










































































k= min{hh— 1, max{kt~ 1, h2b}}
1f (k' = hh) go to (13)

= min{{ + 1, L}

.—‘1; =] mcr[frh;,,]
;= £ix(mpz)
Go to (12)

(70 1f (h=0) go to (18
If (k5 hzf) g0 to (8)
Define 7€ 8, by ¢" = v
If (G"=G) go to (1D
(8  If (lab= false or qzb < 0) go to (6
1f (gzb > 0 or & < |p|) g0 to (9)
If {G{r) > G(p)) g0 to (B
If (G(r) < G{p)) g0 to (6)

Define 7€ 8, by w7 =p

Go to (10)
1§ gi=u
gzb =10
ht ;= hzb =k

2biy = 00
Go to (&)
(10) ¢:=nmin{l+41,L}
(2, := mcr(q)
& == f£ix(n)

If (8(7) <6) go to (A1)

T0



6:= 8 v )
Quiput

If {tvc e mcr{f)) go to (11D

k:=h
Go to (13
(11  k:= kb

(12 If (ex = 1) Wi:= WaN 1
(133 If (k= 0) stop
If (k> k) go to (A7)
If (k=4h) g0 to (18
h:=k
tve :=tvh = win W
(14) If (v and fvh are in the same cell of §) inder := indexr 41
v =min{v e Wi | v > v }
If (ve = o0) go to (16)
If (ve € mer(f)) ge to (14)
(15)  hh:= nin{hh, k + 1}
hzf :— win{hzf, k}

If (lab = false or hzb < k) go ta (2)

hezb =k
gzb:=20
Go to (23

(16) If (|Wi| =1index and ht = k+ 1) ht ==k
size ;= gize X index

«—A

indexr (=0

|



k=k-1
Go to (1D

(17} If (er==0) set W := Wi {% for each i, 1<{<<{, such
that {1.-'1, Vo, - 'Uk.._j} C &,

er =1
ver=nin{v e Wi | v > u }
If (ux # 00) go to (15)
ki=k-1

Go to (13)

(18) h=ht:=hzf =%

2fg41:= o0
g =
«—B

k:=k-1

If (lab= false) go to (1)

pi= v

hab:=hb:=k+1

Zbg4o = o0

gzb:=0

Go to (13) a
232 Consider the stage during the execution of Algorithm 2.31 that

we pass the point marked B (in Step (18)). At this instant define
K=k-1and wy=19 (1<1i<K).

Now let I = — Aut(G}r, and define P09 = Loy waw; (POIDT-
wise stabiliser) for 1< ¢ < K. Since ¢ is a terminal node, the coarsest
equitable partition which is finer than 7 and fixes wi,wsg, ---, wx 1is
discrete. Therefore &) — 1,

72



2-33 Theorem During the ezecution of Algorithm 281, each time we pass
point A (in Step (16)) or point B (in Step (18)) the foliowing are true:

) indez = |[PEU/|P®) (point A only)
(1) size = |[FY)
(11i) §= ok

(ivy % U =|{Y), whereY 1sthe set of all automorphisms ouipui
up to the present stage (in Step (10)).

(v) Y] < n-—|8

Proof: The theorem follows readily from the theory that we have already

discussed, so we will only describe briefly how this needs to be assembled.

Point B is only passed once, when ¢ is created, and k= K+1
at this stage. Point A is then passed K times, at which stages k has
the values K,K -1,---,1 in that order.

We prove the theorem by backward induction on k. For k=K +1
it is obvious. Now assume it for k', for some k', 2 < k' < K-+1, eand
let k=4 -1.

