Classical Propositional Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/~baumgart/

Ph: 02 6218 3717

Data61/CSIRO and ANU

July 2017
Classical Logic and Reasoning Problems

\(A_1: \) Socrates is a human
\(A_2: \) All humans are mortal

Translation into first-order logic:
\(A_1: \) \(\text{human(socrates)} \)
\(A_2: \) \(\forall X \ (\text{human}(X) \rightarrow \text{mortal}(X)) \)

Reasoning problems
Which of the following statements hold true? (\(\models \) means “entails”)

1. \(\{A_1, A_2\} \models \text{mortal(socrates)} \)
2. \(\{A_1, A_2\} \models \text{mortal(apollo)} \)
3. \(\{A_1, A_2\} \not\models \text{mortal(socrates)} \)
4. \(\{A_1, A_2\} \not\models \text{mortal(apollo)} \)
5. \(\{A_1, A_2\} \models \neg \text{mortal(socrates)} \)
6. \(\{A_1, A_2\} \models \neg \text{mortal(apollo)} \)
Classical Logic and Reasoning Problems

A_1: Socrates is a human
A_2: All humans are mortal

Translation into first-order logic:
A_1: human(socrates)
A_2: $\forall X \ (\text{human}(X) \rightarrow \text{mortal}(X))$

Reasoning problems
Which of the following statements hold true? (\models means “entails”)
1. $\{A_1, A_2\} \models \text{mortal(socrates)}$
Classical Logic and Reasoning Problems

A_1: Socrates is a human
A_2: All humans are mortal

Translation into first-order logic:
A_1: \text{human}(socrates)
A_2: \forall X \ (\text{human}(X) \rightarrow \text{mortal}(X))$

Reasoning problems
Which of the following statements hold true? (\models means “entails”)

1. $\{A_1, A_2\} \models \text{mortal}(socrates)$
2. $\{A_1, A_2\} \models \text{mortal}(apollo)$
Classical Logic and Reasoning Problems

\(A_1: \) Socrates is a human
\(A_2: \) All humans are mortal

Translation into first-order logic:
\(A_1: \) human(socrates)
\(A_2: \) \(\forall X \left(\text{human}(X) \rightarrow \text{mortal}(X) \right) \)

Reasoning problems
Which of the following statements hold true? (\(\models \) means “entails”)

1. \(\{ A_1, A_2 \} \models \text{mortal}(\text{socrates}) \)
2. \(\{ A_1, A_2 \} \models \text{mortal}(\text{apollo}) \)
3. \(\{ A_1, A_2 \} \not\models \text{mortal}(\text{socrates}) \)
Classical Logic and Reasoning Problems

A_1: Socrates is a human
A_2: All humans are mortal

Translation into first-order logic:

A_1: $\text{human(\text{socrates})}$
A_2: $\forall X \ (\text{human}(X) \rightarrow \text{mortal}(X))$

Reasoning problems

Which of the following statements hold true? (\models means “entails”)

1. $\{A_1, A_2\} \models \text{mortal(socrates)}$
2. $\{A_1, A_2\} \models \text{mortal(apollo)}$
3. $\{A_1, A_2\} \not\models \text{mortal(socrates)}$
4. $\{A_1, A_2\} \not\models \text{mortal(apollo)}$

Topics of these lectures

What do these statements exactly mean?

Algorithms/procedures for reasoning problems like the above

Next: some applications
Classical Logic and Reasoning Problems

\(A_1: \) Socrates is a human
\(A_2: \) All humans are mortal

Translation into first-order logic:
\(A_1: \) human(socrates)
\(A_2: \) \(\forall X (\text{human}(X) \rightarrow \text{mortal}(X)) \)

Reasoning problems
Which of the following statements hold true? (\(\models \) means “entails”)

1. \(\{ A_1, A_2 \} \models \text{mortal}(\text{socrates}) \)
2. \(\{ A_1, A_2 \} \models \text{mortal}(\text{apollo}) \)
3. \(\{ A_1, A_2 \} \not\models \text{mortal}(\text{socrates}) \)
4. \(\{ A_1, A_2 \} \not\models \text{mortal}(\text{apollo}) \)
5. \(\{ A_1, A_2 \} \models \neg \text{mortal}(\text{socrates}) \)
Classical Logic and Reasoning Problems

\(A_1: \) Socrates is a human
\(A_2: \) All humans are mortal

Translation into first-order logic:
\(A_1: \) \text{human}(\text{socrates})
\(A_2: \) \(\forall X (\text{human}(X) \rightarrow \text{mortal}(X)) \)

Reasoning problems

Which of the following statements hold true? (\(\models \) means "entails")

1. \(\{A_1, A_2\} \models \text{mortal}(\text{socrates}) \)
2. \(\{A_1, A_2\} \models \text{mortal}(\text{apollo}) \)
3. \(\{A_1, A_2\} \not\models \text{mortal}(\text{socrates}) \)
4. \(\{A_1, A_2\} \not\models \text{mortal}(\text{apollo}) \)
5. \(\{A_1, A_2\} \models \neg \text{mortal}(\text{socrates}) \)
6. \(\{A_1, A_2\} \models \neg \text{mortal}(\text{apollo}) \)
Classical Logic and Reasoning Problems

A_1: Socrates is a human
A_2: All humans are mortal

Translation into first-order logic:

A_1: human(socrates)
A_2: $\forall X (\text{human}(X) \rightarrow \text{mortal}(X))$

Reasoning problems

Which of the following statements hold true? \models means “entails”

1. $\{A_1, A_2\} \models \text{mortal(socrates)}$
2. $\{A_1, A_2\} \models \text{mortal(apollo)}$
3. $\{A_1, A_2\} \not\models \text{mortal(socrates)}$
4. $\{A_1, A_2\} \not\models \text{mortal(apollo)}$
5. $\{A_1, A_2\} \models \neg \text{mortal(socrates)}$
6. $\{A_1, A_2\} \models \neg \text{mortal(apollo)}$

Topics of these lectures

- What do these statements exactly mean?
- Algorithms/procedures for reasoning problems like the above
Classical Logic and Reasoning Problems

A₁: Socrates is a human
A₂: All humans are mortal

Translation into first-order logic:

A₁: human(socrates)
A₂: ∀X (human(X) → mortal(X))

Reasoning problems
Which of the following statements hold true? (|= means “entails”)

1. \{A₁, A₂\} |= mortal(socrates)
2. \{A₁, A₂\} |= mortal(apollo)
3. \{A₁, A₂\} \not|= mortal(socrates)
4. \{A₁, A₂\} \not|= mortal(apollo)
5. \{A₁, A₂\} |= ¬mortal(socrates)
6. \{A₁, A₂\} |= ¬mortal(apollo)

Topics of these lectures

▶ What do these statements exactly mean?
▶ Algorithms/procedures for reasoning problems like the above

Next: some applications
“Application”: Mathematical Theorem Proving

First-Order Logic

Can express (mathematical) structures, e.g. groups

\[
\begin{align*}
\forall x \ 1 \cdot x &= x \\
\forall x \ x^{-1} \cdot x &= 1
\end{align*}
\]

\[
\begin{align*}
\forall x \ x \cdot 1 &= x \\
\forall x \ x \cdot x^{-1} &= 1
\end{align*}
\] \hspace{1cm} (N)

\[
\forall x, y, z \ (x \cdot y) \cdot z &= x \cdot (y \cdot z)
\] \hspace{1cm} (A)

Reasoning

Object level: It follows \(\forall x \ (x \cdot x) = 1 \) \(\rightarrow \) \(\forall x, y \ x \cdot y = y \cdot x \)

Meta-level: the word problem for groups is decidable

Automated Reasoning

Computer program to provide the above conclusions
“Application”: Mathematical Theorem Proving

First-Order Logic
Can express (mathematical) structures, e.g. groups

\[\forall x \ 1 \cdot x = x \quad \forall x \ x \cdot 1 = x \quad (N) \]
\[\forall x \ x^{-1} \cdot x = 1 \quad \forall x \ x \cdot x^{-1} = 1 \quad (I) \]
\[\forall x, y, z \ (x \cdot y) \cdot z = x \cdot (y \cdot z) \quad (A) \]

Reasoning

- Object level: It follows \(\forall x \ (x \cdot x) = 1 \rightarrow \forall x, y \ x \cdot y = y \cdot x \)
- Meta-level: the word problem for groups is decidable
“Application”: Mathematical Theorem Proving

First-Order Logic
Can express (mathematical) structures, e.g. groups

\[\forall x \ 1 \cdot x = x \]
\[\forall x \ x^{-1} \cdot x = 1 \]

\(\forall x \ x \cdot 1 = x \) \quad (N)
\(\forall x \ x \cdot x^{-1} = 1 \) \quad (I)

\[\forall x, y, z \ (x \cdot y) \cdot z = x \cdot (y \cdot z) \] \quad (A)

Reasoning

- **Object level:** It follows \(\forall x \ (x \cdot x) = 1 \rightarrow \forall x, y \ x \cdot y = y \cdot x \)
- **Meta-level:** the word problem for groups is decidable

Automated Reasoning

Computer program to provide the above conclusions *automatically*
Application: Compiler Validation

Problem: prove equivalence of source and target program

1: y := 1
2: if z = x*x*x
3: then y := x*x + y
4: endif

1: y := 1
2: R1 := x*x
3: R2 := R1*x
4: jmpNE(z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers; index 0 = initial values)

From $y_1 = 1 \land z_0 = x_0 \times x_0 \times x_0 \land y_3 = x_0 \times x_0 + y_1$

and $y'_1 = 1 \land R1_2 = x'_0 \times x'_0 \land R2_3 = R1_2 \times x'_0 \land z'_0 = R2_3$

$\land y'_5 = R1_2 + 1 \land x_0 = x'_0 \land y_0 = y'_0 \land z_0 = z'_0$

it follows $y_3 = y'_5$
Application: Constraint Solving

The n-queens problem:

Given: An $n \times n$ chessboard

Question: Is it possible to place n queens so that no queen attacks any other?

