

If (1fl E P and dig = false) hk:= 1

If (1f1 is discrete) go to (18)

W1 := first small e st cell of 11"1

Vt := minWI

(2) k:= Ie + 1

Ai<:= A(G,1f,II)

If (h= 0) go to (5)

If (hz! = k -1 and A;, = z/k) hz!:= k

If (lab = !alae) go to (3)

qzb := A.;, - zbk

If (hzb = k-l and qzb = 0) hzb:= k

If (qzb > 0) zbk := A.;,

(3) If (hzb = k or (lab = true and qzb > 0)) go to (4)

Go to (6)

(4) If (1f1< Is discrete) go to (7)

Wk := first smallest ce1l of 11"1<

Vk:= min

If (dig = tru.e or 1I"k i'! P) hh:= k + 1

ek:= 0

Go to (2)

(5) Z!k := zb k := A;,

Go to (4)

(6) Ie' := k

69

"" := 1I1nthh-l, IIIU:{M - 1, h.zb}}

If (k' = hh) go "to (3)

1:= 1I1n{1 + 1, L}

AJ- := IIlCr (fI'IoIl)

"'r := flx(fI'llll)

Go t o (12)

(7) It (II. = 0) go "to (18)

(8)

I f (k ~ h.zJ) go t o (8)

Define 1 E' Sn by (' = /I

If ((71 = G) go "to (10)

If (Illb = ja.l&e or qzb < 0) go to

If (q;d > 0 or k < Ipl) 80 t o (9)

I f (G(") > G(p)) go to (9)

If (G(") < G(p)) go to (Ol

Define 7 IE S" by (,1'1 = p

Go to (10)

(9) p := II

qzb := 0

hI; := hzb:= Ie

zb" +1 := 00

Go to (6)

(to) 1:= min{l + 1, L}

(h := IIcrb)

flr: = flxb)

If (8b) < 0) go to (11)

"

(Ol

O:=OvO(-r)

Output '1

If (ttiC e lIler(O}) go to (11)

k:= II.

Go to (13)

(11) k := hb

(12)

(13)

If (ek = 1) Wk:= Wknn,

If (k ~ 0) stop

If (k> h) go to (17)

If (k=h) go to (14)

II. := Jt

ttiC := ttlh. := min WI;

(14) If (tlk and ttlh are in the same cell of 0) indllx := indllx + 1

1110 := mini tI e W" I II > tlk}

If (1110 = 00) go to (16)

If (tlk tL mer(O}) go to (14)

(15) 11.11.:= min{hh., It + 1}

h.z!:= min{hz!, k}

If (lab = falsll or hzb < It) go to (2)

hzb:= It

qzb := 0

Go to (2)

(16) If (IW,,! = 'ndex and ht = k + 1) h.t:= k

size := size X index

index:= 0

71

.I::=Jc - 1

Go t o (1 3)

(17) If (ek = O) set Wh:=Wknn, for each i, l<i < l, such
t hat (1I 1, V2' ··· , Vk _l } C tIJ,

11k := min{ tI e Wk I tI > tlk}

If (v. ~ 00) go to (5)

.1::= k-l

Go to (13)

(1S) h := ht := hzf := k

!:= II

k:= .1:-1

I f (1t1h = f al/e) go to (13)

p :=v

hzb := hb := k + 1

qzb := a

Go t o (13) o

2·32 Con sider the stage during t he execution of Algo rl tb. 2·31 that
ve pas s the poi nt marked B (1n Step (la». At t his instant define
K = k - l and "W.= tI. (1 <i< K).

Now l et r IO) = r = Aut(G),., and define r ei) = r .. 1 •• a •...• "'1 (point­
wi se stab i1 1ser) for 1 < i< K. Since r is a termi nal node, the coarsest
e<tultable partiti on which 1s finer t han 'If and thes Wl,W2, · ··, WI(i s
discrete. Therefore r (K) = 1.

71

2·33 Theorem During th.e e:tecut1on of Algo";thm £·91, each. timt we pas,

point A (in Step (16)) or "o,'nt B (in Bte" (18)) th.e foj/owing are trut:

(1) inde:t = Ir (I<-lJ\/lr(")1 (point A orull)

(i 1) size = Ir (lH)1

(1.1 1) 8 = 9(r (· - I~

(t v) r (I<-l) = (Y}, when: Y i$ the lit of a.U automorph,',m, output

up to tht! "ruent stag e (in Step (10)).

