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What is Automated Reasoning?

Theme

Building push-button technology (software) for mathematical-logical

reasoning on computer

Relevant fields

• Mathematical logic and philosophy: formal logics and calculi

• Theoretical computer science: computability theory, complexity theory

• Applied and practical computer science: artifical intelligence, data

structures and algorithms

Applications: Software verification, hardware verification, analysing dynamic

properties of reactive systems, databases, mathematical theorem proving,

planning, diagnosis, knowledge representation (description logics), logic

programming, constraint solving

Automated Reasoning systems parametrized in

logic and reasoning service
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Logics and Reasoning Service: Theorem Proving

Mathematical structures, e.g. groups

∀x 1 · x = x ∀x x · 1 = x (N)

∀x x−1 · x = 1 ∀x x · x−1 = 1 (I)

∀x , y , z (x · y) · z = x · (y · z) (A)

Logic: First-order logic with equality

Reasoning Service: Theorem proving: prove that

∀x (x · x) = 1→ ∀x , y x · y = y · x follows

Meta-level: the word problem for groups is decidable
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Logics and Reasoning Service: Constraint Solving

The n-queens problem:

Given: An n × n chessboard

Question: Is it possible to place n queens so that no queen attacks any other?

A solution for n = 8

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Use a constraint solver to find a solution
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Logics and Reasoning Service: Constraint Solving

A Zinc model, ready to be run by a constraint solver:

int: n = 8;

array [1..n] of var 1..n: p;

constraint

forall (i in 1..n, j in i + 1..n) (

p[i] != p[j]

/\ p[i] + i != p[j] + j

/\ p[i] - i != p[j] - j

);

solve satisfy; output ["Solution: ", show(p), "\n"];

Logic: Integer arithmetic, quantifiers, arrays

Reasoning Service: Constraint solving

Search assignments for all vars p[1] to p[n] such that constraint is

satisfied

With n fixed, all variables and i and j range over finite domains.
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Logics and Reasoning Service: Constraint Solving

The same problem, written in sorted first-order logic:

n : Z (Declaration of n)

p : Z 7→ Z (Declaration of p)

n = 8

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

p(i) 6= p(j) ∧ p(i) + i 6= p(j) + j ∧ p(i)− i 6= p(j)− j)
(Queens)

p(1) = 1 ∨ p(1) = 2 ∨ · · · ∨ p(1) = 8 (p(1) ∈ {1, . . . , n})

...

p(8) = 1 ∨ p(8) = 2 ∨ · · · ∨ p(8) = 8 (p(n) ∈ {1, . . . , n})

Logic: Integer arithmetic, quantifiers, “free” symbol p

Reasoning Service: Satisfiability: find a satisfying interpretation I (a model)

and evaluate I (p(1)), . . . , I (p(n)) to read off the answer
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Logics and Reasoning Service: Constraint Solving

Summary so far

• Constraint solvers are applicable when all variables range over finite

domains. They can exploit this fact when searching for a solution, in

particular for “constraint propagation”

• Theorem provers are intended to work on infinite domains. In the

N-queens example the variables are quantified over finite domains only

coincidentially.

• On finite search problems constraint solvers perform usually much better

So, why theorem proving?

Answer: for analysing the problem for any board size n
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Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Number of solutions, depending on n:

“unique” is “distinct” modulo reflection/rotation symmetry

For efficiency reasons better avoid searching symmetric solutions
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Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

• The n-queens has variable symmetry: mapping p[i ] 7→ p[n + 1− i ]

preserves solutions, for any n

• Therefore, it is justified to add (to the formalization) a constraint

p[1] < p[n], for search space pruning

• But how can we know that the problem has symmetries?

This is a theorem proving task!
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Proving Symmetry: Formalization

We need two “copies” (Queens p) and (Queens q) of the constraint:

n : Z (Declaration of n)

p, q : Z 7→ Z (Declaration of p, q)

perm : Z 7→ Z (Declaration of perm)

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

p(i) 6= p(j) ∧ p(i) + i 6= p(j) + j ∧ p(i)− i 6= p(j)− j)
(Queens p)

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

q(i) 6= q(j) ∧ q(i) + i 6= q(j) + j ∧ q(i)− i 6= q(j)− j)
(Queens q)

∀i : Z perm(i) = n + 1− i (Def. permutation)

Logic: Integer arithmetic, quantifiers, “free” symbol p

Reasoning Service: Entailment (logical consequence)

The above entails (Queens p) ∧ (∀i : Z q(i) = p(perm(i)))⇒ (Queens q)

which expresses the symmetry property. Use a theorem prover
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Logics and Reasoning Service - Spectrum

Logics

Base logic: propositional/first-order/higher-order

Syntactic fragments

(Description Logics, Datalog, ...)

Classical/non-monotonic

Modalities (temporal, deontic, ...)

Over structures (finite trees, graphs,...)

Modulo Theories (equality, arithmetic, ...)

Services

Model checking

(evaluation)

Satisfiability

(minimal models)

Validity

Induction

Abduction

Almost any subset of the left column (potentially) makes sense

The challenge is to build “decent” calculi/theorem provers:

theoretically analysed, avoiding redundancies, practically useful,

meaningful answers (proofs, models), ...
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Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
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Propositional Logic – Syntax

Atom truth symbols ⊤(“true”) and ⊥(“false”)

propositional variables P ,Q,R ,P1,Q1,R1, · · ·

Literal atom α or its negation ¬α

Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)

F1 ∧ F2 “and” (conjunction)

F1 ∨ F2 “or” (disjunction)

F1 → F2 “implies” (implication)

F1 ↔ F2 “if and only if” (iff)
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Example

Formula F : (P ∧ Q) → (⊤ ∨ ¬Q)

Atoms: P ,Q,⊤

Literal: ¬Q

Subformulas: P ∧ Q, ⊤ ∨ ¬Q

Abbreviation (leave parenthesis away)

F : P ∧ Q → ⊤ ∨ ¬Q
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Propositional Logic – Semantics (meaning)

Formula F + Interpretation I = Truth value

(true, false)

Interpretation

I : {P 7→ true,Q 7→ false, · · · }

Evaluation of F under I :

F ¬F

0 1

1 0

where 0 corresponds to value false

1 true

F1 F2 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true,Q 7→ false}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to true under I (“I satisfies F”)

I 6|= F false under I (“I falsifies F”)
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to true under I (“I satisfies F”)

I 6|= F false under I (“I falsifies F”)

Base Case:

I |= ⊤

I 6|= ⊥

I |= P iff I [P] = true

I 6|= P iff I [P] = false
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to true under I (“I satisfies F”)

I 6|= F false under I (“I falsifies F”)

Base Case:

I |= ⊤

I 6|= ⊥

I |= P iff I [P] = true

I 6|= P iff I [P] = false

Inductive Case:

I |= ¬F iff I 6|= F

I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2, or I 6|= F1 and I 6|= F2

Note: I 6|= F1 → F2 iff I |= F1 and I 6|= F2
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬

4. I 6|= P ∧ Q by 2 and ∧
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬

4. I 6|= P ∧ Q by 2 and ∧

5. I |= P ∨ ¬Q by 1 and ∨
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬

4. I 6|= P ∧ Q by 2 and ∧

5. I |= P ∨ ¬Q by 1 and ∨

6. I |= F by 4 and →
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Example

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬

4. I 6|= P ∧ Q by 2 and ∧

5. I |= P ∨ ¬Q by 1 and ∨

6. I |= F by 4 and →

Thus, F is true under I .
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Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that I |= F .

In this case I is called a model of F .

F valid iff for all interpretations I , I |= F .

A formula G entails F iff for all interpretations I , if I |= G then I |= F .

Notation: G |= F .

Important Facts

F is valid iff ¬F is unsatisfiable

G |= F iff G ∧ ¬F is unsatisfiable

Note: Thus, “validity” and “entailment” can be reduced to unsatisfiability.
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Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Thus F is valid.
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Method 1: Truth Tables

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F

0 0 0 0 1 ← satisfying I

0 1 1 0 0 ← falsifying I

1 0 1 0 0

1 1 1 1 1

Thus F is satisfiable, but invalid.
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Examples

Which of the following formulas is satisfiable, which is valid?

1. F1 : P ∧ Q

2. F2 : ¬(P ∧ Q)

3. F3 : P ∨ ¬P

4. F4 : ¬(P ∨ ¬P)

5. F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
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Examples

Which of the following formulas is satisfiable, which is valid?