A solution for $n = 8$

$p[1] = 6$
$p[2] = 3$
$p[3] = 5$
$p[4] = 8$
$p[5] = 1$
$p[6] = 4$
$p[7] = 2$
$p[8] = 7$
Application: Constraint Solving

Formalization in sorted first-order logic:

\[n : \mathbb{Z} \]
\[p : \mathbb{Z} \rightarrow \mathbb{Z} \]
\[n = 8 \]

\[\forall i : \mathbb{Z} \ j : \mathbb{Z} \ (1 \leq i \land i \leq n \land i + 1 \leq j \land j < n \Rightarrow \]
\[p(i) \neq p(j) \land p(i) + i \neq p(j) + j \land p(i) - i \neq p(j) - j \]
(Queens)

\[p(1) = 1 \lor p(1) = 2 \lor \cdots \lor p(1) = 8 \quad (p(1) \in \{1, \ldots, n\}) \]

\[\vdots \]

\[p(8) = 1 \lor p(8) = 2 \lor \cdots \lor p(8) = 8 \quad (p(n) \in \{1, \ldots, n\}) \]

Logic: Integer arithmetic, quantifiers, “free” symbol \(p \)

Task: Find a satisfying interpretation \(I \) (a model) and evaluate \(I(p(1)), \ldots, I(p(n)) \) to read off the answer
The n-queens has variable symmetry: mapping $p[i] \mapsto p[n + 1 - i]$ preserves solutions, for any n.

Therefore, it is justified to add (to the formalization) a constraint $p[1] < p[n]$, for search space pruning.

But how can we know that the problem has symmetries? This is a theorem proving task!
We need two “copies” (Queens_p) and (Queens_q) of the constraint:

\[
\begin{align*}
n & : \mathbb{Z} & \text{(Declaration of } n) \\
p, q & : \mathbb{Z} \mapsto \mathbb{Z} & \text{(Declaration of } p, q) \\
perm & : \mathbb{Z} \mapsto \mathbb{Z} & \text{(Declaration of } perm) \\
\forall i : \mathbb{Z} \; j : \mathbb{Z} \; (1 \leq i \land i \leq n \land i + 1 \leq j \land j < n \Rightarrow \\
\quad p(i) \neq p(j) \land p(i) + i \neq p(j) + j \land p(i) - i \neq p(j) - j) & \quad \text{(Queens_p)} \\
\forall i : \mathbb{Z} \; j : \mathbb{Z} \; (1 \leq i \land i \leq n \land i + 1 \leq j \land j < n \Rightarrow \\
\quad q(i) \neq q(j) \land q(i) + i \neq q(j) + j \land q(i) - i \neq q(j) - j) & \quad \text{(Queens_q)} \\
\forall i : \mathbb{Z} \; perm(i) = n + 1 - i & \quad \text{(Def. permutation)}
\end{align*}
\]

Logic: Integer arithmetic, quantifiers, “free” symbol \(p \)

Task: Prove logical consequence

\((\text{Queens}_p) \land (\forall i : \mathbb{Z} \; q(i) = p(perm(i))) \Rightarrow (\text{Queens}_q)\)
Issues

- Previous slides gave motivation: *logical analysis of systems*
 System can be “anything that makes sense” and can be described using logic (group theory, computer programs, ...)

- Propositional logic is not very expressive; but it admits *complete* and *terminating* (and sound, and “fast”) reasoning procedures

- First-order logic is expressive but not too expressive; it admits *complete* (and sound, and “reasonably fast”) reasoning procedures

- So, reasoning with it can be automated on computer. BUT
 - How to do it in the first place: suitable calculi?
 - How to do it efficiently: search space control?
 - How to do it optimally: reasoning support for specific theories like equality and arithmetic?

- The lecture will touch on some of these issues and explain basic approaches to their solution
Contents

Lectures 1 – 5: Propositional logic: syntax, semantics, reasoning algorithms, important properties
(Slides in part thanks to Aaron Bradley)

Lecture 6–10: First-order logic: syntax, semantics, reasoning procedures, important properties
Propositional Logic (PL)

PL Syntax

Atom
- Truth symbols \(\top \) ("true") and \(\bot \) ("false")
- Propositional variables \(P, Q, R, P_1, Q_1, R_1, \cdots \)

Literal
- Atom \(\alpha \) or its negation \(\neg \alpha \)

Formula
- Atom or application of a logical connective to formulae \(F, F_1, F_2 \)
 - \(\neg F \) "not" (negation)
 - \(F_1 \land F_2 \) "and" (conjunction)
 - \(F_1 \lor F_2 \) "or" (disjunction)
 - \(F_1 \rightarrow F_2 \) "implies" (implication)
 - \(F_1 \leftrightarrow F_2 \) "if and only if" (iff)

Speaking formally, formulas are defined *inductively*
Example:

formula $F : (P \land Q) \rightarrow (\top \lor \neg Q)$

atoms: P, Q, \top

literal: $\neg Q$

subformulas: $P \land Q, \top \lor \neg Q$

abbreviation (leave parenthesis away)

\[
F : P \land Q \rightarrow \top \lor \neg Q
\]
PL Semantics (meaning)

Formula $F + \text{Interpretation } I = \text{Truth value}$

(true, false)

Interpretation

$I : \{ P \mapsto \text{true, } Q \mapsto \text{false, } \cdots \}$
PL Semantics (meaning)

Formula F + Interpretation I = Truth value
 $(true, false)$

Interpretation

 $I : \{ P \mapsto true, Q \mapsto false, \cdots \}$

Evaluation of F under I:

<table>
<thead>
<tr>
<th>F</th>
<th>$\neg F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

where 0 corresponds to value false

true
PL Semantics (meaning)

Formula $F + $ Interpretation $I = $ Truth value (true, false)

Interpretation

$I : \{ P \mapsto \text{true}, Q \mapsto \text{false}, \cdots \}$

Evaluation of F under I:

\[
\begin{array}{c|c}
F & \neg F \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]

where 0 corresponds to value false

1 true

\[
\begin{array}{c|c|c|c|c|c|c|c}
F_1 & F_2 & F_1 \land F_2 & F_1 \lor F_2 & F_1 \to F_2 & F_1 \leftrightarrow F_2 \\
\hline
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \leftrightarrow \text{true}, Q \leftrightarrow \text{false} \} \]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>\neg Q</td>
<td>P \land Q</td>
<td>P \lor \neg Q</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = true 0 = false
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]
\[I : \{ P \mapsto \text{true}, Q \mapsto \text{false} \} \]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>\neg Q</td>
<td>P \land Q</td>
<td>P \lor \neg Q</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = true \quad 0 = false

\[F \text{ evaluates to true under } I \]
Inductive Definition of PL’s Semantics

\[I \models F \] if \(F \) evaluates to \(\text{true} \) under \(I \) ("\(I \) satisfies \(F \)"")

\[I \not\models F \] false under \(I \) ("\(I \) falsifies \(F \)"")
Inductive Definition of PL’s Semantics

\[I \models F \quad \text{if } F \text{ evaluates to true under } I \quad ("I \text{ satisfies } F") \]
\[I \not\models F \quad \text{false under } I \quad ("I \text{ falsifies } F") \]

Base Case:
\[I \models \top \]
\[I \not\models \bot \]
\[I \models P \iff I[P] = \text{true} \]
Inductive Definition of PL’s Semantics

\[I \models F \text{ if } F \text{ evaluates to true under } I \text{ ("} I \text{ satisfies } F \text{"")} \]
\[I \not\models F \text{ if } F \text{ evaluates to false under } I \text{ ("} I \text{ falsifies } F \text{"")} \]

Base Case:
\[I \models \top \]
\[I \not\models \bot \]
\[I \models P \iff I[P] = \text{true} \]
\[I \not\models P \iff I[P] = \text{false} \]
Inductive Definition of PL’s Semantics

\(I \models F \) if \(F \) evaluates to true under \(I \) (“\(I \) satisfies \(F \)”)

\(I \not\models F \) false under \(I \) (“\(I \) falsifies \(F \)”)

Base Case:

\(I \models \top \)

\(I \not\models \bot \)

\(I \models P \) iff \(I[P] = \text{true} \)

\(I \not\models P \) iff \(I[P] = \text{false} \)

Inductive Case:

\(I \models \neg F \) iff \(I \not\models F \)

\(I \models F_1 \land F_2 \) iff \(I \models F_1 \) and \(I \models F_2 \)

\(I \models F_1 \lor F_2 \) iff \(I \models F_1 \) or \(I \models F_2 \)

\(I \models F_1 \rightarrow F_2 \) iff, if \(I \models F_1 \) then \(I \models F_2 \)

\(I \models F_1 \leftrightarrow F_2 \) iff, \(I \models F_1 \) and \(I \models F_2 \),

or \(I \not\models F_1 \) and \(I \not\models F_2 \)
Inductive Definition of PL’s Semantics

\[I \models F \text{ if } F \text{ evaluates to true under } I \text{ ("} I \text{ satisfies } F \text{")} \]
\[I \not\models F \text{ iffalse under } I \text{ ("} I \text{ falsifies } F \text{"") } \]

Base Case:
\[I \models \top \]
\[I \not\models \bot \]
\[I \models P \text{ iff } I[P] = \text{true} \]
\[I \not\models P \text{ iff } I[P] = \text{false} \]

Inductive Case:
\[I \models \neg F \text{ iff } I \not\models F \]
\[I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2 \]
\[I \models F_1 \lor F_2 \text{ iff } I \models F_1 \text{ or } I \models F_2 \]
\[I \models F_1 \rightarrow F_2 \text{ iff, if } I \models F_1 \text{ then } I \models F_2 \]
\[I \models F_1 \leftrightarrow F_2 \text{ iff, } I \models F_1 \text{ and } I \models F_2, \text{ or } I \not\models F_1 \text{ and } I \not\models F_2 \]

Note:
\[I \not\models F_1 \rightarrow F_2 \text{ iff } I \models F_1 \text{ and } I \not\models F_2 \]
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \; Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
Example:

\[F : P \land Q \to P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
3. \(I \models \neg Q \) by 2 and \(\neg \)
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
3. \(I \models \neg Q \) by 2 and \(\neg \)
4. \(I \not\models P \land Q \) by 2 and \(\land \)
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \[I \models P \] since \(I[P] = \text{true} \)
2. \[I \not\models Q \] since \(I[Q] = \text{false} \)
3. \[I \models \neg Q \] by 2 and \(\neg \)
4. \[I \not\models P \land Q \] by 2 and \(\land \)
5. \[I \models P \lor \neg Q \] by 1 and \(\lor \)
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
3. \(I \models \neg Q \) by 2 and \(\neg \)
4. \(I \not\models P \land Q \) by 2 and \(\land \)
5. \(I \models P \lor \neg Q \) by 1 and \(\lor \)
6. \(I \models F \) by 4 and \(\rightarrow \) Why?
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
3. \(I \models \neg Q \) by 2 and \(\neg \)
4. \(I \not\models P \land Q \) by 2 and \(\land \)
5. \(I \models P \lor \neg Q \) by 1 and \(\lor \)
6. \(I \models F \) by 4 and \(\rightarrow \) Why?