(v) IYI < n-I'I

Proof: The theorell f ollows r eadily fr om t he theor y that we bave already

discussed, so we will only descri be br iefly how this need s t o be assellbl ed.

PO int B is only passed once, when, i s created, and It = K + 1

at this stage. Point A is then passed K tilles, at which stages Ie has

the values K,K-l,"' ,11n that orde r.

We prove the t heore. by backward Induction on 1;. For Ie = K + 1

it is obvIous. Now assu.e it for 11;' , f or so.e Ie ' , 2 <11;'< K+l. and

let .1: = .1:' - 1.

Consider v = \11"1,'11"2, "',11".1:1. The successor s of 11, in the

order earliest to la test are III,V2, ··· .11 ... wbere II. = II(W.). and WI< =

{WI,W2, ···,ur ... }. The p r evious ti.e we passed pOint A (or B) was When we

completed our examina tion of the subtree T(G.'II", 1I1)' We now clai ll that,

for 1 < i < m, by the time we have completed exami nation of T{G,1I",1I;).

Wi is in t he same cell of 8 as WI if and onl y i f II; "-J 1-'1.

Suppose on the contrary t hat there is an earliest v, for which

our asser tion is not true. If v; i s not equivalent to V I then w. a nd WI

are obv iously in different cells of 6, !o ince 6 Is the orbit partition

of so.e subgroup of Aut(G) .. ,. On t he other hand. i f 11,,..,/.11, T(G,1I",II,)

contai ns one or more terminal nodes equi valent t o !. The nature of the

algorithm 15 such that if one of these nodes is generated, it 10'111 be

recognized 4S being eq ui valent to " and if it is not generated t hi s will

only be because i t has been shown to be equiva l ent to an earlier terminal

node. FurtheTllore, i _pUeit 4uto.orphisms are neve r used t o reduce WK.

Ilnd during the examinati on of T(G,1I", 1I;), if any , the only stored pair s

n

(1/1';. OJ) which are used to reduce any W. have WI E ~i' Therefore, e1 t her

Wi is already In the sallie cell of 8 a s Wt or we are sure to discover

so.e autollOrphl s . "l such that vI < IIi . By the Induction hypot hesis wI
is In t he salle cell of 9 as W I> and so 1:he upds.1:e 8 := 8 v 8(,} merges

the cell s of 8 contain I ng WI and Wi, cont ra.ry to hypothesis. Note a lso

1:hat we have Just proved t hat '1 e Y.

We have thus concluded that the cell of 8 contai ning WI is

the orbit of r (Jo- I) contain ing WI' Since (I = 9(Y) by construction,

and r (Joj < (Y) by the original induc tion hypothesi s , we .ust have

r (k-l) = (Y). since (Y) contaIn s a fu l l set of coset- r epresenta t ! ves f or

r(k) in r (k-l). This proves that 8 = 8(r(k-l»). The vlI.rlable inde:t merely

counts the nu.ber of elements In the cell of /I contll.ln i ng WI . so clahs

(1) a nd (i1) fo llow i mmed i a. t ely.

Claim (v) f oll ows fr ail the s impl e observation tha t t he nu.ber

of ce lls of 6 s tarts at n and decr eases by at. l east one f or each new

element of Y. o

In closI ng we note a few s imple prope rties of the set of

generators of r f ound by Al gorttb:l 2·3 1. These are essentiall y the sallie

as those given in Theor ems 35- 38 iu [13] and t he proofs given t here apply

with only notati onal cMnges. Let Y be the full set Of autotlorphls.s

output by Algorith. 2·31, and let r = Aut (G) .

2·34 Tbeonm (t) Y d(l t l not comain ~ny elements of the form ,.,6, wh.!re

1,6 E r, supp(,)n supp(5) = 0 an.d" -:I:- (1) rf 5.

(2) SUPPOIe ,hat fo r lome su6,et Y· C Y, we have (y.) = (Al l), ...1.(1)) .

where A (I) and A (2) are n.on-trivial subgroups of r with di.joint support. Then
y. = y ell u y (2) , where y (ll n y(l) = e , (y(t» = AP) and (y(ll) = A(l).