Consider v = |m, 7 ---,Mx]- The successors of v, in the
order earlliest to latest are vy, v, -+, Vm Where v = v(w;), and Wi =
{w1, Wy, ---, Wm}. The previous time we passed polnt A (or B) was when we
completed our examination of the subtree TG, w,u;). We now claim that,
for 1 <1< m, by the time we have completed examinaticn of T(G,w, ),
w; is in the same cell of # as w; 1f and enly 1f py ~ vy,

Suppose on the contrary that there is an earliest i for which
outr assertion is not true. If 4 is not equivalent to ¢y then w; and w,
are obviously in different cells of §, since # is the orblt partitiom
of some subgroup of Aut{G)y,. On the other hand, 1f v~ 4, T(G,ﬂ, )
contains one or more terminal nodes equivalent to ¢. The nature of the
algorithm is such that if one of these nodes is generated, it will be
recognized as being equivalent to ¢, and if it is not generated this will
only be because it has been shown to be equivalent to an earlier termlnal
node. Furthermore, implicit automorphisms are never used to reduce Wi,
and during the examination of T(G,w,u;), 1f any, the only stored palrs

73



{®5, 2;) which are used to reduce any W, have v, e ®,. Therefore, either
w; 15 already in the same cell of & as Wi Oor we are sure to discover
some automorphism g such that »7 < vi. By the induction hypothesis w?
is in the same cell of f as w;, and so the update @ :— v 8(y) merges

the cells of # containing w, and w, contrary to hypothesis. Note also
that we have just proved that yeY.

We have thus concluded that the cell of § containing w; is
the orbit of 1) containing wi. Since § = §(Y) by construction,
and I'*} < {¥) by the original induction hypothesis, we must have
I —(y), since (¥} contains a full set of coset-representatives for
r® in p®-1, This proves that ¢ = B(I"*~1)), The variable indezr merely
counts the number of elements in the cell of § contalning w,, so claims

(i) and (ii) follow immediately.

Claim (v) follows from the simple observaticn that the number
of cells of § starts at » and decreases by at least one for sach new
element of Y. Ij

In closing we note a few simple properties of the set of
generators of I found by Algorithm 2.-31. These are essentially the same
as those given in Theorems 36—38 in [13] and the proofs given there apply
with only notational changes. lLet ¥ be the full set of automorphisms
output by Algorithm 2.31, and let I = Aut(G).

2-34 Theorem (1) Y does not contein any elements of the form 48, where
v, & €T, supp(7) N supp(5) = B and 735£ (1) 5 6.

(2) Supposethat for some subsetY" CY, we have (¥*) = (At Ale},
where AV and A®) are non-trivial subgroups of I' with disjoint support. Then
Y =YOUY®, where YO N YD =g, (YO = 4D gng (Y ) = A(®),

{8) Suppose thai for some subset W C V the point-wise stabiliser
Iw has only one non-trivial orbit. Then some subset of Y generates a con-
jugate of Pw in I O

T4



IMPLEMENTATION CONSIDERATIONS

In this section we will discuss some of the problems that arise in
the implementation of Algorithm 2.31 and how these have been approached.
We will then examine the theoretical and empirical performance of our
implementation. Finally, we will mention & few of the practical uses
to-which our implementation has been put.

3.1 Time versus storage

The program described in McKay [14] worked so efficiently for
many classes of graphs that the practical limit on the size of graph
that could be processed was set by the amount of storage available,
rather than by execution time considerations. Consequently the present
implementation places rather more emphasis on storage conservation, in
some places to the slight detriment of time efficlency.

The varlable types used by Algorithm 2.31 include graphs, sets,
partitions and partition nests. We will now describe the data structures
used in our implementatien for each of these variable types.

3-2 Partition nests

Let v = [my,ma, -, | € N(V). Then v can be represented by two
arrays g and b of length n as follows. Define my = (V).

i) The array g contains the elements of ¥V in any order
consistent with me. Precisely, if wu(a(1), ms) < ule(s), m)
then ¢ < 5, for any %, jeV.

(11) Each entry of & is an integer in the interval [0, n -} 1]
chosen thus:

(a) If wufa[?), me) = u[e(t + 1),m), then b(f) = n-41
1<i<n-1.

® 12 uali) i) = ulefi + 1), mim) but uleli),n) <
ulali +1),7;), then b{i)=35 A< <k 1<i< n-1).

¢y ¥n)=0.