Thus, \(F \) is true under \(I \).
Example:

\[F : P \land Q \rightarrow P \lor \neg Q \]

\[I : \{ P \mapsto \text{true}, \ Q \mapsto \text{false} \} \]

1. \(I \models P \) since \(I[P] = \text{true} \)
2. \(I \not\models Q \) since \(I[Q] = \text{false} \)
3. \(I \models \neg Q \) by 2 and \(\neg \)
4. \(I \not\models P \land Q \) by 2 and \(\land \)
5. \(I \models P \lor \neg Q \) by 1 and \(\lor \)
6. \(I \models F \) by 4 and \(\rightarrow \) Why?

Thus, \(F \) is true under \(I \).

Notation

Extend interpretation \(I \) to formulas \(F \):

\[I[F] = \begin{cases}
\text{true} & \text{if } I \models F \\
\text{false} & \text{otherwise } (I \not\models F)
\end{cases} \]
Inductive Proofs

Induction on the structure of formulas

To prove that a property \mathcal{P} holds for every formula F it suffices to show the following:

Induction start: show that \mathcal{P} holds for every base case formula A.

Induction step: Assume that \mathcal{P} holds for arbitrary formulas F_1 and F_2 (*induction hypothesis*).

Show that \mathcal{P} follows for every inductive case formula built with F_1 and F_2.

Example

Lemma 1

Let F be a formula, and I and J be interpretations. If $I[\mathcal{P}] = J[\mathcal{P}]$ for every propositional variable \mathcal{P} occurring in F then $I[F] = J[F]$ (equivalently: $J|\mathcal{P}=I$ iff $J|\mathcal{P}=I$).
Inductive Proofs

Induction on the structure of formulas
To prove that a property \mathcal{P} holds for every formula F it suffices to show the following:

Induction start: show that \mathcal{P} holds for every base case formula A

Induction step: Assume that \mathcal{P} holds for arbitrary formulas F_1 and F_2 (*induction hypothesis*).
Show that \mathcal{P} follows for every inductive case formula built with F_1 and F_2

Example

Lemma 1 Let F be a formula, and I and J be interpretations. If $I[P] = J[P]$ for every propositional variable P occurring in F then $I[F] = J[F]$ (equivalently: $J \models F$ iff $J \models F$).
Example

Lemma 1 Let F be a formula, and I and J be interpretations. If $I[P] = J[P]$ for every propositional variable P occurring in F then $I[F] = J[F]$.

Induction start
If $F = \top$ or $F = \bot$ then trivially $I[F] = J[F]$.
Example

Lemma 1 Let F be a formula, and I and J be interpretations. If $I[P] = J[P]$ for every propositional variable P occurring in F then $I[F] = J[F]$.

Induction step
Case 1: $F = \neg G$ for some formula G.
Example

Induction step
Case 1: $F = \neg G$ for some formula G.
If $I[F] = \text{true}$ then

$$I[F] = \text{true} \iff I[\neg G] = \text{true} \iff I[G] = \text{false} \iff J[G] = \text{false} \iff J[\neg G] = \text{true} \iff J[F] = \text{true} \quad (F = \neg G)$$

($F = \neg G$)
(Semantics of \neg)
(Induction hypothesis)
(Semantics of \neg)
($F = \neg G$)

If $I[F] = \text{false}$: analogously
Example

Lemma 1 Let F be a formula, and I and J be interpretations. If $I[P] = J[P]$ for every propositional variable P occurring in F then $I[F] = J[F]$.

Induction step

Case 1: $F = \neg G$ for some formula G.

If $I[F] = \text{true}$ then

- $I[F] = \text{true}$ iff
 - $I[\neg G] = \text{true}$ iff $(F = \neg G)$ (Semantics of \neg)
 - $I[G] = \text{false}$ iff (Induction hypothesis) (Semantics of \neg)
 - $J[\neg G] = \text{true}$ iff $(F = \neg G)$ (Semantics of \neg)
 - $J[F] = \text{true}$

If $I[F] = \text{false}$: analogously
Example

Lemma 1 Let F be a formula, and I and J be interpretations. If $I[P] = J[P]$ for every propositional variable P occurring in F then $I[F] = J[F]$.

Induction step

Case 2: $F = G \land H$ for some formulas G and H.

If $I[F] = \text{true}$ then

$$I[F] = \text{true} \iff I[G \land H] = \text{true} \quad (F = G \land H)$$

$$I[G] = \text{true} \text{ and } I[H] = \text{true} \quad \text{(Semantics of } \land)$$

$$J[G] = \text{true} \text{ and } J[H] = \text{true} \quad \text{(Induction hypothesis 2x)}$$

$$J[G \land H] = \text{true} \quad \text{(Semantics of } \land)$$

$$J[F] = \text{true} \quad (F = G \land H)$$

If $I[F] = \text{false}$: analogously

Cases 3, 4 and 5 for \lor, \rightarrow and \leftrightarrow: analogously
Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that $I \models F$.

F valid iff for all interpretations I, $I \models F$.

\[
\begin{array}{ccc}
P & \land & Q \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Thus F is valid.

\[
\begin{array}{ccc}
P \land Q & & \neg Q \\
P \lor \neg Q & & \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

F is valid iff \(\neg F\) is unsatisfiable.
Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that I \models F.

F valid iff for all interpretations I, I \models F.

F is valid iff \neg F is unsatisfiable

Method 1: Truth Tables

Example

\[F : P \land Q \rightarrow P \lor \neg Q \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \land Q</th>
<th>\neg Q</th>
<th>P \lor \neg Q</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that $I \models F$.

F valid iff for all interpretations I, $I \models F$.

$$F \text{ is valid iff } \neg F \text{ is unsatisfiable}$$

Method 1: Truth Tables

Example: $F : P \land Q \rightarrow P \lor \neg Q$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
<th>$\neg Q$</th>
<th>$P \lor \neg Q$</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus F is valid.
Example

$F : P \lor Q \rightarrow P \land Q$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \land Q$</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

$F : P \lor Q \rightarrow P \land Q$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \land Q$</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus F is satisfiable, but invalid.
Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_1 : P \land Q$

2. $F_2 : \neg(P \land Q)$

3. $F_3 : P \lor \neg P$

4. $F_4 : \neg(P \lor \neg P)$

5. $F_5 : (P \to Q) \land (P \lor Q) \land \neg Q$
Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_1 : P \land Q$
 satisfiable, not valid

2. $F_2 : \neg(P \land Q)$

3. $F_3 : P \lor \neg P$

4. $F_4 : \neg(P \lor \neg P)$

5. $F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q$
Examples

Which of the following formulas is satisfiable, which is valid?

1. \(F_1 : P \land Q \)
 satisfiable, not valid

2. \(F_2 : \neg(P \land Q) \)
 satisfiable, not valid

3. \(F_3 : P \lor \neg P \)

4. \(F_4 : \neg(P \lor \neg P) \)

5. \(F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q \)
Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_1 : P \land Q$
 satisfiable, not valid
2. $F_2 : \neg(P \land Q)$
 satisfiable, not valid
3. $F_3 : P \lor \neg P$
 satisfiable, valid
4. $F_4 : \neg(P \lor \neg P)$
5. $F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q$
Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_1 : P \land Q$
 satisfiable, not valid

2. $F_2 : \neg(P \land Q)$
 satisfiable, not valid

3. $F_3 : P \lor \neg P$
 satisfiable, valid

4. $F_4 : \neg(P \lor \neg P)$
 unsatisfiable, not valid

5. $F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q$
Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_1 : P \land Q$
 satisfiable, not valid

2. $F_2 : \neg (P \land Q)$
 satisfiable, not valid

3. $F_3 : P \lor \neg P$
 satisfiable, valid

4. $F_4 : \neg (P \lor \neg P)$
 unsatisfiable, not valid

5. $F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q$
 unsatisfiable, not valid
Method 2: Semantic Argument ("Tableau Calculus")

Proof rules

\[
\frac{I \models \neg F}{I \not\models F}
\]

\[
\frac{I \not\models \neg F}{I \models F}
\]

\[
\frac{I \models F \land G}{I \models F \quad I \models G}
\]

\[
\frac{I \not\models F \land G}{I \not\models F \quad I \not\models G}
\]

\[
\frac{I \models F \lor G}{I \models F \quad I \models G}
\]

\[
\frac{I \not\models F \lor G}{I \not\models F \quad I \not\models G}
\]

\[
\frac{I \models F \rightarrow G}{I \not\models F \quad I \models G}
\]

\[
\frac{I \not\models F \rightarrow G}{I \not\models F \quad I \models G}
\]

\[
\frac{I \models F \leftrightarrow G}{I \models F \land G \quad I \not\models F \lor G}
\]

\[
\frac{I \not\models F \leftrightarrow G}{I \models F \land \neg G \quad I \not\models \neg F \lor G}
\]

\[
\frac{I \models F}{I \not\models F}
\]

\[
\frac{I \not\models F}{I \not\models \bot}
\]
Example 1: Prove

\[F : P \land Q \rightarrow P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not\models P \land Q \rightarrow P \lor \neg Q \) assumption
Example 1: Prove

\[F : P \land Q \rightarrow P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not| = P \land Q \rightarrow P \lor \neg Q \) assumption
2. \(I | = P \land Q \) 1 and \(\land \rightarrow \)
3. \(I \not| = P \lor \neg Q \) 1 and \(\lor \rightarrow \)
4. \(I | = \bot \) 4 and 5 are contradictory

Thus \(F \) is valid.
Example 1: Prove

F: \(P \land Q \rightarrow P \lor \neg Q \) is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \nmodels P \land Q \rightarrow P \lor \neg Q \) assumption
2. \(I \models P \land Q \) 1 and \(\rightarrow \)
3. \(I \nmodels P \lor \neg Q \) 1 and \(\rightarrow \)
Example 1: Prove

\[F : P \land Q \rightarrow P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not\models P \land Q \rightarrow P \lor \neg Q \) assumption
2. \(I \models P \land Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \lor \neg Q \) 1 and \(\rightarrow \)
4. \(I \models P \) 2 and \(\land \)
Example 1: Prove

\[F : P \land Q \rightarrow P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not\models P \land Q \rightarrow P \lor \neg Q \) assumption
2. \(I \models P \land Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \lor \neg Q \) 1 and \(\rightarrow \)
4. \(I \models P \) 2 and \(\land \)
5. \(I \not\models P \) 3 and \(\lor \)
Example 1: Prove

\[F : P \land Q \to P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not\models P \land Q \to P \lor \neg Q \) assumption
2. \(I \models P \land Q \) 1 and \(\to \)
3. \(I \models P \lor \neg Q \) 1 and \(\to \)
4. \(I \models P \) 2 and \(\land \)
5. \(I \not\models P \) 3 and \(\lor \)
6. \(I \models \bot \) 4 and 5 are contradictory
Example 1: Prove

\[F : P \land Q \rightarrow P \lor \neg Q \] is valid.