(8) Suppose that for , orne suhet W C V the point-wi'! stabiliu r

rw hal oNY ont non-trivial orbit. Then . ome ,1£bsd of Y gener4tu a con.­

jugate of rw in r . 0

IMPLEMENTATION CONSIDERATIONS

In this section we will discuss sOllie of the problems that arise in

the implementation of Algorithm. 2·31 and how these have been approached.

We will then examine the theoretical and empirical performance of our

implementation. Finally, we wJll mention a few of the practical uses

to which our implement ation has been put.

3·1 Time versus storage

The program described in McKay [14] worked so efficiently for

many classe s of graphs that the practical limit on the size of graph

that could be proce s sed was set by the amount of storage Ilvailable,

rather than by execution time considerations. Consequently the present

implementation places rather more emphasis on storage conservation, in

some places to the sl ight detriment of time eff i ciency.

The variable types used by Algorithm. 2·31 include graphs, sets,

partitions and parti tion nests. We will now describe the data. structures

used in our implementation for each of these variable types.

3·2 Partition nestl

Let v = [1I"1,1I'":1, "', 1I"1<[e .JY(V). Then v can be represented by two

arrays a. and b of length n as follows. Define 11"0 = (V).

(1) The array a contains the elements of V in any order

consistent 11'1 th 11"1<' Precisely, if u(a(i),1(...) < u(a(J1,1(",)

then i < j, for any;, j E V.

(11) Each entry of b is an integer in the i nterval [0, n+ 1[

chosen thus:

(a) If u(a(i), "Irk) = u(a(i + 1), "Ir,,), then b(i) = n + I
(1<i<n-l).

(b) If u(a(i) ,1I"H) _ u(a(i + 1),1I"j_l) but u(a(~),1'T"j) <
u(a(1+ 1),"lrj), then b(i) = j C1 < j < k, 1 <i< n-lJ.

(c) bin) = o.

75

3·3 Unordered partit;ionl

The only unordered partition used by Aljoritlm 2.31 Is e. For
any v e. V let 8. denote the cell of e containing" and let p(tI) = ain8 ...
Clearly e can be uniquely represented by the array p, and most of the
necessary quest ions about S can be answered very quickly by reference
to p. For example, if 11, 'W € V then 11 and 'W Ilre In the salle cell of
8 if and only if 11(,,) = p{w), and 11 E acr(S) if and only if p{,,) =".

This representation of 8 suffers fro. the dlsadvl.\ntage that
updates of the form S;= SvO(-J), for 1 € S,, ' are quite expensive in terms
of computati on tille . This problelll has been cons i derably a ll ev iated by
the use of a second a rray q whlch "chains together~ the elements of each
cel1. More precisely, if i € lIIcr(S). then S. = {i. q(,), q(q(t),"q(q(q('ln. · ·· },
where the sequence terminates on the te rm before the first ze ro.

3·4 Graph.

A.lgorlthm 3·3 1 requi r es the input graph G and, for reasonably
efficient operation, requires the graph variable G(p). Froll t he great
number of possible ways of representini these graphs in the computer, we
Ilave chosen All adjacency l:l4trlx representation because of It s greater
storage economy. More precisely, G is stored as a list of n blt­
vectors representi ng N(1,G), N(2,G). ··· ,N(n,G), and so requires around
n2 bits of storage. Since Algorithm 3·31 i s valid also fo r digraphs, it
1s clear ly Dot possibl e t o reduce t his storage requirement in general.
However "if the prog ram was only 1ntenried to be apPlied an graphs with
ve ry loW' degree, a dlf f er en t so r t of representation would save space,
and probably time as wel l.

J·S ElHciency of Algorithm 2·5

Algorithm 2·5 can easily be implemented usi ng the data structure s
above. We '01111 now consider tbe efficiency wbich can be a chieved i n
such an Implementation. The follow1ng complex1 ty resul t wa s suggested
by a re18ted result 1n Gries [7] . For t he necessary defin itions , r e f er
back t o Secti on 2·9.

J·6 Theorem For 4ny G E Q(V), fr IE LI(Y) Q.nd dirlinct 111, 1Iz, " ' ,11 ... _1 IE

V, the deri1led partiti on nut l'lrl,1rZ,·· ·, 'lrml can b. computed in O(n:l l og n)

time, auuming an impl.mentation in which. .i(1I, W) can be computed in time

proportional to IWI, for an~ v IE V, W C v.