1. F1 : P ∧ Q

satisfiable, not valid
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Examples

Which of the following formulas is satisfiable, which is valid?
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satisfiable, not valid

2. F2 : ¬(P ∧ Q)

satisfiable, not valid

3. F3 : P ∨ ¬P

satisfiable, valid

4. F4 : ¬(P ∨ ¬P)
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5. F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
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Examples

Which of the following formulas is satisfiable, which is valid?

1. F1 : P ∧ Q

satisfiable, not valid

2. F2 : ¬(P ∧ Q)

satisfiable, not valid

3. F3 : P ∨ ¬P

satisfiable, valid

4. F4 : ¬(P ∨ ¬P)

unsatisfiable, not valid

5. F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q

unsatisfiable, not valid
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Method 2: Tableau Calculus (Not Here)

I |= ¬F

I 6|= F

I 6|= ¬F

I |= F

I |= F ∧ G

I |= F

I |= G
←and

I 6|= F ∧ G

I 6|= F | I 6|= G

տor

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F

I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F

I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F

I 6|= F

I |= ⊥

23



Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic

• A (propositional) atom is a propositional variable.

• A literal is either an atom or the negation of an atom.

Example: A, ¬A
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic

• A (propositional) atom is a propositional variable.

• A literal is either an atom or the negation of an atom.

Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals (i.e. n-ary “∨” now).

Example: ¬B ∨ C ∨ ¬D
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic

• A (propositional) atom is a propositional variable.

• A literal is either an atom or the negation of an atom.

Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals (i.e. n-ary “∨” now).

Example: ¬B ∨ C ∨ ¬D

• A formula is in clause normal form, or conjunctive normal form (CNF) iff

it is a conjunction of clauses.

Example: (¬A ∨ B) ∧ A ∧ (¬B ∨ C ∨ ¬D)
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic

• A (propositional) atom is a propositional variable.

• A literal is either an atom or the negation of an atom.

Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals (i.e. n-ary “∨” now).

Example: ¬B ∨ C ∨ ¬D

• A formula is in clause normal form, or conjunctive normal form (CNF) iff

it is a conjunction of clauses.

Example: (¬A ∨ B) ∧ A ∧ (¬B ∨ C ∨ ¬D)

• A CNF is often identified with its clause set

Example: {¬A ∨ B ,A,¬B ∨ C ∨ ¬D}
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Method 3: DPLL

Davis/Putnam/Logemann/Loveland, 1960’s. Works with clause logic.

Clause Logic

• A (propositional) atom is a propositional variable.

• A literal is either an atom or the negation of an atom.

Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals (i.e. n-ary “∨” now).

Example: ¬B ∨ C ∨ ¬D

• A formula is in clause normal form, or conjunctive normal form (CNF) iff

it is a conjunction of clauses.

Example: (¬A ∨ B) ∧ A ∧ (¬B ∨ C ∨ ¬D)

• A CNF is often identified with its clause set

Example: {¬A ∨ B ,A,¬B ∨ C ∨ ¬D}

• Theorem provers often use proof by refutation: instead of proving

“Axiom1 ∧ · · · ∧ Axiomn ⇒ Conjecture is valid” prove

“Axiom1 ∧ · · · ∧ Axiomn ∧ ¬Conjecture is unsatisfiable”.
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DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals.

Consistency: No branch contains the labels A and ¬A, for no A

Every branch in a tree is taken as a (consistent) set of its literals

A consistent set of literals S is taken as an interpretation:

Positive literals: if A ∈ S then (A 7→ true) ∈ I

Negative literals: if ¬A ∈ S then (A 7→ false) ∈ I

Default: if A /∈ S and ¬A /∈ S then (A 7→ false) ∈ I
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DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals.

Consistency: No branch contains the labels A and ¬A, for no A

Every branch in a tree is taken as a (consistent) set of its literals

A consistent set of literals S is taken as an interpretation:

Positive literals: if A ∈ S then (A 7→ true) ∈ I

Negative literals: if ¬A ∈ S then (A 7→ false) ∈ I

Default: if A /∈ S and ¬A /∈ S then (A 7→ false) ∈ I

Example

{A,¬B ,D} stands for

I : {A 7→ true, B 7→ false, C 7→ false, D 7→ true}
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{} 6|= A ∨ B

{} |= C ∨ ¬A

{} |= D ∨ ¬C ∨ ¬A

{} |= ¬D ∨ ¬B

〈empty tree〉

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

26



DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A} |= A ∨ B

{A} 6|= C ∨ ¬A

{A} |= D ∨ ¬C ∨ ¬A

{A} |= ¬D ∨ ¬B

A ¬A

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C} |= A ∨ B

{A,C} |= C ∨ ¬A

{A,C} 6|= D ∨ ¬C ∨ ¬A

{A,C} |= ¬D ∨ ¬B⋆

A

C ¬C

¬A

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C ,D} |= A ∨ B

{A,C ,D} |= C ∨ ¬A

{A,C ,D} |= D ∨ ¬C ∨ ¬A

{A,C ,D} |= ¬D ∨ ¬B

Model {A,C ,D} found.

A

C ¬C

D ¬D

¬A

⋆

⋆

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{B} |= A ∨ B

{B} |= C ∨ ¬A

{B} |= D ∨ ¬C ∨ ¬A

{B} |= ¬D ∨ ¬B
B

A

C ¬C

D ¬D

¬A

¬B

⋆

⋆ ⋆

Model {B} found.

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)
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DPLL Pseudocode

literal L: a variable A or its negation ¬A

clause: a set of literals, e.g., {A,¬B ,C}, connected by “or”

function DPLL(N) %% N is a set of clauses, connected by "and"

while N contains a unit clause {L} %% L is a implied

N := simplify(N, L);

if N = {} then return true;

if {} ∈ N then return false;

L := choose-literal(N); %% L is a decision literal

if DPLL(simplify(N, L)) then return true;

else return DPLL(simplify(N, ¬L));

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

(The semantic tree method does not show unit propagation.)
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

=
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

= { C , D ∨ ¬C , ¬D ∨ ¬B}
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

= { C , D ∨ ¬C , ¬D ∨ ¬B}

simplify({ C , D ∨ ¬C , ¬D ∨ ¬B}, C )

=
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

= { C , D ∨ ¬C , ¬D ∨ ¬B}

simplify({ C , D ∨ ¬C , ¬D ∨ ¬B}, C )

= { D , ¬D ∨ ¬B}
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

= { C , D ∨ ¬C , ¬D ∨ ¬B}

simplify({ C , D ∨ ¬C , ¬D ∨ ¬B}, C )

= { D , ¬D ∨ ¬B}

simplify({ D , ¬D ∨ ¬B}, D)

=
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Simplify Examples

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

simplify({A ∨ ¬B , C ∨ ¬A, D ∨ ¬C ∨ ¬A, ¬D ∨ ¬B}, A)

= { C , D ∨ ¬C , ¬D ∨ ¬B}

simplify({ C , D ∨ ¬C , ¬D ∨ ¬B}, C )

= { D , ¬D ∨ ¬B}

simplify({ D , ¬D ∨ ¬B}, D)

= { ¬B}
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Making DPLL Fast – Overview

Conflict Driven Clause Learning (CDCL) solvers extend DPLL:

Lemma learning: add new clauses to the clause set as branches get closed

(“conflict driven”)

Goal: reuse information that is obtained in one branch for subsequent

derivation steps.

Backtracking: replace chronological backtracking by “dependency-directed

backtracking”, aka “backjumping”: on backtracking, skip splits that are

not necessary to close a branch

Randomized restarts: every now and then start over, with learned clauses

Variable selection heuristics: what literal to split on. E.g., use literals that

occur often

Make unit-propagation fast: 2-watched literal technique

33



2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate
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1. Assignments developed in this order C
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unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)

1. Assignments developed in this order C − D − A
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)

1. Assignments developed in this order C − D − A

2. Watched literal ¬A is false now ❀ find another literal to watch
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.
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(only) clauses where ¬L is watched are visited.
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1. Assignments developed in this order C − D − A

2. Watched literal ¬A is false now ❀ find another literal to watch

Clause is now ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)

1. Assignments developed in this order C − D − A

2. Watched literal ¬A is false now ❀ find another literal to watch

Clause is now ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E

3. Extend with decision literal C − D − A − B
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.
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Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)

1. Assignments developed in this order C − D − A

2. Watched literal ¬A is false now ❀ find another literal to watch

Clause is now ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E

3. Extend with decision literal C − D − A − B

4. Imposible to watch two literals now ❀ E is unit-propagated
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5. Now have C − D − A − B − E maintains invariant
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2-Watched Literals Example

Idea: in an n-literal clause, n − 1 literals must be assigned false before it can

unit-propagate. Defer unit propagation until this is the case.

