lemma 4. If H is a supergraph of G that is hypohamiltonian and has maximum

degree D, then H is a subgraph of top(G).

Proof. Clearly, the value of graph T after step (b) is a supergraph of every non-

hamiltonian supergraph of G having maximum degree D. If, after that, vertex v

has degree 3 in T we know that the neighbourhood of v in T must be the neighbour-

hood of v in any hypohamiltonian graph between G and T (since hypohamiltonian

graphs cannot have vertices of degree 2). In that case Lemma 3 is violated unless

we remove edges between the neighbours of v.

Note that top(G) might not be a supergraph of G because step (c) might remove

some edges that are in G. The lemma still holds, implying in such case that G has
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no hypohamiltonian supergraphs of maximum degree D.

Corollary 5. If G is hamiltonian or top(G) is not hypocyclic, there is no hypo-

hamiltonian supergraph of G with the same maximum degree.

We can now describe the search for hypohamiltonian graphs of order n and

maximum degree D.

Take a vertex, called the hub, and an (n− 1)-cycle disjoint from it. We assume

that the degree of the hub is D. There are only a small number of nonequivalent

ways to join the hub to the cycle by D edges without creating a hamiltonian cycle.

Given one of those ways, by the feet we mean the vertices of the cycle adjacent to

the hub.

It is clear that the set S of graphs consisting of the (n − 1)-cycle and D edges

from the hub to the cycle has this property:

P : For any hypohamiltonian graph H of order n and maximum degree D, there

is an isomorph of H which lies in the interval [G, top(G)] for some G in S.

The basic idea is to iteratively replace members of G by other graphs while

maintaining property P . By Corollary 5, we can delete from S any G which is

hamiltonian, or for which top(G) is not hypocyclic. The efficiency depends very

strongly on the order in which the replacement is performed. We have found that a

good general technique is to look for obstructions in G and add edges which destroy

them. Also, the continual use of tests for hypocyclicity of top(G) can be replaced

except at the final stages by a much faster obstruction test.

We will describe this process in terms of a series of filters, where each filter takes

out a member of S satisfying some predicate and replaces it by zero or more new

graphs. This is repeated until no graphs in S satisfy the predicate. In all cases,

potential members G of S are rejected if top(G) is found to have an obstruction.

Phase One.

In this phase, each graph G in S is associated with a subset W = W (G) ⊆ V G.

Initially, each G (cycle plus edges from the hub) has W equal to the set of vertices

which are not feet, including the hub.

Predicate: (W, V G − W ) is a type-A obstruction.

Action: Consider each non-edge e joining two components of W , such that

G + e has maximum degree D and is not Hamiltonian. The replacement for

(G, W ) is the set of (G + e, W ′), where W ′ is obtained from W by deleting
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every vertex which has degree 3 in 〈W 〉.

The subgraph 〈W 〉 is always a set of disjoint paths, so testing if (W, V G − W )

is a type-A obstruction is easy. Furthermore, (W, V G−W ) is destined to remain a

type-A obstruction unless we decrease p(〈W 〉), which requires an edge between two

components of 〈W 〉. Thus, property P is preserved.

Phase Two.

During this phase we intermingle three filters. Our program chooses a “best”

application of one of the first two, if one of them applies, otherwise it attempts

the third filter. In attempting to apply the third filter, we looked at all partitions

(W, V G−W ) where W consists of an independent set and the vertices not adjacent

to it.

Predicate: G has a vertex v of degree 2.

Action: Replace G by the set of G + e, where e is an edge in top(G) − G

which is incident with v.

Predicate: G has a vertex v of degree 3 incident with a triangle.

Action: Replace G by the set of G + e, where e is an edge in top(G) − G

which is incident with v.

Predicate: G has a type-B obstruction (W, X).

Action: Replace G by the set of G + e, where e is an edge in top(G) − G

that joins two vertices of W , at least one of these vertices having degree 0 or

1 in 〈W 〉.

The preservation of property P under the first and second filters is obvious. To

see this in the case of the third filter, note that only edges of the type mentioned

can reduce k(〈W 〉) and so eliminate this type-B obstruction.

Phase Three.

In the third phase, hypohamiltonian graphs are identified exhaustively.

Predicate: true

Action: If G is hypohamiltonian, output it. Replace G by the set of G + e,

where e is an edge in top(G) − G.

Property P is violated only to the extent that hypohamiltonian graphs which

are missing have been output. Eventually, the set S will be empty and we will have
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found isomorphs of all hypohamiltonian graphs. Clearly this process can only be

efficient if the difference between G and top(G) is small, but this was always true

after Phase Two in our computations (rarely more than a few edges).

Summary.

Phase One:

n = 12 13 14 15 16 17

inputs 9 8 23 26 55 71

outputs 8 17 228 1721 20600 187798

cpu time 0.8s 6s 73s 16m 5h 211h

The output counts are after isomorph rejection separately for each input graph.

This was performed using the second author’s program “nauty”.

Phase Two:

n = 12 13 14 15 16 17

outputs 0 1 0 3 17 126

cpu time 0.2s 2s 19s 7.5m 3h 272h

In this case, the output counts are for nonisomorphic outputs.

Phase Three:

n = 12 13 14 15 16 17

outputs 0 1 0 1 4 0

maxdim - 0 - 2 5 12

cpu time - - - - 3s 145s

Again, complete isomorph rejection was done. The value “maxdim” is the

maximum number of edges between G and top(G).

In the case of n = 17 we did many parts of the computation twice using different

procedures to find cycles (one kindly provided by Gordon Royle). In Figure 1, we

include drawings of all hypohamiltonian graphs on fewer than 18 vertices.
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H(13) H(15)

P(10)

Figure 1: All the hypohamiltonian graphs on fewer than 18 vertices
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3. Cubic hypohamiltonian graphs

The same method as above, beginning directly at Phase Two, is quite fast

at finding the cubic hypohamiltonian graphs for, perhaps, n ≤ 20. However it

begins to become rather slow at greater sizes, so we used a more crude approach.

We ran the program “minibaum3” of Gunnar Brinkmann and Carsten Saager to

find all triangle-free cubic graphs with n ≤ 26, and rejected those that were not

hypohamiltonian. Note that, in the light of Lemma 3, all cubic hypohamiltonian

graphs have girth at least 4, so this procedure is indeed exhaustive. The results

were as follows.

Counts of connected cubic graphs

n Girth Total Non- Nonham. & Hypo-

searched hamiltonian 3-connected hamiltonian

10 ≥ 4 6 1 1 1

12 ≥ 4 22 0 0 0

14 ≥ 4 110 2 1 0

16 ≥ 4 792 8 3 0

18 ≥ 4 7805 59 20 2

20 ≥ 4 97546 425 129 1

22 ≥ 4 1435720 3862 1166 3

24 ≥ 4 23780814 41293 12652 1

26 ≥ 4 432757568 518159 162969 100

28 ≥ 5 656783890 239126 218556 34

30 ≥ 6 122090544 1 1 1

32 ≥ 7 30368 0 0 0

34 ≥ 8 1 0 0 0

36 ≥ 8 3 0 0 0

38 ≥ 8 13 0 0 0

The girth distributions of the cubic hypohamiltonian graphs indicated in the

table above are as follows. Of girth 4 we found 1 on 24 and 4 on 26 vertices.

Of girth 6 we found 1 on 28 and 1 on 30 vertices. Of girth 7 we found 1 on 28

vertices. All of the remaining cubic hypohamiltonian graphs found in the search

are of girth 5.

In addition to the two cubic hypohamiltonian graph on 18 vertices, we found
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11 others but our search was not exhaustive and there may be others.
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