Let’s assume that \(F \) is not valid and that \(I \) is a falsifying interpretation.

1. \(I \not|= P \land Q \rightarrow P \lor \neg Q \) \text{ assumption}
2. \(I |= P \land Q \) \hspace{1cm} 1 \text{ and } \rightarrow
3. \(I \not|= P \lor \neg Q \) \hspace{1cm} 1 \text{ and } \rightarrow
4. \(I |= P \) \hspace{1cm} 2 \text{ and } \land
5. \(I \not|= P \) \hspace{1cm} 3 \text{ and } \lor
6. \(I |= \bot \) \hspace{1cm} 4 \text{ and } 5 \text{ are contradictory}

Thus \(F \) is valid.
Example 2: Prove

\[F : (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \not\models F \)
 assumption
Example 2: Prove

\[F : (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \not\models F \)
2. \(I \models (P \rightarrow Q) \land (Q \rightarrow R) \)

 \[1 \text{ and } \rightarrow \]
Example 2: Prove

\[F : (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \nmid F \) \hspace{1cm} \text{assumption}
2. \(I \models (P \rightarrow Q) \land (Q \rightarrow R) \) \hspace{1cm} 1 and \(\rightarrow \)
3. \(I \nmid P \rightarrow R \) \hspace{1cm} 1 and \(\rightarrow \)
Example 2: Prove

\[F : (P \to Q) \land (Q \to R) \to (P \to R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \not \models F \)
 assumption
2. \(I \models (P \to Q) \land (Q \to R) \)
 1 and \(\to \)
3. \(I \not \models P \to R \)
 1 and \(\to \)
4. \(I \models P \)
 3 and \(\to \)
Example 2: Prove

\[F : (P \to Q) \land (Q \to R) \to (P \to R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \nvdash F \) \hspace{2cm} assumption
2. \(I \models (P \to Q) \land (Q \to R) \) \hspace{1cm} 1 and \(\to \)
3. \(I \nvdash P \to R \) \hspace{1cm} 1 and \(\to \)
4. \(I \models P \) \hspace{2cm} 3 and \(\to \)
5. \(I \nvdash R \) \hspace{2cm} 3 and \(\to \)
Example 2: Prove

\[F : \ (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \not\models F \) assumption
2. \(I \models (P \rightarrow Q) \land (Q \rightarrow R) \) 1 and \(\rightarrow \)
3. \(I \not\models P \rightarrow R \) 1 and \(\rightarrow \)
4. \(I \models P \) 3 and \(\rightarrow \)
5. \(I \not\models R \) 3 and \(\rightarrow \)
6. \(I \models P \rightarrow Q \) 2 and of \(\land \)
Example 2: Prove

\[F : (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R) \] is valid.

Let’s assume that \(F \) is not valid.

1. \(I \not\models F \) assumption
2. \(I \models (P \rightarrow Q) \land (Q \rightarrow R) \) 1 and \(\rightarrow \)
3. \(I \not\models P \rightarrow R \) 1 and \(\rightarrow \)
4. \(I \models P \) 3 and \(\rightarrow \)
5. \(I \not\models R \) 3 and \(\rightarrow \)
6. \(I \models P \rightarrow Q \) 2 and of \(\land \)
7. \(I \models Q \rightarrow R \) 2 and of \(\land \)
Two cases from 6

\begin{align*}
8a. & \quad I \not\models P \quad 6 \text{ and } \rightarrow \\
9a. & \quad I \models \bot \quad 4 \text{ and } 8a \text{ are contradictory}
\end{align*}
Two cases from 6

8a. $I \not\models P$ 6 and \rightarrow

9a. $I \models \bot$ 4 and 8a are contradictory

and

8b. $I \models Q$ 6 and \rightarrow

Our assumption is incorrect in all cases — F is valid.
Two cases from 6

\[8a. \; l \nmid P \quad 6 \text{ and } \rightarrow\]
\[9a. \; l \mid \bot \quad 4 \text{ and } 8a \text{ are contradictory}\]

and

\[8b. \; l \mid Q \quad 6 \text{ and } \rightarrow\]

Two cases from 7

\[9ba. \; l \nmid Q \quad 7 \text{ and } \rightarrow\]
\[10ba. \; l \mid \bot \quad 8b \text{ and } 9ba \text{ are contradictory}\]
Two cases from 6

8a. $I \not \models P$ 6 and \rightarrow
9a. $I \models \bot$ 4 and 8a are contradictory

and

8b. $I \models Q$ 6 and \rightarrow

Two cases from 7

9ba. $I \not \models Q$ 7 and \rightarrow
10ba. $I \models \bot$ 8b and 9ba are contradictory

and

9bb. $I \models R$ 7 and \rightarrow
10bb. $I \models \bot$ 5 and 9bb are contradictory
Two cases from 6

8a. \(I \nvdash P \) 6 and \(\rightarrow \)

9a. \(I \models \bot \) 4 and 8a are contradictory

and

8b. \(I \models Q \) 6 and \(\rightarrow \)

Two cases from 7

9ba. \(I \nvdash Q \) 7 and \(\rightarrow \)

10ba. \(I \models \bot \) 8b and 9ba are contradictory

and

9bb. \(I \models R \) 7 and \(\rightarrow \)

10bb. \(I \models \bot \) 5 and 9bb are contradictory

Our assumption is incorrect in all cases — \(F \) is valid.
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \] valid?

Let’s assume that \(F \) is not valid.

We have to derive a contradiction in both cases for \(F \) to be valid.

Falsifying interpretation:

\[I_1 : \{ P \mapsto \text{true}, \, Q \mapsto \text{false} \} \]

\[I_2 : \{ Q \mapsto \text{true}, \, P \mapsto \text{false} \} \]
Example 3: Is
\[F : P \lor Q \rightarrow P \land Q \text{ valid?} \]

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \] valid?

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
2. \(I \models P \lor Q \) 1 and \(\rightarrow \)
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \] valid?

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
2. \(I \models P \lor Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \land Q \) 1 and \(\rightarrow \)
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \]

valid?

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
2. \(I \models P \lor Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \land Q \) 1 and \(\rightarrow \)

Two options

4a. \(I \models P \) 2 or
5a. \(I \not\models Q \) 3
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \] valid?

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
2. \(I \models P \lor Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \land Q \) 1 and \(\rightarrow \)

Two options

4a. \(I \models P \) 2 or 4b. \(I \models Q \) 2

5a. \(I \not\models Q \) 3 5b. \(I \not\models P \) 3

We cannot derive a contradiction.

\(F \) is not valid.

Falsifying interpretation:

\[I_1 : \{ P \mapsto \text{true}, Q \mapsto \text{false} \} \]

\[I_2 : \{ Q \mapsto \text{true}, P \mapsto \text{false} \} \]

We have to derive a contradiction in both cases for \(F \) to be valid.
Example 3: Is

\[F : P \lor Q \rightarrow P \land Q \] valid?

Let’s assume that \(F \) is not valid.

1. \(I \not\models P \lor Q \rightarrow P \land Q \) assumption
2. \(I \models P \lor Q \) 1 and \(\rightarrow \)
3. \(I \not\models P \land Q \) 1 and \(\rightarrow \)

Two options

4a. \(I \models P \) 2 or 4b. \(I \models Q \) 2
5a. \(I \not\models Q \) 3 5b. \(I \not\models P \) 3

We cannot derive a contradiction. \(F \) is not valid.

Falsifying interpretation:

\(I_1 : \{ P \leftrightarrow \text{true}, \ Q \leftrightarrow \text{false} \} \quad I_2 : \{ Q \leftrightarrow \text{true}, \ P \leftrightarrow \text{false} \} \)

We have to derive a contradiction in both cases for \(F \) to be valid.
Equivalence

F_1 and F_2 are equivalent ($F_1 \iff F_2$)

iff for all interpretations I, $I \models F_1 \iff F_2$

To prove $F_1 \iff F_2$ show $F_1 \iff F_2$ is valid.
Equivalence

F_1 and F_2 are equivalent ($F_1 \iff F_2$)
iff for all interpretations I, $I \models F_1 \iff F_2$

To prove $F_1 \iff F_2$ show $F_1 \iff F_2$ is valid.

F_1 implies F_2 ($F_1 \Rightarrow F_2$)
iff for all interpretations I, $I \models F_1 \Rightarrow F_2$
Equivalence

F_1 and F_2 are equivalent ($F_1 \iff F_2$)

iff for all interpretations I, $I \models F_1 \iff F_2$

To prove $F_1 \iff F_2$ show $F_1 \iff F_2$ is valid.

F_1 implies F_2 ($F_1 \Rightarrow F_2$)

iff for all interpretations I, $I \models F_1 \rightarrow F_2$

$F_1 \iff F_2$ and $F_1 \Rightarrow F_2$ are not formulae!
Proposition 1 (Substitution Theorem)

Assume $F_1 \iff F_2$. If F is a formula with at least one occurrence of F_1 as a subformula then $F \iff F'$, where F' is obtained from F by replacing some occurrence of F_1 in F by F_2.