In a clause, two of its literals are watched. When a literal L is assigned a value,

(only) clauses where ¬L is watched are visited.

Invariant: if clause is not satisfied, watched literals are undefined.

Only clauses violating the invariant can unit-propagate

Clause ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E (watched literals underlined)

1. Assignments developed in this order C − D − A

2. Watched literal ¬A is false now ❀ find another literal to watch

Clause is now ¬A ∨ ¬B ∨ ¬C ∨ ¬D ∨ E

3. Extend with decision literal C − D − A − B

4. Imposible to watch two literals now ❀ E is unit-propagated

5. Now have C − D − A − B − E maintains invariant

Invariant is (also) maintained on backtracking to ¬B without extra work.

Then have C − D − A − ¬B
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Lemma Learning

A ¬A

B

 (1)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)
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Lemma Learning
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Lemma Candidates
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Lemma Learning

A ¬A
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Lemma Learning
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D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma
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Lemma Learning

A ¬A

C ¬C

B

D

* 
(3)

 (1)

 (2)

Lemma Candidates

     by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

¬C

(¬C ∨ ¬A)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C
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Further Information

The ideas described so far heve been implemented in the SAT checker zChaff:

Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean Satisfiability

Solvers, Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.

Other Overviews

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solvin SAT and SAT

Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland

precedure to DPLL(T), pp 937–977, Journal of the ACM, 53(6), 2006.

Armin Biere and Marijn Heule and Hans van Maaren and Toby Walsh.

Handbook of Satisability, IOS Press, 2009.
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First-Order Logic (FOL)

A1: Socrates is a human

A2: All humans are mortal

Recall: propositional logic: variables are statements ranging over {true/false}

SocratesIsHuman

SocratesIsHuman→ SocratesIsMortal

SocratesIsMortal

FOL: variables range over individual objects

human(socrates)

∀x . (human(x)→ mortal(x))

mortal(socrates)
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First-Order Logic Quiz

A1: Socrates is a human

A2: All humans are mortal

Translation into first-order logic:

A1: human(socrates)

A2: ∀x (human(x)→ mortal(x))

Which of the following (non-)entailment statements hold true?

1. {A1, A2} |= mortal(socrates)

2. {A1, A2} |= mortal(apollo)

3. {A1, A2} 6|= mortal(socrates)

4. {A1, A2} 6|= mortal(apollo)

5. {A1, A2} |= ¬mortal(socrates)

6. {A1, A2} |= ¬mortal(apollo)
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First-Order Logic Reasoning Services

Question
Theorem Prover

No (sometimes)

Formula(s)
Yes

Formula: First-order logic formula φ (e.g. the n-queens formulas above)

Usually with equality =

Sometimes from syntactically resricted fragment (e.g., Description logics)

Question: Is φ formula valid? (satisfiable?, entailed by another formula?)

Calculi: Superposition (Resolution), Instance-based methods, Tableaux, ...

Issues

• Efficient treatment of equality

• Decision procedure for sub-languages or useful reductions?

• Built-in inference rules for arrays, lists, arithmetics (still open research)
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First-Order Logic

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f ( )

Terms are well-formed expressions over variables and function symbols,

e.g. |f (x)− f (a)|

Predicate symbols < , =

Atoms are applications of predicate symbols to terms, e.g., |f (x)− f (a)| < ε

Boolean connectives ∧, ∨, →, ¬

Quantifiers ∀, ∃

The function symbols and predicate symbols comprise a signature Σ
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First-Order Logic

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Semantics: (Σ-)Algebras, or (Σ-)Interpretations

Universe (aka Domain): Set U

Variables 7→ values in U (mapping is called “assignment”)

Function symbols 7→ (total) functions over U

Predicate symbols 7→ relations over U

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”

Terms 7→ values in U

Formulas 7→ Boolean (Truth-) values
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Semantics - Example

Let ΣPA be the standard signature of Peano Arithmetic

The standard interpretation N for Peano Arithmetic then is:

UN = {0, 1, 2, . . .}

0N : 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations
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Semantics - Example

Evaluation of terms and formulas

Under the interpretation N and the assignment β : x 7→ 1, y 7→ 3 (to evaluate

the free variables) we obtain

(N,β)(s(x) + s(0)) = 3

(N,β)(x + y
.
= s(y)) = True

(N,β)(∀z z ≤ y) = False

(N,β)(∀x∃y x < y) = True

N(∀x∃y x < y) = True (Short notation when β irrelevant)

Important Basic Notion: Model

If φ is a closed formula, then, instead of I (φ) = True one writes

I |= φ (“I is a model of φ”)

E.g. N |= ∀x∃y x < y
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Reasoning Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f ) ∧ continuous(g) |= continuous(f + g) ?

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Additional complication: fix interpretation of some symbols (as in N above)
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Reasoning Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f ) ∧ continuous(g) |= continuous(f + g) ?

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Additional complication: fix interpretation of some symbols (as in N above)

In the following focus on “entailment”
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for refutational theorem proving
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Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for refutational theorem proving

Dual problem, much harder: to show φ 6|= ψ find a model of φ ∧ ¬ψ.
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Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

• Reduction of logical concepts (operators, quantifiers)

• Reduction of syntactical structure (nesting of subformulas)

• Can be exploited for efficient data structures and control
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Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

• Reduction of logical concepts (operators, quantifiers)

• Reduction of syntactical structure (nesting of subformulas)

• Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Prop: the given formula and its clause normal form are equi-satisfiable
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G ) ⇒P (F → G ) ∧ (G → F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G ) ⇒P Qy(F [y/x ] ρ G ), y fresh, ρ ∈ {∧,∨}

(QxF → G ) ⇒P Qy(F [y/x ]→ G ), y fresh

(F ρ QxG ) ⇒P Qy(F ρ G [y/x ]), y fresh, ρ ∈ {∧,∨,→}

Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

F [y/x ] is obtained from F by replacing every free (not bound) occurrence of

x in F by y . An occurrence of x in F is bound if this occurrence is within a

subformula Qx G of F .
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In the Example

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε)))
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Skolem Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).
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Skolem Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).

In the Example

∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε))

⇒S

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))
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Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a

conjunction of disjunctions of literals:

(F ↔ G ) ⇒K (F → G ) ∧ (G → F )

(F → G ) ⇒K (¬F ∨ G )

¬(F ∨ G ) ⇒K (¬F ∧ ¬G )

¬(F ∧ G ) ⇒K (¬F ∨ ¬G )

¬¬F ⇒K F

(F ∧ G ) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

They are to be applied modulo commutativity of ∧ and ∨
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In the Example

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

⇒K

0 < d(ε, a) ∨ ¬ (0 < ε)

¬ (|x − a| < d(ε, a)) ∨ |f (x)− f (a)| < ε ∨ ¬ (0 < ε)

Note: The universal quantifiers for the variables ε, a and x , as well as the

conjunction symbol ∧ between the clauses are not written, for convenience
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The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗

⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗

⇒K ∀x1, . . . , xm
︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci

Notions

An atom is the (arity respecting) application of a predicate symbol to some

terms. A literal L is an atom or a negated atom. A clause is a disjunction of

literals L1 ∨ · · · ∨ Ln, where n ≥ 0. The empty clause is written as ✷. A

clause set is a set of clauses, The set N = {C1, . . . ,Ck} is called the clausal

(normal) form (CNF) of F .

Note: Variables in clauses are implicitly universally quantified
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Where are we?

Instead of showing that a formula F is unsatisfiable, the proof problem from

now is to show that its CNF N is unsatisfiable

A CNF provides a simple syntactic structure, but does not give a clue how to

prove unsatisfiability. The naive approach of “checking all interpretations”

does not work: In general, there are infinitely many, even uncountably many

interpretations for a signature Σ.

So how to do that? “Herbrand theory” provides the answer.
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Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)
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Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

Proposition (Herbrand): Let N be a clause set and Ngr be the set of all

ground instances of all clauses in N.