-Proof: It Is obvious that the time occupi ed 1n t he computation of 'II", otl;

for 1 <i< m - l and 1n Step (1) of Algorithm 2· 5 w111 be O{n2). Since

each e~e cutlon of Step (2) of Algorithm 2·5 requi r e s onl y a fi~ed amount

of ti me and l eads to a n elecution of Step (3) , we are j ustifi ed 111

r es tr icti ng our attenti on to Step (3).

For a ny gi ven W, the necessllry r exeeuti ons of Step (l) can be

performed in O(nIW I) t i me. Therefore the total time for the computation

of l'lrI, 'II"~,·· · , 'II"",lis O(n2+nEIWI), where t he sum 15 over all sets

a s si gned to W during any execution of St ep (2) (f or any execution of

Algorithm 2·5).

Le t :0:; IE V and consider t he real varIabl e q." defined Ilt Ilny

point of tiDe dur ing any execution of Algorithll 2·5 by q:z = As + l ogzl.,.

Her e hs i s the number of sets contain i ng :t whi cb bave been previ ousl y

a ss Igned to W dur i ng an execution of Step (2) , pl us t he nUllber of se t s

Wi (m < j < M) which e.on tain :t, plus one fo r the se t {:t} = {tid

created by t he operation '11";0'11;, if it exists and has no t already been

counted. Also l~ i s the current size of t he cell of 1f which contains

z. Note that h~, l~ aM. q,. are var iabl es which f r equentl y change value

during A.lgo ri th. 2·5.

The value of q., c lea r l y reDlll i lls constant or decreases between

dIffe r ent executions of Al s or i thm 2·5. The ool y other place where i t can

change is dur i ng St ep (3) , when ha reDlll i ns fixed whl1e (II decreases, Of

h.~ i ncreases by on e. In t he latter cllse I", de cr ea Se S by at l east a fac to r

of two, so tha t q~ does not increase. Therefore qa i s non- increasing

throug hout the cOllputati on, implying that its l a s t va l ue is bounded

above by it s first , which Is bounded above by 2+1og~n. Therefore the

final value h,,,, of h." I s at lIIoSt 2 + l og2n.

We conclude tha t the t otal t iae requ i r ed f or the computati on

of ['11" 1, 11"2, • • • , '11" ... 1 is O(n 2 + n L:OEV~) = O(n2 10g n), 8.S requi r ed. 0

77

Por our particular choice of data structures, and our part icul a r

implemen t a t ion environmen t, we have found that the fastest way to compute

d(v, W} for ",/30 < IWI < A approxilll4tely 11$ to represent W as a bit­

vector and t o count the numbe r of one-bi t s in the bit-vector represent ing

N(v,G) nW. Altbough this t echnique (used for IWI > n appears to r educe

t he t otal the in - t he aajarity· of cases, 1t has t he unfortunat e side­

effect of invalidating the premises of Theor ea 3·6. The best replace.ent

for the bound 0(n210gA) which we have been able to prove I s O(n~).

Since the time require d for the computation of d(v, Mr) is now essentially

independent of IWI, Step (3) of Algorithm 2·5 can be simplified by us ing

t = 1. This is especia lly conven ient if t he seq uence a is r epresented

as a set at poin t ers to t he array a (see Sectlon 3·2) .

3· 7 Efficiencyof' Algorithm 2·31

Le t T·(G,1f) be a portion of t he search tree T(G,1I') wh ich Is

examined by Al gorl thll 2·31. Let ffll be the nUllber of t eril i nal nodes of

T-(G,1f) which are eqUivalent t o t he earli es t ter.ina l node r (incl udi ng

r Itself) . Let m2 be the n\lllber of nodes of T-(G,l'f) which are not

equival ent to ~ and whi ch do not have any descendants In T-(G, 'II'). Let L

be the constant defined In Section 2·30 . Then the total time re~ul red by

Algor1 t hm 2·31 is O(ml"'~ log", + m2A2(L + log A)), under the conditions

01' Theore. 3·6, Where m~ aay depend on L. For our h pl e.enta tlon, this

lIIust be increased to O{n3(m l + ",2) + m2",2L). By Theore. 2·33, ml < n,

but we hav! not fount! any reasonable bound on "'2' It varie s 1n a very

compl icated manner wi t h the initial labelling of the input graph and

the val ue of L .