Proof.
(Sketch) By induction on the formula structure. For the induction start, if $F = F_1$ then $F' = F_2$, and $F \iff F'$ follows from $F_1 \iff F_2$.

The proof of the induction step is similar to the proof of Lemma 1.

Proposition 1 is relevant for conversion of formulas into normal form, which requires replacing subformulas by equivalent ones.
Proposition 1 (Substitution Theorem)

Assume $F_1 \iff F_2$. If F is a formula with at least one occurrence of F_1 as a subformula then $F \iff F'$, where F' is obtained from F by replacing some occurrence of F_1 in F by F_2.

Proof.
(Sketch) By induction on the formula structure. For the induction start, if $F = F_1$ then $F' = F_2$, and $F \iff F'$ follows from $F_1 \iff F_2$. The proof of the induction step is similar to the proof of Lemma 1.

Proposition 1 is relevant for conversion of formulas into normal form, which requires replacing subformulas by equivalent ones.
Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only ¬, ∧, ∨)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$
\neg \neg F_1 \iff F_1 \quad \neg \top \iff \bot \quad \neg \bot \iff \top
$$

$$
\neg (F_1 \land F_2) \iff \neg F_1 \lor \neg F_2
$$

$$
\neg (F_1 \lor F_2) \iff \neg F_1 \land \neg F_2
$$

\{De Morgan’s Law\}

$$
F_1 \rightarrow F_2 \iff \neg F_1 \lor F_2
$$

$$
F_1 \iff F_2 \iff (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)
$$
Normal Forms

1. **Negation Normal Form (NNF)**

 Negations appear only in literals. (only \neg, \land, \lor)

 To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

 $$
 \neg\neg F_1 \iff F_1 \quad \neg \top \iff \bot \quad \neg \bot \iff \top \\
 \neg (F_1 \land F_2) \iff \neg F_1 \lor \neg F_2 \\
 \neg (F_1 \lor F_2) \iff \neg F_1 \land \neg F_2 \\
 F_1 \rightarrow F_2 \iff \neg F_1 \lor F_2 \\
 F_1 \leftrightarrow F_2 \iff (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)
 $$

 De Morgan’s Law

 $$
 \neg (F_1 \land F_2) \iff \neg F_1 \lor \neg F_2 \\
 \neg (F_1 \lor F_2) \iff \neg F_1 \land \neg F_2
 $$

 Example: Convert $F : \neg(P \rightarrow \neg(P \land Q))$ to NNF

 $F' : \neg(\neg P \lor \neg(P \land Q)) \rightarrow \lor$

 $F'' : \neg\neg P \land \neg\neg(P \land Q) \quad \text{De Morgan’s Law}$

 $F''' : P \land P \land Q \quad \neg\neg$

 F''' is equivalent to F ($F''' \iff F$) and is in NNF
2. **Disjunctive Normal Form (DNF)**

Disjunction of conjunctions of literals

\[\bigvee_i \bigwedge_j \ell_{i,j} \quad \text{for literals } \ell_{i,j} \]

To convert \(F \) into equivalent \(F' \) in DNF, transform \(F \) into NNF and then use the following template equivalences (left-to-right):

\[
\begin{align*}
(F_1 \lor F_2) \land F_3 & \iff (F_1 \land F_3) \lor (F_2 \land F_3) \\
F_1 \land (F_2 \lor F_3) & \iff (F_1 \land F_2) \lor (F_1 \land F_3)
\end{align*}
\]

\(\dist \)
2. **Disjunctive Normal Form (DNF)**

Disjunction of conjunctions of literals

\[\bigvee_i \bigwedge_j \ell_{i,j} \quad \text{for literals } \ell_{i,j} \]

To convert \(F \) into equivalent \(F' \) in DNF, transform \(F \) into NNF and then use the following template equivalences (left-to-right):

\[
\begin{align*}
(F_1 \lor F_2) \land F_3 & \iff (F_1 \land F_3) \lor (F_2 \land F_3) \\
F_1 \land (F_2 \lor F_3) & \iff (F_1 \land F_2) \lor (F_1 \land F_3)
\end{align*}
\]

Example: Convert

\(F : (Q_1 \lor \neg\neg Q_2) \land (\neg R_1 \rightarrow R_2) \) into DNF

\(F' : (Q_1 \lor Q_2) \land (R_1 \lor R_2) \) \quad \text{in NNF}

\(F'' : (Q_1 \land (R_1 \lor R_2)) \lor (Q_2 \land (R_1 \lor R_2)) \) \quad \text{dist}

\(F''' : (Q_1 \land R_1) \lor (Q_1 \land R_2) \lor (Q_2 \land R_1) \lor (Q_2 \land R_2) \) \quad \text{dist}

\(F''' \) is equivalent to \(F \) \((F''' \iff F) \) and is in DNF
3. **Conjunctive Normal Form (CNF)**

Conjunction of disjunctions of literals

\[\bigwedge_i \bigvee_j \ell_{i,j} \quad \text{for literals } \ell_{i,j} \]

To convert \(F \) into equivalent \(F' \) in CNF, transform \(F \) into NNF and then use the following template equivalences (left-to-right):

\[
(F_1 \land F_2) \lor F_3 \iff (F_1 \lor F_3) \land (F_2 \lor F_3)
\]

\[
F_1 \lor (F_2 \land F_3) \iff (F_1 \lor F_2) \land (F_1 \lor F_3)
\]

Relevance: DPLL and Resolution both work with CNF
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets.
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets

Clause
A (propositional) clause is a disjunction of literals

Convention
A formula in CNF is taken as a set of clauses. Example:

\[(A \lor B) \land (C \lor \neg A) \land (D \lor \neg C \lor \neg A) \land (\neg D \lor \neg B)\]

Clause Set

Typical Application: Proof by Refutation

To prove the validity of

\[Axiom_1 \land \cdots \land Axiom_n \implies Conjecture\]

it suffices to prove that the CNF of

\[Axiom_1 \land \cdots \land Axiom_n \land \neg Conjecture\]

is unsatisfiable.
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets

Clause
A (propositional) clause is a disjunction of literals

Convention
A formula in CNF is taken as a set of clauses. Example:

\[(A \lor B) \land (C \lor \neg A) \land (D \lor \neg C \lor \neg A) \land (\neg D \lor \neg B)\] CNF

\[\{A \lor B, C \lor \neg A, D \lor \neg C \lor \neg A, \neg D \lor \neg B\}\] Clause Set
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets

Clause
A (propositional) clause is a disjunction of literals

Convention
A formula in CNF is taken as a set of clauses. Example:

\[(A \lor B) \land (C \lor \neg A) \land (D \lor \neg C \lor \neg A) \land (\neg D \lor \neg B)\] CNF

\[\{A \lor B, C \lor \neg A, D \lor \neg C \lor \neg A, \neg D \lor \neg B}\] Clause Set

Typical Application: Proof by Refutation
To prove the validity of

\[Axiom_1 \land \cdots \land Axiom_n \Rightarrow Conjecture\]

it suffices to prove that the CNF of

\[Axiom_1 \land \cdots \land Axiom_n \land \neg Conjecture\]

is unsatisfiable
DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals

Consistency
No branch contains the labels A and ¬A, for no A

Every branch in a tree is taken as a (consistent) set of its literals

A consistent set of literals S is taken as an interpretation:

- if A ∈ S then (A ↦ true) ∈ I
- if ¬A ∈ S then (A ↦ false) ∈ I
- if A /∈ S and ¬A /∈ S then (A ↦ false) ∈ I
DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals

Consistency
No branch contains the labels A and $\neg A$, for no A

Every branch in a tree is taken as a (consistent) set of its literals

A consistent set of literals S is taken as an interpretation:

- if $A \in S$ then $(A \mapsto \text{true}) \in I$
- if $\neg A \in S$ then $(A \mapsto \text{false}) \in I$
- if $A \notin S$ and $\neg A \notin S$ then $(A \mapsto \text{false}) \in I$

Example

$\{A, \neg B, D\}$ stands for

$I : \{A \mapsto \text{true}, \ B \mapsto \text{false}, \ C \mapsto \text{false}, \ D \mapsto \text{true}\}$

Model

A model for a clause set N is an interpretation I such that $I \models N$.
DPLL as a Semantic Tree Method

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

\langleempty tree\rangle

- A Branch stands for an interpretation
- *Purpose of splitting*: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)
DPLL as a Semantic Tree Method

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$\{A\} \models A \lor B$
$\{A\} \not\models C \lor \neg A$
$\{A\} \models D \lor \neg C \lor \neg A$
$\{A\} \models \neg D \lor \neg B$

- A Branch stands for an interpretation
- *Purpose of splitting:* satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (⋆)
DPLL as a Semantic Tree Method

(1) $A \lor B$
(2) $C \lor \neg A$
(3) $D \lor \neg C \lor \neg A$
(4) $\neg D \lor \neg B$

\{A, C\} \models $A \lor B$
\{A, C\} \models $C \lor \neg A$
\{A, C\} $\not\models$ $D \lor \neg C \lor \neg A$
\{A, C\} \models $\neg D \lor \neg B$

- A Branch stands for an interpretation
- **Purpose of splitting**: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)
DPLL as a Semantic Tree Method

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

\[
\{A, C, D\} \models A \lor B \\
\{A, C, D\} \models C \lor \neg A \\
\{A, C, D\} \models D \lor \neg C \lor \neg A \\
\{A, C, D\} \models \neg D \lor \neg B
\]

Model $\{A, C, D\}$ found.

- A Branch stands for an interpretation
- **Purpose of splitting:** satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)
DPLL as a Semantic Tree Method

(1) \(A \lor B \)
(2) \(C \lor \neg A \)
(3) \(D \lor \neg C \lor \neg A \)
(4) \(\neg D \lor \neg B \)

\{B\} \models A \lor B
\{B\} \models C \lor \neg A
\{B\} \models D \lor \neg C \lor \neg A
\{B\} \models \neg D \lor \neg B

Model \{B\} found.