N is unsatisfiable iff Ngr is unsatisfiable wrt. Herbrand interpretations

(essentially: propositional-logic unsatisfiable)

Proposition (compactness): Ngr is unsatisfiable wrt. Herbrand interpretations iff

some finite subset M ⊆ Ngr is unsatisfiable wrt. Herbrand interpretations

Propositional logic phase: Decide the satisfability of such finite sets M with a

SAT solver; Gilmore’s method

The above recasts usual notions of “Herbrand theory” in our application to

clause logic. “Herbrand’s Theorem” (1930s) is a stronger version of the two

propositions above combined
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Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}
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The underlying signature is Σ = {P/1, Q/2} ∪ {a/0, f /2}
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Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

The underlying signature is Σ = {P/1, Q/2} ∪ {a/0, f /2}

The ground terms (of Σ) are UH = {a, f (a), f (f (a)), f (f (f (a))), . . .

(aka Herbrand universe)

The ground instances of N is the set

Ngr = {P(a)}

∪ {¬P(a) ∨ P(f (a)), ¬P(f (a)) ∨ P(f (f (a))),

¬P(f (f (a))) ∨ P(f (f (f (a)))), . . .}

∪ {Q(a, a), Q(a, f (a)), Q(f (a), a), Q(f (a), f (a)), . . .}

∪ {¬P(f (f (a)))}
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Mapping to Propositional Logic

The Herbrand base, i.e., the set of all ground atoms is

HB = {P(a)
︸︷︷︸

A0

, P(f (a))
︸ ︷︷ ︸

A1

, P(f (f (a)))
︸ ︷︷ ︸

A2

, P(f (f (f (a))))
︸ ︷︷ ︸

A3

, . . .}

∪ {Q(a, a)
︸ ︷︷ ︸

B0

, Q(a, f (a))
︸ ︷︷ ︸

B1

, Q(f (a), a)
︸ ︷︷ ︸

B2

, Q(f (a), f (a))
︸ ︷︷ ︸

B3

, . . .}

By construction, every atom in Ngr occurs in HB

Replace in Ngr every (ground) atom by its propositional counterpart:

Ngr
prop = {A0}

∪ {¬A0 ∨ A1, ¬A1 ∨ A2,¬A2 ∨ A3, . . .}

∪ {B0, B1, B2, B3, . . .}

∪ {¬A2}

The subset {A0, ¬A0 ∨ A1, ¬A1 ∨ A2, ¬A2} is unsatisfiable, hence so is N.
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Herbrand Proposition

A Herbrand interpretation I is an interpretation such that (in the example)

U = UH = {a, f (a), f (f (a)), f (f (f (a))), . . .

a : a

f : t 7→ f (t)

In every Herbrand interpretation every ground term is always interpreted as

“itself”, e.g. I (f (f (a))) = f (f (a))

The universe UH of ground terms justifies expanding clauses into their ground

instances instead of using a separate mapping β from variables to U

With the universe U and the interpretation of the function symbols uniquely

fixed in every Herbrand interpretation, Herbrand interpretations vary only with

the interpretation of the predicate symbols.

This justifies to specify a Herbrand interpretation as a subset of HB , those

atoms that are True by definition. In the example, e.g., I = {P(a),Q(a, f (a))}
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Herbrand Proposition

Prove idea for the non-trivial direction

• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n
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Example : P(f (a)) ∈ I as 0 + 1 ≥ 0

• Given an atom A[x ] (with free variables x) and a ground term t.

Then I |= A[t] iff (J, [x 7→ J(t)] |= A[x ].

Example: let A[x ] = P(f (x)) and t = f (f (a))

I |= P(f ( f (f (a)) ))

iff J |= P(f ( f (f (a)) )) (By definition)

iff J, [x 7→ J(f (f (a)))] |= P(f (x)) (Use structural induction)
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• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n

• Define a Herbrand interpretation I ⊆ HB as follows:

For every ground atom K ∈ HB put K ∈ I iff J(K ) = True

That is, evaluate K in J to get a (the same) truth value for K in I .

Example : P(f (a)) ∈ I as 0 + 1 ≥ 0

• Given an atom A[x ] (with free variables x) and a ground term t.

Then I |= A[t] iff (J, [x 7→ J(t)] |= A[x ].

Example: let A[x ] = P(f (x)) and t = f (f (a))

I |= P(f ( f (f (a)) ))

iff J |= P(f ( f (f (a)) )) (By definition)

iff J, [x 7→ J(f (f (a)))] |= P(f (x)) (Use structural induction)

• From that the proposition follows easily. Compactness: see whiteboard
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

¬P(z, a)

Clause Form

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:

Given Formula

∧ ∀z ¬P(z, a)
P(f (x), x)
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

∧ ∀z ¬P(z, a)

Inner loop:

Given Formula

P(f (x), x)

69



Gilmore’s Method - Based on Herbrand’s Theorem

Outer LoopProof found

Grounding

Propositional
Method

Continue

¬P(z, a)∧ ∀z ¬P(z, a)

Given Formula

P(f (x), x)

STOP:

Clause Form

P(f (a), a)
¬P(a, a)

Sat?

∀x ∃y P(y , x)

No

Preprocessing:

Outer loop:

Inner loop:

Yes
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

Preprocessing:

Outer loop:

Inner loop:

¬P(f (a), a)

∧ ∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
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Gilmore’s Method - Based on Herbrand’s Theorem

Outer LoopProof found

Grounding

Propositional
Method

ContinueSTOP:

¬P(f (a), a)

∧ ∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop: Sat?
No Yes
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The Resolution Calculus

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems
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• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

• All modern calculi address this problem in one way or another, e.g.

- Avoidance: Resolution calculi do not need to generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

- Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way (see below)

Modern versions of the resolution calculus [Robinson 1965] are (still) the most

important calculi for first-order theorem proving today

We first consider the special case for propositional logic
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The Propositional Resolution Calculus

Propositional resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule:

C ∨ A ∨ A

C ∨ A

Terminology: C ∨ A: factor

These are schematic inference rules:

C and D – propositional clauses

A – propositional atom

“∨” is considered associative and commutative
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Derivations

Let N = {C1, . . . ,Ck} be a set of input clauses (propositional, for now).

A derivation (from N) is a sequence of the form

C1, . . . ,Ck
︸ ︷︷ ︸

Input

clauses

,Ck+1, . . . ,Cn, . . .
︸ ︷︷ ︸

Derived

clauses

such that for every n ≥ k + 1

• Cn is a resolvent of Ci and Cj , for some 1 ≤ i , j < n, or

• Cn is a factor of Ci , for some 1 ≤ i < n.

A refutation (of N) is a derivation from N that contains the empty clause ✷

Important results:

Soundness: If there is a refutation of N then N is unsatisfiable

Completeness: If N is unsatisfiable then there is a refutation of N
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Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)
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2. A ∨ B (given)
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4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. ✷ (Res. 4. into 9.)
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Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I be an interpretation. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A
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Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I be an interpretation. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

Ad (ii): even simpler
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Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete
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Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: semantic tree proof technique (see blackboard)

• This result can be considerably strengthened, some strengthenings come

for free from the proof

Propositional resolution is not suitable for first-order clause sets
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First-Order Resolution

Propositional resolution:

• refutationally complete,

• in its most naive version: not guaranteed to terminate for satisfiable sets

of clauses, (improved versions do terminate, however)

• in practice clearly inferior to the DPLL procedure (even with various

improvements).

But: in contrast to the DPLL procedure, resolution can be easily extended to

non-ground clauses (but see below First-order DPLL)
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First-Order Resolution through Instantiation

Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y ] [b/y ] [a/x ′, b/x ]
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First-Order Resolution through Instantiation

Problems:

• More than one instance of a clause can participate in a proof.

• Even worse: There are infinitely many possible instances.

Observation:

• Instantiation must produce complementary literals (so that inferences

become possible).

Idea:

• Do not instantiate more than necessary to get complementary literals.
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First-Order Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y ] [b/y ] [a/x ′]

[f (a, x)/z]
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Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking

the (ground) instances of finitely many first-order clauses (with variables)

effective and efficient.

Idea (Robinson 1965):

• Resolution for first-order clauses:

• Equality of ground atoms is generalized to unifiability of first-order

atoms;

• Only compute most general (minimal) unifiers.
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First-Order Resolution through Instantiation

Significance: The advantage of the method in (Robinson 1965) compared

with (Gilmore 1960) is that unification enumerates only those instances of

clauses that participate in an inference. Moreover, clauses are not right

away instantiated into ground clauses. Rather they are instantiated only

as far as required for an inference. Inferences with non-ground clauses in

general represent infinite sets of ground inferences which are computed

simultaneously in a single step.
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Substitutions and Unifiers

• A substitution σ is a mapping from variables to terms which is the

identity almost everywhere.

Example: σ = [y 7→ f (x), z 7→ f (x)]
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Substitutions and Unifiers

• A substitution σ is a mapping from variables to terms which is the

identity almost everywhere.