75



3-3 Unordered partitions

The only unordered partition used by Algorithm 2.31 1s §. For
any v eV let §, denote the cell of § containing v and let p{v) = mninf,.
Clearly & can be uniquely represented by the array p, and most of the
necessary questions about & can be answered very quickly by reference
toc p. For example, if %, w e V then v and w are in the same ¢ell of
0 1f and only 1f p(v) = p{w), and v e mcr(f) if and only 1f p(v) = v.

This representation of # suffers from the disadvantage that
updates of the form @ ;= @v8(v), for 7€ 8, are gquite expensive in terms
of computation time. This problem has been considerably alleviated by
the use of a second array ¢ which “chains together” the elements of each
cell. More precisely, if 1emer(d), then 8 = {i, q(5), a{a(s)), glalq())),- - - },
where the sequence terminates on the term before the first zero..

34 Graphs

Algerithm 3-31 requires the ipput graph & and, for Teasonably
efficient operation, requires the graph variable G{g). From the great
number of possible ways of representing these graphs in the computer, we
have chosen an adjacency matrix representation because of its greater
storage economy. More precisely, G is stored as a list of n bit-
vectors representing N(1, G), N(2, G),---,N(»n, @), and so requires around
n® bits of storage. Since Algorithm 3-31 is valid also for digraphs, it
is clearly not possible to reduce this storage requirement in general.
However if the program was only intended to be applied on graphs with
very low degree, a different sort of representation would save space,
and probably time as well.

3-5 Efficiency of Algorithm 2.5

Algorithm 2-5 can easily be implemented using the dats structures
above. We will now consider the efficiency which.can be achieved in
such &n implementation. The following complexity result was suggested
by a related result in Gries [7]. For the necessary definitions, refer
back to Section 2.9.

76



3.6 Theorem For any G € G(V), 7 € (V) ond distsnct v1,v2, -+, ¥m-1 €
V, the derived partition nest [m1, 72, -+, mm] cen be computed in O(n®logn)
tHime, assuming an implementation in whick d(v, W) can be computed in time
proportional to |W|, foranyveV, WC V.

Proof: It is obvious that the time cccupied in the computation of miow;
for 1<+<m-1and in Step (1) of Algorithm 2-5 will be O{n?). Since
each execution of Step (2) of Algorithm 2-5 requires only a fixed amount
of time and leads to an execution of Step (3), we are justified in

resfricting ocur attention to Step (3).

For any given W, the necessary r executions of 5tep (3} can be
performed in O(n|W|) time. Therefore the total tinme for the computation
of [, Mg, -+, m] is O(n® 4 n ) |W]), where the sum is over all sets
assigned to W during any execution of Step (2) (for any execution of
Algorithm 2.5).

Let z € V and consider the real variable g, defined at any
point of time during any execution of Algorithm 2.5 by gz = hg + 108310z
Here h; is the number of sets containing 2 which have been previously
assigned to W during an execution of Step (2), plus the number of sets
W; (m < j < M) which contain z, plus one for the set {z} = {w}
created by the operation miow;, if it exists and has not already been
counted. Alsc {; is the current size of the cell of & which contains
z. Note that hs, {. and g, are variables which frequently change value
during Algorithm 2.5.

The value of g, clearly remains constant or decreases between
different executions of Algorithm 2-5. The only other place where 1% can
change is during Step (3), when h, remains fixed while [ decreases, or
h, increases by one. In the latter case [, decreases by at least a factor
of two, so that g, does not increase. Therefore g, is non-increasing
throughout the computation, implying that its last value 1s bounded
above by its first, which is bounded above by 24 log,n. Therefore the
final value hy of hg is at most 24 log,n.

