Due date: November 23, 2011
Marking scheme: Full marks for a formulation that correctly answers the question and clearly shows the steps to obtain the solution.
Solutions to be submitted electronically by Email to Peter.Baumgartner@nicta.com.au. Scans of handwritten solutions are of course acceptable.

Question 1 (2 + 2 pts). True or false? Prove or find a counterexample:

1. For all propositional logic formulas F and G and suitable assignments A, if $(F \rightarrow G)$ is valid and $A \not|= G$ then $\neg F$ is satisfiable.

2. For all propositional logic formulas F and G, if $(F \rightarrow G)$ is satisfiable and F is satisfiable then G is satisfiable.

Question 2 (6 pts). Is the following propositional clause set M satisfiable? Justify your answer by a proof. (Hint: inductive proof, compactness.)

$$M = \{ A_1 \lor A_2, \neg A_2 \lor \neg A_3, A_3 \lor A_4, \neg A_4 \lor \neg A_5, \ldots \} .$$

Question 3 (10 pts). In class, the proof of Theorem 30 (completeness of propositional Resolution) was sketched by means of an example. Carry out the proof in its generality.

Question 4 (4 pts). In a criminal case the following facts have been shown to hold true:

1. At least one of the persons X,Y,Z is guilty.
2. If X is guilty and Y is not guilty, then Z is guilty.
3. If Y is guilty then Z is guilty.

Use propositional resolution to prove that one of X, Y, Z is guilty (who?). What can be said about the others?

Question 5 (3 + 3 pts). Convert these formulas to clause normal form:

1. $(((A \rightarrow B) \lor C) \rightarrow ((A \leftrightarrow B) \land C))$
2. $\forall x \ ((\forall x \ P(x)) \rightarrow \exists y \ Q(x, y))$

Question 6 (3 + 3 pts). Apply the unification algorithm presented in class to these sets of equations and read off the result, i.e., either FAIL or the unifier (a is a constant, x and y are variables):

1. $U = \{ x = y, f(f(x)) = f(y) \}$
2. \(U = \{ a = x, f(x, z) = y, f(z, x) = y \} \)

Question 7 (4 pts). Give a resolution refutation of the clause set

\[M = \{ P(x) \lor P(y), Q(x, f(x)) \lor \neg P(x), \neg Q(g(y), z) \} \]

Question 8 (5 + 5 pts). Given the following facts.

(i) Every barber shaves all persons who do not shave themselves.

(ii) No barber shaves a person who shaves himself.

(iii) There is no barber.

1. Formalize (i), (ii) and (iii) in first-order logic. Use \(B(x) \) for “\(x \) is a barber” and \(S(x, y) \) for “\(x \) shaves \(y \)”.

2. Use the automated theorem prover “Otter” to prove that (iii) follows from (i) and (ii).

Otter is available from http://www.cs.unm.edu/~mccune/otter/. Otter is usually very easy to install and comes with a good manual. Looking at the example problem [examples/auto/steam.in](http://www.cs.unm.edu/~mccune/otter/examples/auto/steam.in) should give you enough clues to get started. Remember that otter reads its input from standard input. This means otter needs to be invoked as “otter < myproblem.in”, not “otter myproblem.in”.