Example: σ = [y 7→ f (x), z 7→ f (x)]

• A substitution σ is applied to a term or atom t by replacing every

occurrence of every variable x in t by σ(x).

Instead of σ(t) one usually writes tσ

Example, with σ is from above: P(f (x), y)σ = P(f (x), f (x))
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Substitutions and Unifiers

• A substitution γ is a unifier of s and t iff sγ = tγ.

A unifier σ is most general iff for every unifier γ of the same terms there

is a substitution δ such that γ = δ ◦ σ (=: σδ). Notation: σ = mgu(s, t)

Example:

s = car(red , y , z)

t = car(u, v , ferrari)
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Example:
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Then
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Substitutions and Unifiers

• A substitution γ is a unifier of s and t iff sγ = tγ.

A unifier σ is most general iff for every unifier γ of the same terms there

is a substitution δ such that γ = δ ◦ σ (=: σδ). Notation: σ = mgu(s, t)

Example:

s = car(red , y , z)

t = car(u, v , ferrari)

Then

γ = [u 7→ red , y 7→ fast, v 7→ fast, z 7→ ferrari ] is a unifier,

and

σ = [u 7→ red , y 7→ v , z 7→ ferrari ] is a mgu for s and t.

With δ = [v 7→ fast] obtain σδ = γ.
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Unification of Many Terms

Let E = {s1
.
= t1, . . . , sn

.
= tn} be a multiset of equations, where si and ti are

terms or atoms. The set E is called a unification problem.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

The rule system on the next slide computes a most general unifer of a

unification problems or “fail” (⊥) if none exists.
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Rule Based Naive Standard Unification

Starting with a given unification problem E , apply the following rules as long

as possible. The notation “s
.
= t, E” means “{s

.
= t} ∪ E”.

t
.
= t,E ⇒ E (Trivial)

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒ s1

.
= t1, . . . , sn

.
= tn,E (Decompose)

f (. . .)
.
= g(. . .),E ⇒ ⊥ (Clash)

x
.
= t,E ⇒ x

.
= t,E{x 7→ t} (Apply)

if x ∈ var(E ), x 6∈ var(t)

x
.
= t,E ⇒ ⊥ (Occur Check)

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒ x

.
= t,E (Orient)

if t is not a variable
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Example 1

Let E1 = {f (x , g(x), z)
.
= f (x , y , y)} the unification problem to be solved.

In each step, the selected equation is underlined.

E1 : f (x , g(x), z)
.
= f (x , y , y) (given)
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.
= y (by Orient)
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Example 1

Let E1 = {f (x , g(x), z)
.
= f (x , y , y)} the unification problem to be solved.

In each step, the selected equation is underlined.

E1 : f (x , g(x), z)
.
= f (x , y , y) (given)

E2 : x
.
= x , g(x)

.
= y , z

.
= y (by Decompose)

E3 : g(x)
.
= y , z

.
= y (by Trivial)

E4 : y
.
= g(x), z

.
= y (by Orient)

E5 : y
.
= g(x), z

.
= g(x) (by Apply {y 7→ g(x)})

Result is mgu σ = {y 7→ g(x), z 7→ g(x)}.
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Example 2

Let E1 = {f (x , g(x))
.
= f (x , x)} the unification problem to be solved.

In each step, the selected equation is underlined.

E1 : f (x , g(x))
.
= f (x , x) (given)

⊥
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Example 2

Let E1 = {f (x , g(x))
.
= f (x , x)} the unification problem to be solved.

In each step, the selected equation is underlined.

E1 : f (x , g(x))
.
= f (x , x) (given)

E2 : x
.
= x , g(x)

.
= x (by Decompose)

E3 : g(x)
.
= x (by Trivial)

E4 : x
.
= g(x) (by Orient)

E5 : ⊥ (by Occur Check)

There is no unifier of E1.
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Main Properties

The above unification algorithm is sound and complete:

Given E = s1
.
= t1, . . . , sn

.
= tn, exhaustive application of the above rules

always terminates, and one of the following holds:

• The result is a set equations in solved form, that is, is of the form

x1
.
= u1, . . . , xk

.
= uk

with xi pairwise distinct variables, and xi 6∈ var(uj).

In this case, the solved form represents the substitution

σE = [x1 7→ u1, . . . , xk 7→ uk ] and it is a mgu for E .

• The result is ⊥. In this case no unifier for E exists.

89



First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed

apart (made variable disjoint)
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First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed

apart (made variable disjoint)

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x ] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factoring]
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Example

(1) ∀x . allergies(x)→ sneeze(x)

(2) ∀x . ∀y . cat(y) ∧ livesWith(x , y) ∧ allergicToCats(x)→ allergies(x)

(3) ∀x . cat(catOf(x))

(4) livesWith(jerry, catOf(jerry))

Next

• Resolution applied to the CNF of (1) ∧ · · · ∧ (4).

• Proof that (1) ∧ · · · ∧ (4) entails allergicToCats(jerry)→ sneeze(jerry)
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Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

92



Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

92



Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

92



Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

(4) livesWith(jerry, catOf(jerry)) (Given)

92



Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

(4) livesWith(jerry, catOf(jerry)) (Given)

(5) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ allergies(x)

(Res 2+3, σ = [y 7→ catOf(x)])

92



Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

(4) livesWith(jerry, catOf(jerry)) (Given)

(5) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ allergies(x)

(Res 2+3, σ = [y 7→ catOf(x)])
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Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

(4) livesWith(jerry, catOf(jerry)) (Given)

(5) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ allergies(x)

(Res 2+3, σ = [y 7→ catOf(x)])

(6) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ sneeze(x)

(Res 1+5, σ = [])

(7) ¬allergicToCats(jerry) ∨ sneeze(jerry) (Res 4+6, σ = [x 7→ jerry])

Some more (few) clauses are derivable, but not infinitely many.

Not derivable are, e.g.,:

cat(catOf(jerry)), cat(catOf(catOf(jerry))), . . .

These clauses are represented as instances of the single clause (3).
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Refutation Example

We want to show

(1) ∧ · · · ∧ (4)⇒ allergicToCats(jerry)→ sneeze(jerry)
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is unsatisfiable.
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Equivalently, the CNF of

¬((1) ∧ · · · ∧ (4)→ (allergicToCats(jerry)→ sneeze(jerry)))

is unsatisfiable. Equivalently

(1) – (4) (Given)

(A) allergicToCats(jerry) (Conclusion)

(B) ¬sneeze(jerry) (Conclusion)

is unsatisfiable.
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Refutation Example

We want to show

(1) ∧ · · · ∧ (4)⇒ allergicToCats(jerry)→ sneeze(jerry)

Equivalently, the CNF of

¬((1) ∧ · · · ∧ (4)→ (allergicToCats(jerry)→ sneeze(jerry)))

is unsatisfiable. Equivalently

(1) – (4) (Given)

(A) allergicToCats(jerry) (Conclusion)

(B) ¬sneeze(jerry) (Conclusion)

is unsatisfiable.

But with the derivable clause

(7) ¬allergicToCats(jerry) ∨ sneeze(jerry)

the empty clause ✷ is derivable in two more steps.
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Sample Refutation – The Barber Problem

set(binary_res). %% This is an "otter" input file

formula_list(sos).

%% Every barber shaves all persons who do not shave themselves:

all x (B(x) -> (all y (-S(y,y) -> S(x,y)))).

%% No barber shaves a person who shaves himself:

all x (B(x) -> (all y (S(y,y) -> -S(x,y)))).

%% Negation of "there are no barbers"

exists x B(x).

end_of_list.

otter finds the following refutation (clauses 1 – 3 are the CNF of the above):

1 [] -B(x)|S(y,y)|S(x,y).

2 [] -B(x)| -S(y,y)| -S(x,y).

3 [] B($c1).

4 [binary,1.1,3.1] S(x,x)|S($c1,x).

5 [factor,4.1.2] S($c1,$c1).

6 [binary,2.1,3.1] -S(x,x)| -S($c1,x).

10 [factor,6.1.2] -S($c1,$c1).

11 [binary,10.1,5.1] $F.
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Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete
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contains the empty clause ✷

95



Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

• That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: Herbrand Theorem + Completeness of

propositional resolution + Lifting Lemma
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Lifting Lemma

Lemma 0.1 Let C and D be variable-disjoint clauses. If

D


y σ

Dσ

C


y ρ

Cρ

C ′
[propositional resolution]

then there exists a substitution τ such that

D C

C ′′



y τ

C ′ = C ′′τ

[first-order resolution]
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Lifting Lemma

An analogous lifting lemma holds for factoring.