We conclude that the total time required for the computation
of [my,ma, +++, Tm] is O(n2+nzzevﬁz}=0(n2logn), as required. 0

T



For our particular choice of data structures, and cur particular
implementation environment, we have found that the fastest way to compute
d(v, W) for /30 < |W| < n approximately 1s to represent W as a bit-
vector and to count the number of one-bits in the bit-vector representing
N{v,G})NW. Although this technique (used for |W| > 1) appears to reduce
the total time in “the majority” of cases, 1t has the unfortunate side-
effect of invalidating the premises of Theorem 3.6. The best replacement
for the bound O(n’logn) which we have been able to prove is O(n®).
Since the time required for the computation of d[u,W) is now essentially
independent of EW|, Step (3) of Algorithm 2.5 can be simplified by using
t = 1. This is especially convenient if the sequence a is represented
43 & set of pointers to the array ¢ (see Section 3-2).

3.7 Efficiency of Algorithm 2.31

Let T7(G,7) be a portion of the search tree T(G,w) which is
examined by Algorithm 2.31. Let m; be the pumber of terminal nodes of
T'{G, 7} which are equivalent to the earliest terminal node ¢ (including
¢ itself). Let mo be the number of nodes of T*I:G,‘JT) which are not
equivalent to ¢ and which do not have any descendants in T'(G‘, 7). Let L
be the constant defined in Section 2-30. Then the total time required by
Algorithm 2-31 is O(min®logn 4 man®(L 4 logn)), under the conditions
of Theorem 3-6, where mz may depend on L. For our implementation, this
nust be increased to O(n’(mi -+ msz)+ manL). By Theorem 233, my < n,
but we have not found any reascnable bound on mg. It varies in a very
complicated manner with the initial labelling of the input graph and
the value of L.

3-8 Other implementation details

Algorithm 2.31 has been implemented on a Cyber 170 computer,
mainly in Fortran. Because of the difficulty in manipulating bit-vectors

efficiently in Portran, several small subroutines are coded in assembler
language.

The indicator function A is evaluated by the subroutine which
implements Algorithm 2.5. It is formed by taking cell sizes, relative

vertex degrees and other information which is computed in the course

78



of Algorithm 2-5, and merging these into a2 single integer value 1n &
#random” fashion (see Section 2.28).

4 technique which produced considerable improvements in ef-
ficiency in some cases invelves the updating of the graph G(p) when p is
updated. The computation of G(p) is quite time-consuming (up to about
6 seconds for n»n = 1000}, so this computation is delayed for as long &as

possible, in case it iIs not necessary.

3.9 Storage requirements

Let m be the number of machine-words required te hold a bit-
vector of size m. Let K be the maximum length of a node of T*(G,vr}.
Obviously K < n, but very much smaller values are normal. Define I as
before. The total amount of storage required by our implementation, ig-
noring & minor amount independent of m, is 2mn-+ 10n+m-4(m+ 4)K +2mL
words. This figure includes 2mn words for the storage of G and G{p).

I1f lab = false (see Algorithm 2-31), the storage requirement is reduced
by mn -+ 2n words.

3-10 Experimental performance

In figure 3-1 we give the execution time required for several
familles of graphs. In each description below, § gives the approximate
slope of the curve in the region 50 < » < 200, Although the results of
Section 3-8 predict a value of § > 4, even when m. = 0, the experimental
value of § 1s less than 3 in each of these classes.

enpty graph on n vertices (F — 2.8).

m-dimensional cube, where n= 2" (§ = 2-3).

QG © ;b

: random circulant graph of degree 10 (8 — 2.2). This is
defined by V(G)=V and E(G)= {zy||z-y| € W(nodn)},
where W is 2 random subset of {1,2,---,|(n—1)/2]} of size
5.

Res : “randon” regular graph of degree ¢ (f = 2.9). There
is no known practical algorithm for randomly generating

regular graphs so that each graph appears with equal

79



1004
time
in
seconds

104

-0l

10

L ]
100C

number of wvertices



Rag

Gy

Ge

frequency. The graphs represented by the curve Ra were
made by randomly generating three permutations 5, ~2 and
43 € Sn such that 2% A z (5 € {7},95,4%} and z71 £ U
(1<i1<j< 3 for each z € V. Define G by V(G =V
and E(G)={=zz""|zeV,1<{<3} For »> 40 all those
graphs constructed had trivial automorphism groups, and
produced search trees with maximum depth Z.

same 43 Iy but with degree 20 (f = 2.6).

random graph (f — 2-0}. Each possible edge is independ-
ently chosen or not chosen with probability 1. The dashed
line marked P in figure 51 gives the average time required
for the computation of G(p) for some p. At least one
such step is essential for any program which computes
C(G,r) from G using an adjacency matrix representation.
Therefore figure 3-1 suggests that the performance of our

program is close to optimal for large random graphs.