- A Branch stands for an interpretation
- *Purpose of splitting*: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (*)
DPLL Pseudocode

```
function DPLL(N)
    %% N is a set of clauses
    %% returns true if N satisfiable, false otherwise
    while N contains a unit clause \{L\\}
        N := simplify(N, L)
    if N = {} then return true
    if ⊥ ∈ N then return false
    L := choose-literal(N) %% any literal that occurs in N - ”decision literal”
    if DPLL(simplify(N, L))
        then return true
    else return DPLL(simplify(N, ¬L));

function simplify(N, L) %% also called unit propagation
    remove all clauses from N that contain L
    delete ¬L from all remaining clauses %% possibly get empty clause ⊥
    return the resulting clause set
```
Simplify Examples

function simplify(N, L) \%
also called unit propagation
remove all clauses from N that contain L
delete \neg L from all remaining clauses \%
possibly get empty clause \bot
return the resulting clause set

simplify({A \lor \neg B, C \lor \neg A, D \lor \neg C \lor \neg A, \neg D \lor \neg B}, A) =

Simplify Examples

1. \textbf{function} simplify\((N, \ L)\) \ %% also called \textit{unit propagation}\n2. remove all clauses from \textit{N} that contain \textit{L}\n3. delete \textit{¬L} from all remaining clauses \ %% possibly get empty clause \(⊥\) \n4. return the resulting clause set

\[
\text{simplify}\left(\{A \lor ¬B, \ C \lor ¬A, \ D \lor ¬C \lor ¬A, \ ¬D \lor ¬B\}, \ A\right) = \{C, \ D \lor ¬C, \ ¬D \lor ¬B\}
\]
Simplify Examples

function simplify(N, L) \text{ also called unit propagation} \\
remove all clauses from N that contain L \\
delete \neg L from all remaining clauses \text{ possibly get empty clause } \bot \\
return the resulting clause set

\begin{align*}
simplify(\{A \lor \neg B, \ C \lor \neg A, \ D \lor \neg C \lor \neg A, \ \neg D \lor \neg B\}, \ A) &= \{ \ C \ , \ D \lor \neg C \ , \ \neg D \lor \neg B \} \\
\simplify(\{ \ C \ , \ D \lor \neg C \ , \ \neg D \lor \neg B \}, \ C) &= \{ \neg B \}\end{align*}
Simplify Examples

1 **function** simplify(N, L)
 %%% also called *unit propagation*
2 remove all clauses from N that contain L
3 delete $\neg L$ from all remaining clauses
 %%% possibly get empty clause \bot
4 return the resulting clause set

\[
simplify(\{A \lor \neg B, \ C \lor \neg A, \ D \lor \neg C \lor \neg A, \ \neg D \lor \neg B\}, \ A) \\
= \{ \ C \ , \ D \lor \neg C \ , \ \neg D \lor \neg B \} \\
\]

\[
simplify(\{\ C \ , \ D \lor \neg C \ , \ \neg D \lor \neg B\}, \ C) \\
= \{ \ D \ , \ \neg D \lor \neg B \} \\
\]
Simplify Examples

1. **function** simplify(N, L) \(\text{%% also called unit propagation}\)
 - remove all clauses from N that contain L
 - delete $\neg L$ from all remaining clauses \(\text{%% possibly get empty clause} \bot\)
 - return the resulting clause set

\[
\text{simplify}([A \lor \neg B, C \lor \neg A, D \lor \neg C \lor \neg A, \neg D \lor \neg B], A) = \{C, D \lor \neg C, \neg D \lor \neg B\}
\]

\[
\text{simplify}([C, D \lor \neg C, \neg D \lor \neg B], C) = \{D, \neg D \lor \neg B\}
\]

\[
\text{simplify}([D, \neg D \lor \neg B], D) = \{\neg B\}
\]
Simplify Examples

1. **function** simplify(N, L) \(\text{%% also called } \text{unit propagation}\)
2. remove all clauses from N that contain L
3. delete $\neg L$ from all remaining clauses \(\text{%% possibly get empty clause } \bot\)
4. return the resulting clause set

simplify($\{A \lor \neg B, C \lor \neg A, D \lor \neg C \lor \neg A, \neg D \lor \neg B\}$, A)
\[= \{C, D \lor \neg C, \neg D \lor \neg B\}\]

simplify($\{C, D \lor \neg C, \neg D \lor \neg B\}$, C)
\[= \{D, \neg D \lor \neg B\}\]

simplify($\{D, \neg D \lor \neg B\}$, D)
\[= \{\neg B\}\]
Making DPLL Fast – Overview

Conflict Driven Clause Learning (CDCL) solvers extend DPLL

Lemma learning: add new clauses to the clause set as branches get closed (“conflict driven”)

Goal: reuse information that is obtained in one branch for subsequent derivation steps.

Backtracking: replace chronological backtracking by “dependency-directed backtracking”, aka “backjumping”: on backtracking, skip splits that are not necessary to close a branch

Randomized restarts: every now and then start over, with learned clauses

Variable selection heuristics: what literal to split on. E.g., use literals that occur often

Make unit-propagation fast: 2-watched literal technique
Making DPLL Fast

2-watched literal technique
A technique to implement unit propagation efficiently

- In each clause, select two (currently undefined) “watched” literals.
- For each variable \(A \), keep a list of all clauses in which \(A \) is watched and a list of all clauses in which \(\neg A \) is watched.
- If an undefined variable is set to false (or to true), check all clauses in which \(A \) (or \(\neg A \)) is watched and watch another literal (that is true or undefined) in this clause if possible.
- As long as there are two watched literals in a \(n \)-literal clause, this clause cannot be used for unit propagation, because \(n - 1 \) of its literals have to be false to provide a unit conclusion.
- Important: Watched literal information need not be restored upon backtracking.
2-Watched Literals Example

In an n-literal clause, $n - 1$ literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause $\neg A \lor \neg B \lor \neg C \lor \neg D \lor E$ (watched literals underlined)
2-Watched Literals Example

In an n-literal clause, $n - 1$ literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate.

Clause $\neg A \lor \neg B \lor \neg C \lor \neg D \lor E$ (watched literals *underlined*)

1. Assignments developed in this order C
2-Watched Literals Example

In an n-literal clause, $n - 1$ literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause $\neg A \lor \neg B \lor \neg C \lor \neg D \lor E$ (watched literals underlined)

1. Assignments developed in this order $C \rightarrow D$

2. Watched literal $\neg A$ is false \Rightarrow find another literal to watch

3. Extend with decision literal $C \rightarrow D \rightarrow A \rightarrow B$

4. Impossible to watch two literals now $\Rightarrow E$ is unit-propagated

5. Now have $C \rightarrow D \rightarrow A \rightarrow B \rightarrow E$ Maintains invariant

Invariant is maintained in case of backtracking to $\neg B$: Then have $C \rightarrow D \rightarrow A \rightarrow \neg B$
2-Watched Literals Example

In an \(n \)-literal clause, \(n - 1 \) literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \) \(\text{ (watched literals underlined) } \)

1. Assignments developed in this order \(C \rightarrow D \rightarrow A \)

\[\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \]
2-Watched Literals Example

In an \(n \)-literal clause, \(n - 1 \) literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \) (watched literals underlined)

1. Assignments developed in this order \(C \quad D \quad A \)
2. Watched literal \(\neg A \) is false \(\Rightarrow \) find another literal to watch
2-Watched Literals Example

In an n-literal clause, $n - 1$ literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause $\neg A \lor \neg B \lor \neg C \lor \neg D \lor E$ \hspace{10mm} (watched literals underlined)

1. Assignments developed in this order $C \rightarrow D \rightarrow A$
2. Watched literal $\neg A$ is false \Rightarrow find another literal to watch

Clause $\neg A \lor \underline{\neg B} \lor \neg C \lor \neg D \lor E$
In an \(n \)-literal clause, \(n - 1 \) literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate.

\[
\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \quad \text{(watched literals underlined)}
\]

1. Assignments developed in this order \(C \rightarrow D \rightarrow A \)
2. Watched literal \(\neg A \) is false \(\leadsto \) find another literal to watch

\[
\neg A \lor \neg B \lor \neg C \lor \neg D \lor E
\]

3. Extend with decision literal \(C \rightarrow D \rightarrow A \rightarrow B \)
2-Watched Literals Example

In an n-literal clause, $n - 1$ literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause $\neg A \lor \neg B \lor \neg C \lor \neg D \lor E$ (watched literals underlined)

1. Assignments developed in this order $C \rightarrow D \rightarrow A$
2. Watched literal $\neg A$ is false \Rightarrow find another literal to watch

Clause $\neg A \lor \underline{\neg B} \lor \neg C \lor \neg D \lor E$

3. Extend with decision literal $C \rightarrow D \rightarrow A \rightarrow B$
4. Impossible to watch two literals now $\Rightarrow E$ is unit-propagated
2-Watched Literals Example

In an \(n \)-literal clause, \(n - 1 \) literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \) (watched literals underlined)

1. Assignments developed in this order \(C \rightarrow D \rightarrow A \)
2. Watched literal \(\neg A \) is false \(\Rightarrow \) find another literal to watch

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \)

3. Extend with decision literal \(C \rightarrow D \rightarrow A \rightarrow B \)
4. Impossible to watch two literals now \(\Rightarrow E \) is unit-propagated
5. Now have \(C \rightarrow D \rightarrow A \rightarrow B \rightarrow E \)
 Maintains invariant
2-Watched Literals Example

In an \(n \)-literal clause, \(n - 1 \) literals must be assigned false before it can unit-propagate. Defer unit propagation until this is the case.