3·8 Other implementation detail,

Algor ithm 2·31 has been imple.ented on a eyber 170 computer,

lII4inly i n Fo rtran. Because of the diffi culty 1n manipulati ng bi t-vectors

eff ic i ently 1n Fortran, several small subroutines a re coded in assembler

language.

The ind ica tor func ti on A Is evaluated by the s ubr out ine which

1mplements Algorlthll 2·5. It Is f ormed by taUng cell s i zes, relative

vertex deirees and other inf ormation hi ch 15 computed 1n the course

"

of Algori thm 2·5, and merging these into Ii single integer value in a

"random" fashion (see Section 2·28).

A technique which produced considerable improvements in ef­

ficiency in some cases involves the updating of the graph G(p) when p is

updated. The computation of G(p) is quite time-consuming (up to about

6 seconds for n = 1000), so this computation is delayed for as long as

possible, in case it is not necessary.

]·9 Storage requirement!

Let m be the number of machine-words required to hold a bit­

vector of size n. Let K be the maximum length of a node of T*(G,1r).
Obviously K::; n, but very much smaller values are normal. Define L as

before. The total amount of storage required by our implementation, ig­

noring Ii minor amount independent of n, is 2mn+ IOn+m+ (m+ 4)K + 2mL

words. This figure includes 2mn words for the storage of G and G(p).

If Ia.b = faiae (see Algorithm 2·]1), the storage requirement is reduced

by mn + 2n words.

3·10 Experimental performance

In figure 3·1 we give the execution tiJlle required for several

faJllilies of graphs. In each description below, f} gives the approxilllate

slope of the curve in the region 50 < n < 200. Al though the resul ts of

Section 3·8 predict 8. value of /3 >4, even when m2 = 0, the experimental

value of f3 is less than 3 in each of these classes.

E empty graph on n vertices (f) = 2·8).

Q m-dimensional cube, where n = 2'" (fJ = 2·3).

C randoJII circulant graph of degree 10 (f3 = 2·2). This 15

defined by V(G) = V and E(G) = {zy liz - yl E W(mod n)},

where W is a random subset of {I, 2, " ', l(n-l)J2J} of size

5.

R~ "random n regular graph of degree 6 ({J = 2·9). There

is no known practical algorithm for randomly generating

regular graphs so that each graph appears with equal

"

100

u~

io
s,, ~onds

10

1

-1

/
/

/

/

/

/
/

/

/
/

/

/

/

/
/

/

/
/

/

/

/
/

/

Q

/

c

/
G, /

/

/
/p

G,

- 01 ~ ____ ~~~~.-~/~~~,-____ ~ __ ~-.-.-.~~.
10 100 lODe

nWllber o f vert ices

Figure 3· 1

"

frequency. The graphs represented by the curve R~ were

made by randomly generating three permutations '71, '72 and

'7 ~ E S .. such that :r;6 ~:r; c6 E b~,'7~,'7n) and :r;1'i rf :r;'l1

(1 <i < j < 3) for each x E V. Define G by V(G) = V

and E(G) = {xx'l; 1 x E V, 1 <i< 3}. For n > 40 all those

graphs constructed had trivial automorphism groups, and

produced search trees with maximum depth 2.

R 20 : same as R~ but with degree 20 (f3 = 2·6).

G 1 random graph (f3 = 2·0). Each possible edge is independ­

ently chosen or not chosen with probability!. The dashed

line marked P in figure 5·1 gives the average time required

for the computation of G(p) for some p. At least one

such step is essential for any program which computes

C(G,:rr) from G using an adjacency matrix representation.

Therefore figure 3·1 suggests that the performance of our

program is close to optimal for large random graphs.

G2 same as Gl but with lab = false.

3·11 Harder examples

We have also tested our program on a number of graphs which have

traditionally been regarded as difficult cases for graph isoJ[lorphism

programs.

(1) The strongly regular graphs with 25 vertices required

between 0·1 and 2·4 seconds, with the average time being

1·0 seconds.