¢ same as <1 but with {ab = false.

3.11 Harder examples

We have also tested our program on 4 number of graphs which have
traditionally been regarded as difficult cases for graph isomorphism

programs.

1)

(i1)

(1ii}

The strongly regular graphs with 25 vertices requirsd
between 0-1 and 2.4 seconds, with the average time belng

1-0 seconds.

& strongly regular graph G with 35 vertices can be formed
from a Steiner Triple System (ST3) with 15 points. The
vertices of & are the blocks of the 5TS, and two vertices
are adjacent if the corresponding blocks overlap. For the
80 graphs so formed, our progranm required between 0-3 and
7 seconds, with an average of 4.8 seconds. Most of these

graphs have a trivial automorphism group.

Certain strongly regular graphs (7 with n vertices can be
extended to graphs E(G), having 2n+2 vertices, which are

81



2-level regular (see Mathon [101). There are good theoreti-
cal reasons [10]1 to expect 2-level regular graphs to be
particularly difficult to process, and this is borne out
by experience. The graphs Aeo and Bag (60 vertices; see
(10]) required 79 and 180 seconds respectively, while the
graphs Ass — D7z (72 vertices) required about 500 seconds
each.

3-12 Design isomorphism

A design D (also known as & hypergraph) 1s a pair of sets
(P, B), where B is a collection of subsets of P. The elements of P
are called poinis and the elements of B are called blocks. Two desligns
Dy = (P, B)) and Dy = (P, B,) are isomorphic 1f there are bijections
fi: P — P; and f,: B, > B, such that z e X implies fi(z) € fo(X) for
all z e P, and X € B,.

Given & design D = (P, B) we can construct a graph G = G(D),
wvhere V(G)=PUB and E(G)={zX [z eP,X c B,z X} It s easy
to prove ([31, [17]) that two designs D, = (P, B,) and Dy = (P, Bs)
are isomorphic if and only if there is an isomorphism f:G(D;) — G[D-)
such that f(P) = P, and f(B;) = B,. Therefore Algorithm 2.31 can be
used for design isomorphism.

If D is a balanced incomplete block-design (BIBD) then G(D}
is known to present difficulties for many graph isomorphism programs,
and ours is no exception. Two 50-vertex graphs G(D), named Asp and Bso
in [101, required about 60 seconds each. In another experiment [18], we
established the isomorphism of six BIBDs with 36 points and 36 blocks
(s0 m==1T2) using about 6.6 seconds of machipe time each. The spmallness
of this figure is principally due to the reasonably rich automorphism

groups of the designs.

A much more difficult problem posed by two BIBRDs with 126 points
and 525 blocks has been previously discussed in Stanton and McKay [17].

3-13 Hadamard equivalence

Let M; and Ms be two m X n matrices with =+1 entries. We say
that M, and My are Hadamard equivalent 1f M, can be obtained from

82



M by applying an element of the group I generated by the following
pperations.

To @ Permute the rows according to o € 8.
gz + Permute the columns according to § e Sy.
re @ Multiply row s by -1 (1 <1< m).

¢; © Multiply column 7 by -1 (1< 7 < n).

Suppose that M is any mX n matrix with +1 entries. Define G =
G(M) to be the graph with V(G) = {v;, 8, w;,#; |1 <i<m1<j<n}
and E(G) = {vew;,0:; |1 € 1< m,1 <7< n My; = 1}U {wd;, 5w |
1<t+<m1<7<nM;=-1} We will refer to the vertices »; and #;
as v-iype vertices. The following theorem first appeared 1n McKay [16].