Corollary: if N is a set of clauses closed under resolution and factoring, then

also the set of all ground instances of all clauses from N is closed under

resolution and factoring.

With this result, it only remains to be shown how a given set of clauses can

be closed under resolution and factoring. For this use, e.g., the “Given Clause

Loop”.
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The “Given Clause Loop”

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos.

Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.

98



The “Given Clause Loop” - Graphically
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Resolution – Further Topics

Overcoming the search space

• Restricting inference rules, in particular by ordering refinements.

A-ordered resolution permits resolution inferences only if the literals

resolved upon are maximal in their parent clauses.

• Resolution strategies, to compute (hopefully small) subsets of the full

closure under inference rule applications.

Set-of-support, Linear Resolution, Hyperresolution (see below), and more.

• Deleting clauses that are not needed to find a refutation.

In particular subsumption deletion: delete clause C in presence of a

(different) clause D such that Dσ ⊆ C , for some substitution σ.

• Simplification of clauses.

Implementation techniques: in particular term indexing techniques
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Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger:

Resolution Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C )σ

with σ = mgu(A1
.
= B1, . . . ,An

.
= Bn).

Similarly to resolution, hyperresolution has to be complemented by a factoring

inference.

101



Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
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Model Generation

For every FOL formula F exactly one of these three cases applies:

1. F is unsatisfiable

(Complete) theorem prover will detect this eventually (in theory)

2. F is satisfiable with only infinite models

Example: nat(0) lt(x , succ(N))← nat(x)

nat(succ(x))← nat(x) lt(x , z)← lt(x , y) ∧ lt(y , z)

¬lt(x , x)

Sometimes resolution refinements help to detect such cases

3. F is satisfiable with a finite model

A finite model-finder will detect this eventually (in theory)

The rest of this section is concerned with computing finite models.
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Model Generation

Two main applications:

• To disprove a “false” theorem by means of a counterexample, i.e., a

“countermodel”

• A model provides the expected answer, as in the n-queens puzzle

Some applications

Planning: Can be formalised as propositional satisfiability problem.

[Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of abnormal literals (circumscription). [Reiter, AI87]

Databases: View materialisation, View Updates, Integrity Constraints.

Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect,

Stable,. . . ), all based on minimal models. [Inoue et al, CADE 92]

Software Verification: Counterexamples to conjectured theorems.

Theorem proving: Counterexamples to conjectured theorems.

Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]
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Example - Discourse Representation

Natural Language Processing:

• Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far
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Example - Discourse Representation

Natural Language Processing:

• Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

• Consistency checks (“Mia’s husband loves Sally. She is not married.”)

BG -Knowledge ∪ Discourse so far 6|= ¬New utterance

iff BG -Knowledge ∪ Discourse so far ∪ New utterance is satisfiable

• Informativity checks (“Mia’s husband loves Sally. She is married.”)

BG -Knowledge ∪ Discourse so far 6|= New utterance

iff BG -Knowledge ∪ Discourse so far ∪ ¬New utterance is satisfiable
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Example - Model-Based Diagnosis [Reiter 87]

✲ ✛

✻

❄ ❄
Predicted

Behavior

Behavior

Differences
Observed

Behavior

System

Model Diagnosis
Actual

System

[0]

[0] [0]

inv1 inv2

or1

Formal Treatment:

COMP = Components

SD = System description, components are allowed to perform “abnormal”

OBS = Observations

Def. Diagnosis: Some minimal ∆ ⊆ COMP such that

SD ∪ OBS ∪ {ab(∆)} ∪ {¬ab(COMP −∆)} is satisfiable
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Formal Treatment

System Description SD =

OR1: ¬(ab(or1)) → high(or1, o) ↔ (high(or1, i1) ∨ high(or1, i2))

INV1: ¬(ab(inv1)) → high(inv1, o) ↔ ¬(high(inv1, i))

INV2: ¬(ab(inv2)) → high(inv2, o) ↔ ¬(high(inv2, i))

CONN1: high(inv1, o) ↔ high(or1, i1)

CONN2: high(inv2, o) ↔ high(or1, i2)

Observations OBS =

LOW INV1 I: ¬(high(inv1, i))

LOW INV1 I: ¬(high(inv2, i))

LOW OR1 O: ¬(high(or1, o))

Task: Find minimal ∆ ⊆ {ab(or1), ab(inv1), ab(inv2)} such that

SD ∪ OBS ∪ ∆ ∪ ¬∆ is satisfiable
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Formal Treatment

System Description SD =

OR1: ¬(ab(or1)) → high(or1, o) ↔ (high(or1, i1) ∨ high(or1, i2))

INV1: ¬(ab(inv1)) → high(inv1, o) ↔ ¬(high(inv1, i))

INV2: ¬(ab(inv2)) → high(inv2, o) ↔ ¬(high(inv2, i))

CONN1: high(inv1, o) ↔ high(or1, i1)

CONN2: high(inv2, o) ↔ high(or1, i2)

Observations OBS =

LOW INV1 I: ¬(high(inv1, i))

LOW INV1 I: ¬(high(inv2, i))

LOW OR1 O: ¬(high(or1, o))

Task: Find minimal ∆ ⊆ {ab(or1), ab(inv1), ab(inv2)} such that

SD ∪ OBS ∪ ∆ ∪ ¬∆ is satisfiable

Solutions: (1) ∆1 = {ab(or1)} and (2) ∆2 = {ab(inv1), ab(inv2)}
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Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?
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Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?

No, it does not
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Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2

and 3 are not commutative: Domain: {1, 2, 3, 4, 5, 6}

e : 1

i :
1 2 3 4 5 6

1 2 3 5 4 6

∗ :

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 4 3 6 5

3 3 5 1 6 2 4

4 4 6 2 5 1 3

5 5 3 6 1 4 2

6 6 4 5 2 3 1
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Finite Model Finding

Def: A formula F has the finite model property iff F has a model with a finite

domain. (The finite model property is undecidable.)

Question here: how to compute (“efficiently”) finite models?

Today’s finite model finders all follow a generate-and-test approach:

• Given a formula F in clause normal form.

• For each domain size n = 1, 2, . . . transform F into a clause set G (F , n)

such that G (F , n) is satisfiable iff F is satisfiable with the domain

D = {1, 2, . . . , n}

For each n, use a theorem prover to determine if G (F , n) is satisfiable.

If so, stop and report the model. Otherwise continue.
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Group Theory Example – G (F , n) as Reduction to SAT

Domain: {1, 2}

Clauses: {p(a) ∨ f (x) = a}

Flattened: p(y) ∨ f (x) = y ∨ a 6= y

Instances: p(1) ∨ f (1) = 1 ∨ a 6= 1

p(2) ∨ f (1) = 1 ∨ a 6= 2

p(1) ∨ f (2) = 1 ∨ a 6= 1

p(2) ∨ f (2) = 1 ∨ a 6= 2

Totality: a = 1 ∨ a = 2

f (1) = 1 ∨ f (1) = 2

f (2) = 1 ∨ f (2) = 2

Functionality: a 6= 1 ∨ a 6= 2

f (1) 6= 1 ∨ f (1) 6= 2

f (2) 6= 1 ∨ f (2) 6= 2

A model is obtained by setting the blue literals true
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Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
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Theory Reasoning

Let T be a first-order theory of signature Σ and L be a class of Σ-formulas.

• T can be given as a set of axioms (e.g., the theory of groups), or

• T can be given as a class of interpretations (e.g., the standard model of peano

arithmetic)

The T -validity Problem

• Given φ in L, is it the case that T |= φ ? More accurately:

• Given φ in L, is it the case that T |= ∀ φ ?

Examples

• “0/0, s/1, +/2, = /2, ≤ /2′′ |= ∃y .y > x

• The theory of equality E |= φ (φ arbitrary formula)

• “An equational theory” |= ∃ s1 = t1 ∧ · · · ∧ sn = tn

(E-Unification problem)

• “Some group theory” |= s = t (Word problem)

The T -validity problem is decidable (even semi-decidable) only for restricted L and T
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Approaches to Theory Reasoning

Question: Does T |= φ hold?

Question: Does Ax |=T Th hold? (Same question, take φ = Ax → Th)

Theory-Reasoning in Automated First-Order Theorem Proving

• φ is a first-order formula and T is for sub-signature only.

• In general not even semi-decidable.