(11) A strongly regular graph G with 35 vertices can be formed

from a Steiner Triple System (STS) with 15 points. The

vertices of G are the blocKs of the STS, and two vertices

are ad j acent if the corresponding blocks overlap. For the

80 graphs so formed, our program required between 0·3 and

7 seconds, with an average of 4·8 seconds. Most of these

graphs have a trivial automorphism group.

(iii) Certain strongly regular graphs G with n vertices can be

extended to graphs E(G), having 2n+2 vertices, which are

81

2'/e1Jel regular (see Mathon tl 0J) . There are good theoreti ­

cal reasons aD] t o expect 2- level regula r g raphs to be

parti cula r ly dl ftlc ult to pr ocess, and this Is bor ne out

by expe rience. The graphs Aeo and Bno (60 ver ti ces; see

[10]) requi red 79 and IS O seconds r e spective ly, while the

graphs A72 - D 72 (7 2 verti ces) required about 500 seconds

each.

3· 12 Duign ilomorphism

A de8ign D (al so kn own as a hypergraph) is a pai r of sets

(P , B) • he re 8 1s a collect ion of subsets of P. The e lements of P

a re called poin.ts aod the elements of B are called 61oclu. Two de s tgns

Dl = (PI, B 1) and D2 = (P2, 8 2) are i somo rphic if there are bijecti ons

h : PI -+ P~ and h: BI -+ B2 such that :c e X implies h(:c) e 12(X) f or

all :cePI and XeB I •

Gt yen a design D = (P, B) e can constr uct a graph G = G(D),

.... here V(G) = P U B and E(G) = {:cX [:teP,XeB, :teX}. I t is easy

t o prove ([3), [17)) that two designs D\ = (PI, E I) and D2 = (P2, B2)

are isomorphic if and onl y if t here is an isomorphl s. I : G(Dl) -I' G(D2)

such t ha t IIPI) = P~ and I(B1) = 82' Therefore Algor i thm 2· 31 can be

used for design isomorphism.

If D I s a balanced incomp le t e hl ock-design (S ISD) then G(D)

i s known t o pres ent difflcul t1 es for many graph i so.orphtsll. progra.s.

and ours is no exception. TlIo SO-vertex gra phs G(D), na.ed A~ a oe! B 'j,O

i n [10J. r equi r ed about 60 seconds each. In another expe rhent (181, we

established t he isollo r phisll of six BIB LTs with 36 points and 36 blocks

(so n = 12) us i ng about 6·6 seconds of lIachine time each. The smallness

of thIs f igure is principally due to tile reasonabl y r ich aut ollorphism

gr oups of t he designs .

A lIuch more d iffi~ult problem posed by two BI SDs wt~h 126 points

and 525 blocks has be en previ ous ly discussed in Stanton and McKay (17].

3·13 Hadamard equivalence

Let M .. and M2 be two m X n matr i ces with ± l entries . We sa.y

tha.t Ml and M~ are Hada.mard equilJa/mt I f M2 can be obtained ·f rom

Ml by app l yIng an e l e.ent of the group r generated. by the follow i ng

operations.

,. Permute th, rows according to Q E Sm.

" Permute tho ~olumns according to (J E 5".

" Mul tipl y rowiby-l (1 < i < m).

'I Mul Upl Y col uan j by -1 <1<j<n).

Suppose t hat M 1s Any mXn IIlI trlx w! 'th ± 1 entries. Deflne G=

G(M) to be the graph witb V(G) = { 'II;,D;,Wj,~j 11 < i < m, l < j < n}

and E(G) = {'II,'Wj, D,1UI 1 1 < i < m,l < j < n, M'j = I} U {'II,W;, D;Wj I
1 <i < m, 1 <j< n, MIl = - I}. We will refer to the vertices I), and !Ii

as I) · type'llerl;ices. The following theorem first appeared in McKay [16].