3-14 Theorem Let G; = G(M,) and Gz = G{Ms). Then M; and M, are
Hadamard equivalent if and only if there is an isomorphism from G, to Gy
which maps the v-type vertices of Gy onto those of Gs. O

If M is a Hadamard matrix (m=n and M™M = nl) then the
graph G(M) may prove exceedingly difficult for Algorithm 2-31. This was
dliscovered when our implementation was applied to a collection of 126
Hedamard matrices of order 24, produced by . Dibley and W.D. Wallis, in
an attempt to determine the equivalence classes. Several of the graphs,
having large automorphism groups, were processed in about 300 seconds,
but some of those with smaller automorphism groups would require more
than 1800 seconds — the program was not run to completion. These graphs
are all 2-Tevel regular in the sense of Mathon [10], but are very much
harder than those given in [10], even though they have larger groups. The
reason for this is that the search tree T*(G, w) has depth 7 or 8 (compared
with 4 for the graphs in [101), although only 2 or 3 vertices generally
need to be fixed in order to eliminate any non-trivial automorphisms.

This means that the automorphism group is of no use for a large part of
(G, 7).

Other workers (see [6] for example) have found that a count of

small subgraphs (e.g. cliques) can often be used to provide an initial

83



partitioning of the vertices of a difficult graph, which greatly speeds
up & subsequent isomorphism test. Similar techniques can be used here,
but they are of no use in many cases. Some of the hardest graphs amongst
the 126 mentioned above have only two crbits (the v-type vertices and the
others) — the initial partitioning which we were using anyway (because of
Theorem 3-15). However we have devised a method based on a generalisation
of the profile defined in [5] which can be used to refine the partitions
at the immediate successors of the root node in T*U?,w). With this
improvenment, wWe can now process these graphs in ahout 20 seconds on the
average.

An algorithm specifically for eguivalence of Hadamard matrices
has been defined by Leon [%], The details given in [9] are insufficient to
permit a direct comparison with our technique, but a cursory examination

suggests that Leon's fechnique may be competitive with ours for this
particular problem.

EXAMPLES

In this section we give two examples of the automorphism group
generators produced by Algorithm 2.31. In each case we will use the
notation defined in Section 2.32.

4-1 First example

In our first example & is the S-dimensionzl cube defined as
follows.

V(G) :{(ilj-Jklifm] |£ljfklglme{01 1}}
E(G) = { (i1, 1, k1, b, m1)(¥z, 2, ke, o, ma) | (51— 12)* + (51— Jo)°
~+- (k] — kz)z —I— (Il — !2]2 + (m1 - mg}2 =1 }

The elements of V(G) are numbered 1,2,-..,32 in lexicographic order.

For this graph we find K =5, %, =1, ws; = 18, ws; = 24,
wy = 28 and wy; = 30. The output produced is as below. The execution
time was 0-18 seconds.

(3 53 (4 6) (11 13> (12 14) (19 21) (20 22) (27 29) (28 I0)
Ir® = 2 |gr*) = 24



(2 36 70 11) {14 15> (18 19) (22 23) (26 27) (30 31)

[r®) = 6 |6(reN] = 16
(5 9) (6 10) (7 11) (8 12) (21 25) (22 26) (23 27) (24 28)
Ir® = 24 |6(r®) = 10

(9 17) (10 18) (11 18) (12 20) (13 21) (14 22) (15 23) (16 24)

r@i= 120 grY) = s

(123 4 (5 6)(7 8 (9 10) (11 12) (13 14) (15 16) (17 18) (19 20
(21 22) (23 24) (25 26) (27 28) (29 30) (31 32)

IF| = 3840 [8(I)] = 1

4.2 Second example

In our second example G is the lexicographic product Cj[Cy

defined as follows.
Vig)={(7|1<+7<5}
E(G} = {{{1, 71)(2, 32) | i1~ 42| = 1(mod 5) or
11 =1z ond |51 - jo| = I(mod 5) }

The vertices are labelled 1,2,---,25 in lexicographic order.