• Semi-decidable, e.g., for T = equality, using inference rules like

paramodulation (see below).

Satisfiability Modulo Theories (SMT)

• φ is quantifier-free, i.e. all variables implicitly universally quantified.

• Decidable for many useful theories.

• Applications in particular to formal verification.

Simple example where T = “arrays+integers”:

{m ≥ 0 ∧ a[i ] ≥ 0} a[i ] := a[i ] +m {a[i ] ≥ 0}
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Theory Reasoning – Program Verification Example

declare-datatype Tree =

empty

| node of val: Int, left: Tree, right: Tree

@pre: searchtree(t)

@post: binSearch(t, v) <-> in(v, t)

def binSearch(t: Tree, v: Int) =

if (t = empty)

false

else {

if (v = val(t))

true

else if (v < val(t))

binSearch(left(t), v)

else

binSearch(right(t), v)

}
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Theory Reasoning – Program Verification Example

Partial correctness:

Assume precondition searchtree(t)

Proof of postcondition binSearch(t, v) <-> in(v, t) by induction:

Th1 =

forall t:Tree, v:Int

searchtree(t) ->

let res =

if t = empty then

false

else if v = val(t) then

true

else if v < val(t) then

in(v, left(t)) // by I.H.

else

in(v, right(t)) // by I.H.

in res <-> in(v, t)
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Theory Reasoning – Program Verification Example

Need to prove that precondition holds in induction case, so that I.H. can be

applied:

Th2 =

forall t:Tree, v:Int

searchtree(t) ->

if t = empty then

true

else if v = val(t) then

true

else if v < val(t) then

searchtree(left(t))

else

searchtree(right(t))
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Theory Reasoning – Program Verification Example

To prove Th1 and Th2 We need to provide axioms for

• the Tree datatype,

• the in-predicate, and

• the searchtree-predicate.
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Theory Reasoning – Program Verification Example

declare-datatype Tree =

empty

| node of val: Int, left: Tree, right: Tree

Axioms for Tree

%% Constructor axiom

forall t: Tree

t = empty or

t = node(val(t), left(t), right(t))

%% Injectivity of constructors

forall t1, t2: Tree, v: Int

empty /= node(v, t1, t2)

%% Selector axioms for val (similarly for left and right)

forall t1, t2: Tree, v: Int

val(node(v, t1, t2)) = v
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Theory Reasoning – Program Verification Example

in(v, t) holds true iff v is the value of some node in t.

TreeMembershipAxiom =

forall: tTree, v:Int

in(v, t) <->

if t = empty then

false

else if v = val(t) then

true

else if in(v, left(t)) then

true

else

in(v, right(t))
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Theory Reasoning – Program Verification Example

searchtree(t) holds true iff t is a search tree.

SearchTreeAxiom =

forall: tTree

searchtree(t) <->

if t = empty then

true

else

(forall v: Int

(if in(v, left(t)) then v =< val(t)) and

(if in(v, right(t)) then v > val(t))) and

searchtree(left(t)) and

searchtree(right(t))
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Theory Reasoning – Program Verification Example

The proof obligations in full:

1. TreeAxioms ∪ SearchTreeAxiom ∪ TreeMembershipAxiom |=T Th1

2. TreeAxioms ∪ SearchTreeAxiom ∪ TreeMembershipAxiom |=T Th2

over first-order logic with equality where T = linear integer arithmetic.

The free symbols (searchtree, ...) are not part of T , they are specified by the

axioms on the left of |=T .

For automatically proving 1 and 2 we need to extend the resolution calculus

by equality reasoning and by reasoning modulo a theory T .
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Equality

Reserve a binary predicate symbol ≈ (“equality”).

Intuitively, we expect that from the clauses

P(a) a ≈ b b ≈ c f (x) ≈ x f (x) ≈ g(x)

it follows, e.g.,

P(g(f (c)))

This requires to fix the meaning of ≈. Two options:

• Semantically: define ≈ = {(d , d) | d ∈ U}

(Recall that predicate symbols are interpreted as relations, U is the

universe)

• Syntactically: add equality axioms to the given clause set

The semantic approach cannot be used in conjunction with Herbrand models,

but the syntactic approach can.
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Handling Equality Naively - Equality Axioms

Let F be a first-order clause set with equality. The clause set EqAx(F )

consists of the clauses

x ≈ x

x ≈ y → y ≈ x

x ≈ y ∧ y ≈ z → x ≈ z

x1 ≈ y1 ∧ · · · ∧ xn ≈ yn → f (x1, . . . , xn) ≈ f (y1, . . . , yn)

x1 ≈ y1 ∧ · · · ∧ xm ≈ ym ∧ P(x1, . . . , xm)→ P(y1, . . . , ym)

for every n-ary function symbol f occurring in F and every m-ary predicate

symbol P occurring in F .

EqAx(F ) are the axioms of a congruence relation on terms and atoms.

It holds: F is satisfiable, where ≈ is defined semantically as in the previous

slide, if and only if F ∪ EqAx(Σ) is satisfiable, where ≈ is left undefined.
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Handling Equality Naively - Equality Axioms

By giving the equality axioms explicitly, first-order problems with equality can

in principle be solved by a standard resolution prover or instance-based

method.

But this is unfortunately not efficient (mainly due to the transitivity and

congruence axioms).

Modern systems “build-in” equality by dedicated inference rules, which are

(restricted) versions of the Paramodulation inference rule.
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Recapitulation: Resolution

Resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨ A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨ A ∨ A′

(C ′ ∨ A)σ

where σ = mgu(A,A′).
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Paramodulation

Ground inference rules:

Paramodulation:
D′ ∨ t ≈ t′ C ′ ∨ L[t]

D′ ∨ C ′ ∨ L[t′]

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

In the Paramodulation rule, L[t] means that the literal L contains the term t,

and L[t′] means that one occurrence of t in L has been replaced by t′.
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Paramodulation

First-order inference rules:

Paramodulation:
D′ ∨ t ≈ t′ C ′ ∨ L[u]

(D′ ∨ C ′ ∨ L[t′])σ

where σ = mgu(t, u) and

u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

These are the main inference rules for equality reasoning. Together with the

Resolution and Factoring inference rules, and an additional inference rule (not

shown here), one obtains a refutationally complete and sound calculus.

The calculus can still be considerably improved by means of ordering

restrictions.
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Resolution Modulo a Theory (Main Idea)

Problem: unification cannot detect “semantical equality” of T -terms:

P(1 + 2) ¬P(2 + 1)

?

Solution: abstraction for extracting T -terms for separate check later:

P(x) ∨ ¬(x = 1 + 2) ¬P(y) ∨ ¬(y = 2 + 1)

¬(x = 1 + 2) ∨ ¬(x = 2 + 1)

✷

(T -Close)

The premise of T -Close is a finite set of clauses N over the signature of T .

T -Close derives the empty clause ✷ from N iff N is unsatisfiable (wrt. all

models of T ).

Compactness/completeness issue: Z is not compact: {1 < a, 2 < a, 3 < a, . . .}

is unsatisfiable although every finite subset N is satisfiable.
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Satisfiability Modulo Theories (SMT)

Question
Theorem Prover

No

Formula(s)
Yes

Formula: first-order logic formula φ, over equality and other theories

Question: Is φ valid? (satisfiable? entailed by another formula?)

|=N∪L ∀l (c = 5→ car(cons(3 + c , l))
.
= 8)

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment (∀-quantifier left

of |=):

P(0) ∧ (∀x P(x)→ P(x + 1)) |=N ∀x P(x)

Design a “good” prover anyways (ongoing research)
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Checking Satisfiability Modulo Theories

Given: A quantifier-free formula φ (implicitly existentially quantified)

Task: Decide whether φ is T-satisfiable

(T -validity via “T |= ∀ φ” iff “∃ ¬φ is not T -satisfiable”)

Approach: eager translation into SAT

• Encode problem into a T -equisatisfiable propositional formula

• Feed formula to a SAT-solver

• Example: T = equality (Ackermann encoding)

Approach: lazy translation into SAT

• Couple a SAT solver with a given decision procedure for T-satisfiability of

ground literals, “DPLL(T)”

• For instance if T is “equality” then the Nelson-Oppen congruence closure

method can be used

• If T is “linear arithmetic”, a quantifier elimination method (see below)
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT: Summary

• Abstract T -atoms as propositional variables

• SAT solver computes a model, i.e. satisfying boolean assignment for

propositional abstraction (or fails)

• Solution from SAT solver may not be a T -model. If so,

• Refine (strengthen) propositional formula by incorporating reason for

false solution

• Start again with computing a model
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Optimizations

Theory Consequences

• The theory solver may return consequences (typically literals) to guide the

SAT solver

Online SAT solving

• The SAT solver continues its search after accepting additional clauses

(rather than restarting from scratch)

Preprocessing atoms

• Atoms are rewritten into normal form, using theory-specific atoms (e.g.

associativity, commutativity)

Several layers of decision procedures

• “Cheaper” ones are applied first
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Example Theory: Linear Arithmetic

Linear Rational Arithmetic (LRA) is the interpretation

ILA = (Q, (+ALA
,−ALA

, ∗ALA
), (≤ALA

,≥ALA
,<ALA

,>ALA
))

where +ALA
,−ALA

, ∗ALA
,≤ALA

,≥ALA
,<ALA

,>ALA
are the “standard”

intepretations of +,−, ∗,≤,≥,<,>, respectively.