3·14 Theorem Let G1 = G(Mll a.na G2 = G(M~). Then Ml a.'I1.d M~ are

Ha.da.maTd equil)alent l' a.nd only if th.eTe i, a.n i.omoTp h,iJm f Tom G 1 to G~

which. maps the v-type tlerhcu of GI onto thOH of G1. o

If M is a I(ada,mard Datrix (m = 110 and M T M = fl./) then the

iraph G(M) llIay prove exeeedingl y difficult for A.lgorith_ 2·3 1. This was

discovered when our implementation was applied to a collection of 126

Hadamard matrices of order 24 , produced by t. Dibley and W. D. Walli s , in

an attempt to determine the equival ence classes. Several of the graphs,

havlni la rge automorphism groups, were processed In about 300 seconds,

but some of t bose witb small e r automorphism gr oups woul d requi r e .ore

than 1800 seconds - the prog ram was not run to completion. These graphs

are all 2-Tevel regula r In the sense of Mathon (101 , but are very lIucb

harder than those given in [101, even thougb the~ have larger groups. Tbe

reason for this is that the sea rch tr ee T"(G,'If) has depth 7 or 8 (colllpared

with 4 for the graphs in {l Oll, al thoug h only 2 or 3 vertices generally

need to be fixed In order to eli mi nate any non- triviAl automorphlsms.

This means that the automorpbism group Is of no use for a large part of

T"(G, '11').

Other ~orkers (see 16] for eXBIple) have found t hat a count of

small subgraphs (e. g. cllques) can ofte n be used to provide an inl UaI

8J

pa r titioning of tbe vertices of a. d i fficult graph, wbi ch greatly spee4~

up a subsequent i somorpbi sm test. Siailar techniques can be usel1 bere,

but they are of no use in IlIII.ny cases. SOlle of the hardest graphs aacmgst

the 126 ment ioned above have only two orbits (the v-type vertices and the

others) - the inltlal partitioning which we were usini anyway (because of

Theorem 3·15). However we have devised a method based on a generalisati on

of the profile l1et1ned 1n [51 Which can be used to refine the partitions

at the illmedlate successo rs of the root node 1n T-(G,1T). With this

impr ovement, we can now process t hese graphs 1n about 20 seconds on the

average.

An a lgorithm specifically for equivalence of Hadaaard !latrices

has been definel1 by Leon [9] . The details given 1n [9] are insufficient to

perllit a direct compari son with our technique, but a cursory exallination

suggests that Leon' s t echnique may be competitive with ours for this

particular proble •.

EXAMPLES

In t his secti on we give twn exallp l es of t he automorphism group

generators prol1uced by Algorithll 2·31. I n each case we w11 1 use the

notation defined in Section 2·32.

4·1 First example

foll ows.

In our first example G is the S- dll1en sional cube defined as

V(G) = {(i, i , k,l, m) I i,;, k,l, mE {a, I} }

E(G) = {(i l,i1 . kl' h, ml)(h.;h, k2, 12. m2) I (il - i2)2 + (il - h)2

+ (k l - ..t2)2 + (h - b)2+ (ml_m2)2 = I}

The elements of V{G) are numberel1 1.2,···.32 in lexicographic order .

For this graph we find K = 5, Uil = 1, W 2 = 16, w~ = 24,

W~ = 28 and w~ = 30. The output produced is as below. The execution

time WIiS 0· 18 s econds.

(3 5) (46) (11

Ir(f)l = 2

lJ) (12 14) (19 21) (20 22) (27 29) (28 3D)

1B(r" ')1 = 24

..

(2 3) (6

Ir(~;)1 =

(S 9) (6

Ir(2)1 =

7) (10 11) (14 15) (18 19) (22 23) (26 27) (30 31)

6 18(r{3»)1 = 16

10) (7 11) (8 12) (21 25) (22 26) (23 27) (24 28)

24 18(p(2»)1 = 10

(9 17) (10 18) (11 19) (12 20) (13 21) (14 22) (15 23) (16 24)

W'''I = 120 18(r"'11 = 6
(1 2) (3 4) (5 6) (7 8) (9 10) 01 12) (1 3 14) (15 16) (17 18) (19 20)

(21 22) (23 24) (25 26) (27 28) (2 9 30) (31 32)

WI _ 3840 1

4·2 Second example

In our second exampl e G is the lexicographic product C~lC31

defined as follows.

V(G) = {(i, j) 11 < i,j < 5}

E(G) = {(ii, jI)(i2, :h.) IIi1 - i21 = l(mod 5) or

i 1 = i2 and Ijl - J~I = l (mod 5)}

The vertices are labelled 1,2," ' ,25 in lexicographic order.