Invariant: if clause is not satisfied, watched literals are undefined. Only clauses violating the invariant can unit-propagate

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \) (watched literals underlined)

1. Assignments developed in this order \(C \rightarrow D \rightarrow A \)
2. Watched literal \(\neg A \) is false \(\Rightarrow \) find another literal to watch

Clause \(\neg A \lor \neg B \lor \neg C \lor \neg D \lor E \)

3. Extend with decision literal \(C \rightarrow D \rightarrow A \rightarrow B \)
4. Impossible to watch two literals now \(\Rightarrow \) \(E \) is unit-propagated
5. Now have \(C \rightarrow D \rightarrow A \rightarrow B \rightarrow E \)
 Maintains invariant

Invariant is maintained in case of backtracking to \(\neg B \):

Then have \(C \rightarrow D \rightarrow A \rightarrow \neg B \)
"Avoid making the same mistake twice"

\[
\begin{align*}
\cdots \\
B \lor \neg A & \quad (1) \\
D \lor \neg C & \quad (2) \\
\neg D \lor \neg B \lor \neg C & \quad (3)
\end{align*}
\]
Lemma Learning

"Avoid making the same mistake twice"

\[B \lor \neg A \quad (1) \]
\[D \lor \neg C \quad (2) \]
\[\neg D \lor \neg B \lor \neg C \quad (3) \]

w/o Lemma

```
\begin{align*}
A & \quad \neg A \\
(1) & \quad \\quad B \\
(2) & \quad C \quad \neg C \\
(3) & \quad \\quad D
\end{align*}
```

Diagram:

```
            A
           /  \
          /    \
         /      \
        /        \
       /          \
      /            \
     /              \
    /                \
   /                  \
  /                    \
 /                      \
/                        \

\text{w/o Lemma}
```

Diagram:

```
            A
           /  \
          /    \
         /      \
        /        \
       /          \
      /            \
     /              \
    /                \
   /                    \
  /                        \
 /                            \

\begin{align*}
B & \lor \neg A \quad (1) \\
D & \lor \neg C \quad (2) \\
\neg D & \lor \neg B \lor \neg C \quad (3)
\end{align*}
```
Lemma Learning

"Avoid making the same mistake twice"

\[
\begin{align*}
\ldots \\
B \lor \neg A & \quad (1) \\
D \lor \neg C & \quad (2) \\
\neg D \lor \neg B \lor \neg C & \quad (3)
\end{align*}
\]

w/o Lemma

\[
\begin{tikzpicture}
 \node (A) at (0,0) {A};
 \node (B) at (-1,-1) {B};
 \node (C) at (1,-1) {C};
 \node (D) at (0,-2) {D};
 \node (A') at (2,0) {$\neg A$};
 \node (C') at (1,-2) {$\neg C$};
 \node (D') at (0,-3) {$*$};
 \draw (A) -- (B);
 \draw (A) -- (C);
 \draw (B) -- (D);
 \draw (C) -- (D);
 \draw (B) -- (A');
 \draw (C) -- (A');
 \draw (D) -- (D');
\end{tikzpicture}
\]
Lemma Learning

"Avoid making the same mistake twice"

...
\[B \lor \neg A \] (1)
\[D \lor \neg C \] (2)
\[\neg D \lor \neg B \lor \neg C \] (3)

Lemma Candidates by Resolution:

\[\neg D \lor \neg B \lor \neg C \]

w/o Lemma

\(A \)
\(\neg A \)

\(B \)
\(\land \)
\(C \)
\(\neg C \)

\(D \)
\(\land \)
\(* \)
\(\land \)
\(\land \)
Lemma Learning

"Avoid making the same mistake twice"

\[\begin{align*}
B \lor \neg A & \quad \text{(1)} \\
D \lor \neg C & \quad \text{(2)} \\
\neg D \lor \neg B \lor \neg C & \quad \text{(3)}
\end{align*}\]

Lemma Candidates by Resolution:

\[\begin{align*}
\neg D \lor \neg B \lor \neg C & \\
D \lor \neg C & \\
\hline
\neg B \lor \neg C
\end{align*}\]

w/o Lemma

\[\begin{align*}
A & \\
\neg A & \text{(1)} \\
B & \\
\neg C & \text{(2)} \\
C & \\
\neg D & \\
D & \text{(3)} \\
\neg C & \text{(*)}
\end{align*}\]
Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:

\[\neg D \lor \neg B \lor \neg C \]
\[D \lor \neg C \]
\[\neg D \lor \neg B \lor \neg C \]

w/o Lemma

\[A \]
\[\neg A \]
\[B \]
\[C \]
\[\neg C \]
\[D \]
\[\neg C \]
\[B \lor \neg A \]

\[\neg C \lor \neg A \]
Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:

\[
\begin{align*}
\neg D \lor \neg B \lor \neg C & \quad (1) \\
D \lor \neg C & \quad (2) \\
\neg D \lor \neg B \lor \neg C & \quad (3)
\end{align*}
\]

With Lemma!

\[
\begin{align*}
A & \quad \neg A \\
\neg D \lor \neg B \lor \neg C & \quad (2) \\
D \lor \neg C & \quad (3)
\end{align*}
\]

w/o Lemma

\[
\begin{align*}
B & \lor \neg A (1) \\
D & \lor \neg C (2) \\
\neg D & \lor \neg B \lor \neg C (3)
\end{align*}
\]
Lemma Learning

"Avoid making the same mistake twice"

\[B \lor \neg A \] (1)
\[D \lor \neg C \] (2)
\[\neg D \lor \neg B \lor \neg C \] (3)

Lemma Candidates by Resolution:

\[\neg D \lor \neg B \lor \neg C \]
\[D \lor \neg C \]

\[\neg B \lor \neg C \]
\[B \lor \neg A \]

\[\neg C \lor \neg A \]

w/o Lemma

With Lemma

(1) \[A \]
(2) \[B \]
(3) \[C \]

* \[D \]

* \[A \]

\[\neg A \]

\[\neg A \]

\[\neg C \]
Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:

\[\neg D \lor \neg B \lor \neg C \quad (3)\]

\[\neg B \lor \neg C \quad (2)\]

\[\neg D \lor \neg C \quad (1)\]

With Lemma

\[\neg C \lor \neg A\]

w/o Lemma

\[\neg D \lor \neg B \lor \neg C \quad (3)\]

\[\neg B \lor \neg C \quad (2)\]

\[\neg D \lor \neg C \quad (1)\]
Further Information

The ideas described so far have been implemented in the SAT checker zChaff:

Other Overviews

DPLL and the refined CDCL algorithm are the practically best methods for PL.

The resolution calculus (Robinson 1969) has been introduced as a basis for automated theorem proving in first-order logic. We will see it in detail in the first-order logic part of this lecture.

Refined versions are still the practically best methods for first-order logic.

The resolution calculus is best introduced first for propositional logic.
The Propositional Resolution Calculus

Propositional resolution inference rule

\[
\begin{array}{c}
C \lor A \\
\neg A \lor D \\
\hline
C \lor D
\end{array}
\]

Terminology: \(C \lor D \): resolvent; \(A \): resolved atom
The Propositional Resolution Calculus

Propositional resolution inference rule

\[
\begin{array}{c}
C \lor A \\
\sim A \lor D \\
\hline
C \lor D
\end{array}
\]

Terminology: \(C \lor D \): resolvent; \(A \): resolved atom

Propositional (positive) factoring inference rule

\[
\begin{array}{c}
C \lor A \lor A \\
\hline
C \lor A
\end{array}
\]

Terminology: \(C \lor A \): factor
The Propositional Resolution Calculus

Propositional resolution inference rule

\[\frac{C \lor A \quad \neg A \lor D}{C \lor D} \]

Terminology: \(C \lor D \): resolvent; \(A \): resolved atom

Propositional (positive) factoring inference rule

\[\frac{C \lor A \lor A}{C \lor A} \]

Terminology: \(C \lor A \): factor

These are schematic inference rules:
- \(C \) and \(D \) – propositional clauses
- \(A \) – propositional atom
- “\(\lor \)” is considered associative and commutative
Derivations

Let $N = \{ C_1, \ldots, C_k \}$ be a set of input clauses. A derivation (from N) is a sequence of the form

$$C_1, \ldots, C_k, C_{k+1}, \ldots, C_n, \ldots$$

such that for every $n \geq k + 1$

- C_n is a resolvent of C_i and C_j, for some $1 \leq i, j < n$, or
- C_n is a factor of C_i, for some $1 \leq i < n$.
Derivations

Let $N = \{C_1, \ldots, C_k\}$ be a set of input clauses

A derivation (from N) is a sequence of the form

$$C_1, \ldots, C_k, C_{k+1}, \ldots, C_n, \ldots$$

such that for every $n \geq k + 1$

- C_n is a resolvent of C_i and C_j, for some $1 \leq i, j < n$, or
- C_n is a factor of C_i, for some $1 \leq i < n$.

The empty disjunction, or empty clause, is written as \Box

A refutation (of N) is a derivation from N that contains \Box
Sample Refutation

1. \(\neg A \lor \neg A \lor B \) (given)
2. \(A \lor B \) (given)
3. \(\neg C \lor \neg B \) (given)
4. \(C \) (given)

5. \(\neg A \lor B \lor B \) (Res. 2. into 1.)
6. \(\neg A \lor B \) (Fact. 5.)
7. \(B \lor B \) (Res. 2. into 6.)
8. \(B \) (Fact. 7.)
9. \(\neg C \) (Res. 8. into 3.)
10. \(\) (Res. 4. into 9.)
Sample Refutation

1. \(\neg A \lor \neg A \lor B \) (given)
2. \(A \lor B \) (given)
3. \(\neg C \lor \neg B \) (given)
4. \(C \) (given)
5. \(\neg A \lor B \lor B \) (Res. 2. into 1.)
Sample Refutation

1. \(\neg A \lor \neg A \lor B \) \hspace{1cm} (given)
2. \(A \lor B \) \hspace{1cm} (given)
3. \(\neg C \lor \neg B \) \hspace{1cm} (given)
4. \(C \) \hspace{1cm} (given)
5. \(\neg A \lor B \lor B \) \hspace{1cm} (Res. 2. into 1.)
6. \(\neg A \lor B \) \hspace{1cm} (Fact. 5.)
Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)
2. A ∨ B (given)
3. ¬C ∨ ¬B (given)
4. C (given)
5. ¬A ∨ B ∨ B (Res. 2. into 1.)
6. ¬A ∨ B (Fact. 5.)
7. B ∨ B (Res. 2. into 6.)
Sample Refutation

1. $\neg A \lor \neg A \lor B$ (given)
2. $A \lor B$ (given)
3. $\neg C \lor \neg B$ (given)
4. C (given)
5. $\neg A \lor B \lor B$ (Res. 2. into 1.)
6. $\neg A \lor B$ (Fact. 5.)
7. $B \lor B$ (Res. 2. into 6.)
8. B (Fact. 7.)
Sample Refutation