The Problem

Within the DPLL(T) framework it is enough to design a decision procedure

for LRA-satisfiability of sets N (conjunctions) of literals. Note that (hence) all

variables in N are implicitly existentially quantified

Example:

N = {2x ≤ y , y < 6, 3 < y , 1 < x}

Question: Is there an assignment β for the variables x and y such that

(ILA,β) |= N ?
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Some Important LA Equivalences

The following equivalences are valid for all LA terms s, t:

¬s ≥ t ↔ s < t

¬s ≤ t ↔ s > t (Negation)

(s = t)↔ (s ≤ t ∧ s ≥ t) (Equality)

s ≥ t ↔ t ≤ s

s > t ↔ t < s (Swap)

With . we abbreviate < or ≤.
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The Fourier-Motzkin Procedure

boolean FM(Set N of LA atoms) {

if (N = ∅) return true;

elsif (N is ground) return ILA(N);

else {

select a variable x from N;

transform all atoms in N containing x into si . x , x . tj

and the subset N′ of atoms not containing x ;

compute N∗ := {si .i , j tj | si .i x ∈ N, x .j tj ∈ N for all i , j}

where .i , j is strict iff at least one of .i , .j is strict

return FM(N′ ∪ N∗);

}

}
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Properties of the Fourier-Motzkin Procedure

• Any ground set N of linear arithmetic atoms can be easily decided.

• FM(N) terminates on any N as in recursive calls N has strictly less

variables.

• The set N′ ∪ N∗ is worst case of size O(|N|2).

• FM(N)=true iff N is satisfiable in ILA.

• The procedure was invented by Fourier (1826), forgotten, and then

rediscovered by Dines (1919) and Motzkin (1936).

• There are more efficient methods known, e.g., the simplex algorithm.

• As said, the Fourier-Motzkin Procedure decides the satisfiability of a set

(conjunction) of linear arithmetic atoms, which is what is needed to build

a sound and complete DPLL(T)-solver.
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Combining Theories

145



Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method

148



Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Further Reading

• Wikipedia article on Automated Theorem Proving

en.wikipedia.org/wiki/Automated_theorem_proving

• Wikipedia article on Boolean Satisfiability Problem (propositional logic)

en.wikipedia.org/wiki/Boolean_satisfiability_problem

• Wikipedia article on Satisfiability Modulo Theories (SMT)

en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

• A good textbook with an emphasis on theory reasoning (arithmetic,

arrays) for software verification:

Aaron Bradley and Zohar Manna, The Calculus of Computation,

Springer, 2007

• Another good one, on what the title says, comes with OCaml code:

John Harrison. Handbook of Practical Logic and Automated

Reasoning, Cambridge University Press, 2009
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Implemented Systems

• The TPTP (Thousands of Problems for Theorem Provers) is a library of

test problems for automated theorem proving

www.tptp.org

• The automated theorem prover SPASS is an implementation of the

“modern” version of resolution with equality, the superposition calculus,

and comes with a comprehensive set of examples and documentation. A

good choice to start with.

www.spass-prover.org

• users.cecs.anu.edu.au/˜baumgart/systems/

157

www.tptp.org
www.spass-prover.org
users.cecs.anu.edu.au/~baumgart/systems/

	What is Automated Reasoning?
	Logics and Reasoning Service: Theorem Proving
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logical Analysis Example: N-Queens
	Logical Analysis Example: N-Queens
	Proving Symmetry: Formalization
	Logics and Reasoning Service - Spectrum
	Contents
	Propositional Logic -- Syntax
	Example
	Propositional Logic -- Semantics (meaning)
	Example
	Inductive Definition of PL's Semantics
	Inductive Definition of PL's Semantics
	Inductive Definition of PL's Semantics

	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Satisfiability and Validity
	Method 1: Truth Tables
	Method 1: Truth Tables
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

	Method 2: Tableau Calculus (Not Here)
	Method 3: DPLL
	Method 3: DPLL
	Method 3: DPLL
	Method 3: DPLL
	Method 3: DPLL
	Method 3: DPLL
	Method 3: DPLL

	DPLL Interpretations
	DPLL Interpretations

	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL Pseudocode
	Simplify Examples
	Simplify Examples
	Simplify Examples
	Simplify Examples
	Simplify Examples
	Simplify Examples

	Making DPLL Fast -- Overview
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example
	2-Watched Literals Example

	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Further Information
	Contents
	First-Order Logic (FOL)
	First-Order Logic Quiz
	First-Order Logic Reasoning Services
	First-Order Logic 
	First-Order Logic
	Semantics - Example
	Semantics - Example
	Reasoning Services Semantically
	Reasoning Services Semantically

	Reduction of Entailment to Unsatisfiability 
	Reduction of Entailment to Unsatisfiability 
	Reduction of Entailment to Unsatisfiability 
	Reduction of Entailment to Unsatisfiability 
	Reduction of Entailment to Unsatisfiability 
	Reduction of Entailment to Unsatisfiability 

	Normal Forms
	Normal Forms

	Prenex Normal Form
	Prenex Normal Form

	In the Example
	Skolem Normal Form
	Skolem Normal Form

	Clausal Normal Form (Conjunctive Normal Form)
	In the Example
	The Complete Picture
	Where are we?
	Contents
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem

	Ground Instances
	Ground Instances
	Ground Instances
	Ground Instances

	Mapping to Propositional Logic
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition

	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem

	Contents
	The Resolution Calculus
	The Resolution Calculus
	The Resolution Calculus
	The Resolution Calculus

	The Propositional Resolution Calculus
	Derivations
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation

	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution

	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution

	First-Order Resolution
	First-Order Resolution through Instantiation
	First-Order Resolution through Instantiation
	First-Order Resolution through Instantiation
	Lifting Principle
	First-Order Resolution through Instantiation
	Substitutions and Unifiers
	Substitutions and Unifiers

	Substitutions and Unifiers
	Substitutions and Unifiers
	Substitutions and Unifiers

	Unification of Many Terms
	Rule Based Naive Standard Unification
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1

	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2

	Main Properties
	First-Order Resolution Inference Rules
	First-Order Resolution Inference Rules

	Example
	Sample Derivation From (1) - (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)
	Sample Derivation From (1)
- (4)

	Refutation Example
	Refutation Example
	Refutation Example
	Refutation Example

	Sample Refutation -- The Barber Problem
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution

	Lifting Lemma
	Lifting Lemma
	The ``Given Clause Loop''
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically

	Resolution -- Further Topics
	Hyperresolution
	Contents
	Model Generation
	Model Generation
	Example - Discourse Representation
	Example - Discourse Representation
	Example - Discourse Representation

	Example - Model-Based Diagnosis [Reiter 87]
	Formal Treatment
	Formal Treatment

	Example - Group Theory
	Example - Group Theory

	Example - Group Theory
	Finite Model Finding
	Group Theory Example -- $G(F, n)$
as Reduction to SAT 
	Contents
	Theory Reasoning
	Approaches to Theory Reasoning
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Theory Reasoning -- Program Verification Example
	Equality
	Handling Equality Naively - Equality Axioms
	Handling Equality Naively - Equality Axioms
	Recapitulation: Resolution
	Paramodulation
	Paramodulation
	Resolution Modulo a Theory (Main Idea)
	Satisfiability Modulo Theories (SMT)
	Checking Satisfiability Modulo Theories
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT: Summary
	Optimizations
	Example Theory: Linear Arithmetic
	Some Important LA Equivalences
	The Fourier-Motzkin Procedure
	Properties of the Fourier-Motzkin Procedure
	Combining Theories
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Further Reading
	Implemented Systems