For this graph we find K = 10, WI = 1, W2 = 3, W3 = 11,

W, = 13, W~ = 16, Wr; = 18, WT = 21, Ws = 23, Wg = 6 and WlO = 8. The

output below was generated in 0.23 seconds.

(7 10) (8 9)

Ir(g)1 = 2 1e(r,O')1 = 13

(6 7 8 9 10)

Ir(S)1 = 10 1e(r"')1 = 21

(22 25) (n 24)

Ir(T)1 = 20 1e(r"')1 = 19

(21 22 23 24 25)

Ir (~)1 = 100 1e(r"')1 = 17

(17 20) (18 19)

Ir(~)1 = 200 1e(r"')1 = 15

(16 17 18 19 20)

Ir(4)1 = 1000 1e(r" ')1 = 13

(12 15) (13 141
Ir(~)1 = 2000 1,(r"')1 = 11

"

(11 12 13 14 15)

(6 21) (7 22) (8 23) (9 24) (10 25) (11 15) (12 17) (13 18) (14 19) (15 20)

rr(2}1 = 20000 IO(r(2)1 = 7
(25)(34)

[r(I)1 = 40000

(12345)

11 15 21) (2 7 12 17 22) (3 8 13 18 23) (4 9 14 19 24) (5 10 15 20 25)

_ 1000000 IW)I 1

REFERENCES

[1] V. L. Arlazar ov, 1. 1. Zuev, A. V. Uslcov and I. A. Paradzev: An

algorithm for the reduction of finite non-oriented graphs to

canonical form. Zit. 1.!!Jchisl. Mat. ma.t. Fiz. 14, 3 (1974)

737-743.

[2] T. Beyer and A. Proslcurowslci: Symmetries in the graph coding

problem. Proe. NW76 ACM/CIPC Pac. Symp. (1975) 198-203.

[3] C. Bohm and A. Santol1ni: A quasi-decision algorithm for the

p-equivalence of two matrices. ICC BULLETIN 3, 1 (1964)

57-69.

[4] J.A. Bondy and U.5.R. Murty: Graph Theory with Applications,

Macmillan (1976).

[5] J. Cooper, J. Milas and iI.D. Wallis: .Hadamard equivalence.

International Conference on Combinatorial Mathematics, Canberra

(1977), Lecture Notes in Mathematics 686, Springer- Verlag

126-135.

[6] D.G. Cornel1 and R.A. Mathon: Algorithmic techniques for the

generation and analysis of strongly regular graphs and other

combinatorial configurations. Annals of Discrete Math. 2 (1978)

1- 32.

[7] D. Gries: Describing an algorithm by Hopcroft. Actalnformatica.

2 (1973) 97-109.

86

[8) J. Hopcroft: An nlogn algorittm. for minimizing states in

a finite automaton. Theory of Machines and Computations.

Academic Press (1971) 189-196.

[9J J.s. Leon: An algorithm for computing the automorphism group

of a Hadaln9.rd matrix. J. Combinatorial Theory CA) 27 (19H)

289-J05.

[10} R. Mathon: Sample graphs for isomorphism testing. Proc.

9th. Southeastern Con/. on Comb., Graph Theory and Computing

(978), to appear.

[111 R. Mathon: Personal communication.

[121 B. D. McKay: Backtrack programming and the graph isomorphism

problem. M. Sc. Thesis, University of Melbourne (1976).

[13] B. D. McKay: Backtrack programming aM isomorph rejection on

ordered subsets. Ars Combinatoria 5 (1978) 65- 99.

[14J B.D. McKay: Computing automorphisms and canonical labellings of

graphs. International Conference on Combinatorial Mathematics,

Canberra (1977), Lecture Notes in Mathematics 686, Springer­

Verlag, 223-232.

[IS] B. D. McKay: Topim in Computational Graph Theory. Ph. D.

Thesis, University of Melbourne (1980).

[16] B.D. McKay: Hadamard equivalence via graph isomorphism. Discrete

Math. 27 O!n9) 213-214.

[17] B.D. McKay and R.G. Stanton: Isomorphism of two large designs.

Ars Combina.toria 6 (197B) 87-90.

[18] B. D. McKay and R. G. Stanton: Some graph isomorphism computa­

tions. Ars Combinatoria, 9 (1980) 307-313.

[19] H. Wielandt: Finite PermIJ.tation GrolJ.ps. Academic Press (1964).

"