1. \(\neg A \lor \neg A \lor B \)
 (given)
2. \(A \lor B \)
 (given)
3. \(\neg C \lor \neg B \)
 (given)
4. \(C \)
 (given)
5. \(\neg A \lor B \lor B \)
 (Res. 2. into 1.)
6. \(\neg A \lor B \)
 (Fact. 5.)
7. \(B \lor B \)
 (Res. 2. into 6.)
8. \(B \)
 (Fact. 7.)
9. \(\neg C \)
 (Res. 8. into 3.)
Sample Refutation

1. \(\neg A \lor \neg A \lor B \) \hspace{1cm} (given)
2. \(A \lor B \) \hspace{1cm} (given)
3. \(\neg C \lor \neg B \) \hspace{1cm} (given)
4. \(C \) \hspace{1cm} (given)
5. \(\neg A \lor B \lor B \) \hspace{1cm} (Res. 2. into 1.)
6. \(\neg A \lor B \) \hspace{1cm} (Fact. 5.)
7. \(B \lor B \) \hspace{1cm} (Res. 2. into 6.)
8. \(B \) \hspace{1cm} (Fact. 7.)
9. \(\neg C \) \hspace{1cm} (Res. 8. into 3.)
10. \(\square \) \hspace{1cm} (Res. 4. into 9.)
Soundness and Completeness

Important properties a calculus may or may not have:

Soundness: if there is a refutation of N then N is unsatisfiable

Deduction completeness:
if N is valid then there is a derivation of N

Refutational completeness:
if N is unsatisfiable then there is a refutation of N
Soundness and Completeness

Important properties a calculus may or may not have:

Soundness: if there is a refutation of N then N is unsatisfiable

Deduction completeness:

if N is valid then there is a derivation of N

Refutational completeness:

if N is unsatisfiable then there is a refutation of N

The resolution calculus is sound and refutationally complete, but not deduction complete
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.
Let I be an interpretation. To be shown:

1. for resolution:

 \[I \models \neg A \lor C \lor D \lor \neg A \Rightarrow I \models C \lor D \]

2. for factoring:

 \[I \models C \lor A \lor A \Rightarrow I \models C \lor A \]

Ad (1): Assume premises are valid in I. Two cases need to be considered:

(a) A is valid in I, or (b) $\neg A$ is valid in I.

a) $I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D$

b) $I \models A \Rightarrow I \models C \Rightarrow I \models C \lor D$
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let I be an interpretation. To be shown:

1. for resolution: $I \models C \lor A, I \models D \lor \neg A \Rightarrow I \models C \lor D$

Ad (1): Assume premises are valid in I. Two cases need to be considered:

(a) A is valid in I, or (b) $\neg A$ is valid in I.

a) $I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D$

b) $I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D$

Ad (2): even simpler
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let \(I \) be an interpretation. To be shown:

1. for resolution: \(I \models C \lor A \), \(I \models D \lor \neg A \) \(\Rightarrow \) \(I \models C \lor D \)
2. for factoring: \(I \models C \lor A \lor A \) \(\Rightarrow \) \(I \models C \lor A \)

Ad (1): Assume premises are valid in \(I \). Two cases need to be considered:

(a) \(A \) is valid in \(I \), or (b) \(\neg A \) is valid in \(I \).

\[I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D \]
\[I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D \]

Ad (2): even simpler

\[I \models C \lor A \lor A \Rightarrow I \models C \lor A \]
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let \(I \) be an interpretation. To be shown:

1. for resolution: \(I \models C \lor A, \ I \models D \lor \neg A \Rightarrow I \models C \lor D \)
2. for factoring: \(I \models C \lor A \lor A \Rightarrow I \models C \lor A \)

Ad (1): Assume premises are valid in \(I \). Two cases need to be considered:
(a) \(A \) is valid in \(I \), or (b) \(\neg A \) is valid in \(I \).
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let I be an interpretation. To be shown:

1. for resolution: $I \models C \lor A$, $I \models D \lor \neg A \Rightarrow I \models C \lor D$

2. for factoring: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$

Ad (1): Assume premises are valid in I. Two cases need to be considered:

(a) A is valid in I, or (b) $\neg A$ is valid in I.

a) $I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D$
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let I be an interpretation. To be shown:

1. for resolution: $I \models C \lor A$, $I \models D \lor \neg A \Rightarrow I \models C \lor D$
2. for factoring: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$

Ad (1): Assume premises are valid in I. Two cases need to be considered:

(a) A is valid in I, or (b) $\neg A$ is valid in I.

a) $I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D$

b) $I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D$
Soundness of Propositional Resolution

Theorem 2

Propositional resolution is sound

Proof.

Let \(I \) be an interpretation. To be shown:

1. for resolution: \(I \models C \lor A, I \models D \lor \neg A \Rightarrow I \models C \lor D \)
2. for factoring: \(I \models C \lor A \lor A \Rightarrow I \models C \lor A \)

Ad (1): Assume premises are valid in \(I \). Two cases need to be considered:

(a) \(A \) is valid in \(I \), or (b) \(\neg A \) is valid in \(I \).

\[\text{a)} \quad I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D \]

\[\text{b)} \quad I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D \]

Ad (2): even simpler
Completeness of Propositional Resolution

Theorem 3

Propositional Resolution is refutationally complete

- That is, if a propositional clause set is unsatisfiable, then Resolution will derive the empty clause \square eventually
- More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factoring inference rules, then it contains the empty clause \square
- Perhaps easiest proof: semantic tree proof technique (see whiteboard)
- This result can be considerably strengthened, some strengthenings come for free from the proof
Semantic Trees
(Robinson 1968, Kowalski and Hayes 1969)

Semantic trees are a convenient device to represent interpretations for possibly infinitely many atoms

Applications

- To prove the completeness of the propositional resolution calculus
- Characterizes a specific, refined resolution calculus
- To prove the compactness theorem of propositional logic. Application: completeness proof of first-order logic Resolution.
Trees

A tree

- is an acyclic, connected, directed graph, where
- every node has at most one incoming edge

A rooted tree has a dedicated node, called root that has no incoming edge

A tree is finite iff it has finitely many vertices (and edges) only

In a finitely branching tree every node has only finitely many edges

A binary tree every node has at most two outgoing edges. It is complete iff every node has either no or two outgoing edges
A path \mathcal{P} in a rooted tree is a possibly infinite sequence of nodes $\mathcal{P} = (N_0, N_1, \ldots)$, where N_0 is the root, and N_i is a direct successor of N_{i-1}, for all $i = 1, \ldots, n$.

A path to a node N is a finite path of the form (N_0, N_1, \ldots, N_n) such that $N = N_n$; the value n is the length of the path.

The node N_{n-1} is called the immediate predecessor of N.

Every node $N_0, N_1, \ldots, N_{n-1}$ is called a predecessor of N.

A (node-)labelled tree is a tree together with a labelling function λ that maps each of its nodes to an element in a given set.

Let L be a literal. The complement of L is the literal

$$
\overline{L} := \begin{cases}
\neg A & \text{if } L \text{ is the atom } A \\
A & \text{if } L \text{ is the negated atom } \neg A.
\end{cases}
$$
Semantic Trees

A semantic tree B (for a set of atoms D) is a labelled, complete, rooted, binary tree such that

1. the root is labelled by the symbol \top

2. for every inner node N, one successor of N is labeled with the literal A, and the other successor is labeled with the literal $\neg A$, for some $A \in D$

3. for every node N, there is no literal L such that $L \in I(N)$ and $\overline{L} \in I(N)$, where

$$I(N) = \{ \lambda(N_i) \mid N_0, N_1, \ldots, (N_n = N) \text{ is a path to } N \text{ and } 1 \leq i \leq n \}$$
Semantic Trees

Atom Set
For a clause set N let the atom set (of N) be the set of atoms occurring in clauses in N.

A semantic tree for N is a semantic tree for the atom set of N.

Path Semantics
For a path $P = (N_0, N_1, \ldots)$ let

$$\mathcal{I}(P) = \{ \lambda(N_i) \mid i \geq 0 \}$$

be the set of all literals along P.

Complete Semantic Tree
A semantic tree for D is complete iff for every $A \in D$ and every branch P it holds that

$$A \in \mathcal{I}(P) \text{ or } \neg A \in \mathcal{I}(P)$$
Interpretation Induced by a Semantic Tree

Every path \mathcal{P} in a complete semantic tree for D induces an interpretation $\mathcal{I}_\mathcal{P}$ as follows:

$$\mathcal{I}_\mathcal{P}[A] = \begin{cases}
\text{true} & \text{if } A \in \mathcal{I}_\mathcal{P} \\
\text{false} & \text{if } \neg A \in \mathcal{I}_\mathcal{P}
\end{cases}$$

A complete semantic tree can be seen as an enumeration of all possible interpretations for N (it holds $\mathcal{I}_\mathcal{P} \neq \mathcal{I}_{\mathcal{P}'}$ whenever $\mathcal{P} \neq \mathcal{P}'$)
Failure Node

If a clause set N is unsatisfiable (not satisfiable) then, by definition, every interpretation \mathcal{I} falsifies some clause in N, i.e., $\mathcal{I} \not\models C$ for some $C \in N$.

This motivates the following definition:

Failure Node

A node N' in a semantic tree for N is a failure node, if

1. there is a clause $C \in N$ such that $\mathcal{I}_N \not\models C$, and
2. for every predecessor N'' of N' it holds:
 - there is no clause $C \in N$ such that $\mathcal{I}_{N''} \not\models C$
Open, Closed

A path \mathcal{P} in a semantic tree for N is closed iff \mathcal{P} contains a failure node, otherwise it is open.

A semantic tree \mathcal{B} for M is closed iff every path is closed, otherwise \mathcal{B} is open.

Every closed semantic tree can be turned into a finite closed one by removing all subtrees below all failure nodes.

Remark
The construction of a (closed or open) finite semantic tree is the core of the propositional DPLL procedure above. Our main application now, however, is to prove compactness of propositional clause logic.
Compactness

Theorem 4
A (possibly infinite) clause set \(N \) is unsatisfiable iff there is a closed semantic tree for \(N \)

Proof.
See whiteboard

Corollary 5 (Compactness)
A (possibly infinite) clause set \(N \) is unsatisfiable iff some finite subset of \(N \) is unsatisfiable

Proof.
The if-direction is trivial. For the only-if direction, Theorem 4 gives us a finite unsatisfiable subset of \(N \) as identified by the finitely many failure nodes in the semantic tree.