For this graph we find K =10, w1 =1, we =3, wz =11,
wy = 13, ws =16, wg=18, wr = 21, wg= 23, wy =26 and wio = 8. The

output below was generated in 0, 23 seconds.

(7 10) (8 9)

[r@) = 2 Br®) =13
(6789 10)

Ir®) = 10 areh = 21
(22 25) (23 24)

|FM) = 20 |o(ry = 19
(21 22 23 24 25)

Ir®) = 100 |or®) = 17
(17 20) (18 19)

[P = 200 |G = 15
(16 17 18 19 20

P = 1000 A= 13
(12 15) (13 14

Ir® = 2000  Je(r®Y = 11

85



(11 12 13 14 15
6 213 (7 223 (B 233 (9 24) (10 25) (11 163 (12 17) (13 18> (14 19) (15 20)

r® = 20000 |6r®) = 7
25349
I = 0000 [ = &
(12345

(16 1116 2152 7 12 17 22) (3 8 13 18 23) (4 9 14 19 24) (5 10 15 20 25)
|| = 1000000  |8(F) = 1

REFERENCES

[11 V.L. Arlazarov, I.I1. Zuev, A.V. Uskov and I.4A. Faradzev: An
algorithm for the reduction of finite non-oriented graphs to
canonical form. Zh. vfchisi. Matl. mai. Fiz. 14, 3 (1974
737-743.

[2] T. Beyer and A. Proskurowski: Symmetries in the graph coding
problem. Proc. NW76 ACM/CIPC Pac. Symp. (1976) 198-203.

[2] C. Bohm and A. Santolini: A quasi-decision algorithm for the
p-equivalence of two matrices. ICC BULLETIN 3, 1 (13%64)
57-68.

[41 J.A. Bondy and U.35.R. Murty: Graph Theory with Applications,

Macmillan {1976).

{5] J. Cooper, J. Milas and W.D, Wallis: Hadamard egulvalence.
International Conference on Combinatorial Mathematics, Canberra

(1877), Lecture Notes in Mathematics 686, Springer-Verlag
126135,

[6] D.G. Cornell and R.A. Mathon: Algorithmlc techniques for the
generation and analysis of strongly regular graphs and other
combinatorial configurations. Annals of Discrete Math. 2 (1978)
1-32.

71 D. Gries: Describing an algorithm by Hopcroft. Acte Informatica
2 (1973) 97-109.

86



[al

(9]

[10]

(111

[12]

[13]

[141

[15]

[16]

[17]

(181

[19]

J. Hopcreft: An nlogn algorithm for minimizing states in

a finite automaton. Theory of Machines and Computations.
Academic Press (1371) 189-196,

J.S5. Leon: An algorithm for computing the automorphism group

of a Hadamard matrix. J. Combinatorial Theory (A) 27 (1979)
289-306.

R, Mathon: Sample graphs for isomorphism testing. Proc.

gth. Southeastern Conf. on Comb., Graph Theory and Compuling
{1978), to appear.

R. Mathon: FPersonal communication.

B. 0. McKay: Beacktrack programming and the graph isomorphism
problem. M. Sc. Thesis, University of Melbourne (1976).

B.D. McKay: Backtrack programming and isomorph rejection on
ordered subsets. Ars Combinatortg 5 (1978) 65-99,

B.D. McKay: Computing automorphisms and canonical labellings of
graphs. International Conference on Combinatorial Mathematics,

Canberra (1877), Lecture Notes in Mathematics 686, Springer-

Verlag, 223-232.

B.D. McKay: Topics in Computational Graph Theory. Ph. D.
Thesis, University of Melbourne (1580).

B.D. McKay: Hadamard equivalence via graph isomorphism. Discrete
Math. 27 (1979) 213-214.

B.D. McKay and R.G. 3Stanton: Isomorphism of two large designs.
Ars Combinatoria 6 (1978) 87-90.

B.D. McKay and R.G. Stanton: Some graph iscmorphism computa-
tions. Ars Combinatoria, 9 (1980) 307-313.

H. Wielandt: Finite Permutafion Groups. Academic Press (1964).



