e

I DATA
bl

~N 7~

Combining Event Calculus and
Description Logic Reasoning via
Logic Programming

Peter Baumgartner
Data61|CSIRO and ANU, Canberra, Australia

Project Background: A Logic Based System for Situational Awareness

Situational awareness = comprehending system state as it evolves over time

Example: FOOd Supply Chain The Food Production Chain

* Are goods delivered within 3 hours and stored below 25°C?
« Why is the truck late?
« What is the expected quality (shelf life) of the goods?

What’s the problem?

« Multiple aspects: temporal/causal/structural/physical/... ﬂ* Logic program
- Events happened = events reported (errors, incomplete, late ...) - Belief revision
« Uncertainty: multiple plausible explanations for given facts 4"‘ Models

This Work

« More expressive modelling language for better domain modelling
« Extension 1: Description logic interface
« Extension 2: Event calculus

* Implementation in Fusemate system

Fusemate - Language and Model Computation Overview [IJCAR 2020]

Input language: Prolog-like rules

R(a,b) Models Botton-up procedures
R(XY) . R(YX) R(a,b) (Hyper tableau, Hyper resolution, ...)
R(b,a)
R(XIZ) .- R(XIY)I r(YIZ)
GoodSleep

Default negation: stratification “by time” GoToBed WakeUp
GoodSleep(time) :- “not” subgoals must be strictly I_ not WakeUp — I >

WakeUp(time), earlier “<“ than current time 21:00 6:00

GoToBed(t), t <= time - 8, 4~

not (t <=s, s < time, WakeUp(s)) unhappy(time) ; ot WinLottery(time+7)

[7§ /)

or

Disjunctions: possible model semantics [Sakama 90] Models Inclusive
Thirsty(10) Hungry(10) Hungry(10)
Thirsty(10)

Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision

fail(+ GoToBed(time - 8)) :- Add retrospectively GoToBed WakeUp
WakeUp(time), I I >
not (GoToBed(t), t <= time - 8) 22:00 6:00 °

Application: Situational awareness = model computation

Stratified Model Computation

Modelling Setup for Situational Awareness

« EDB: Timestamped facts (“events”) EO, E1, E2, ...
 |IDB: Models for derived predicates up to “now”

Model Computation

ot (o) — (o) — ()
Bottom-up application |

of logic program _———i

rules until fixpoint
IDBs Io12,.. ' I — @ ----- =

Effective because default negation can refer only to the past*

Revision

Revision = programmable addition/removal of events in the past + restart of model computation

Logic Program Example: Supply Chain

Derived “In” relation

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, ¢, cont)

// Frame axiom for In
In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(prev, obj, cont),
not (In(prev, obj, ¢), Unload(time, ¢, cont))

Experience: Logic programs often
(a) are too low-level, and

\
N

Integrity constraints and revision

// No Unload without earlier Load
fail :-

Unload(time, obj, cont),

not (Load(t, obj, cont), t < time))

AN
\

' 0 &
-

/////i —
- y/

// Unload a different object
fail(- Unload(time, obj, cont), + Unload(time, o, cont)) :-
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),
Load(t, o, cont),
t <time,
SameBatch(t, b),
((b contains obj) && (b contains 0))

+ 4 more rules

(b) suffer from non-termination for “tuple generating dependencies”
-> Extend reasoning framework with Description Logic reasoning and Event Calculus 5

Description Logic Reasoner Interface

Description Logics

« A DL KB consists of a TBox (concept definitions) and an ABox (instance assertions)
« The concrete choice of DL is not important here, but must include ALC and satisfiablity must be decidable

KB = (ABox, TBox)

[0..1] temp
BOX weseessissnete > TempClass TBox Box C V temp.TempClass
/ \ g 4 >\'\ FruitBox C d temp.TempClass
RS \
ToyBox FruitBox .v\\\“ ANEEEAN ToyBox C —3 temp.TempClass
.......... i NN FruitBox C Box
[0] fartrsrernssnnnansen™ Low High
emp ToyBox C Box
temp 1s a functional role
Reasoning
- Does Boxo have a temp attribute? ABox Low : TempClass
* |s Boxs a FruitBox? High : TempClass
» Are FruitBox and ToyBox disjoint? Boxg : FruitBox
* |s (ABox, TBox) satisfiable? Box; : FruitBox
Box, : Box
[CADE-2021 SD): By ¢ ToylEn

Box, : Box MY temp.—~TempClass

DL ALCIf by mapping to fusemate disjunctive Boxs : Box M 3 temp. TempClass

logic program + loop check

Description Logics + Logic Programming Approach - Overview
DL and LP are Complementary

FruitBox

: FruitBox

Box

ToyBox

Box MV temp.—-TempClass
Box M 3 temp.TempClass

Open world vs closed world, entailment vs models, unique name assumption no/yes EOXO ‘
0X1
Here: Timed Setting Box :
Time 10 20 30 40 50 EOX3
Action Load Boxg Load Box, Load Boxs Unload B°X4
Load Box; Load Boxy OX5 :
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°

Goal: Understanding situation as it evolves over time

t=50 Boxo temp problem?
Truck cooling problem?

What boxes to check?

t=10 t=20 t=30

« Box0 has a known* low temp * Box0 has a known high temp

« Box1 has some unknown temp
* Box2 is not known to have atemp |« Box2 has a known high temp

« Box3 is known to have no temp
* “*known” = “follows wrt FOL”

Approach: DL+Rules(+Event Calculus)

« DL: black-box theory reasoner - can talk about implicitly exisiting individuals

« EC: actions and their effects over time - can add “from now on unless change” to above properties

* Rules: glue between DL+EC - can bring in concrete domains (numbers)

Description Logic Interface - Queries
TBox Box C V temp.TempClass

FruitBox C 3 temp.TempClass

DL Query Example (Body Literal)
ToyBox C —d temp.TempClass

(ABox(I, 20), TBox) |= Boxz: FruitBox, (Boxz, Temp): High FruitBox C Box
k ToyBox C Box
ABox in interpretation I at time 20

Interpretation | Boxo : FruitBox @ 10
with timed :

ABox Assertions B.OX2 :Box @ 20
(Boxo, High): temp @ 20

DL Query Syntax
The following forms can be used in rule bodies

TEq DLISSAT(T) DLISUNSAT(T)
(A, T) Eq DLISSAT(A, T) DLISUNSAT(A, T)
« T is a TBox

* A is an ABox, implicitly A(currentl, now) where
AlLy={a:Cla:C@trellu{(a,b):R|(a,b):R @t €I}

—

e ¢ IS aquery, i.e., asequence of terms representing an ABox

. (A, T)E gmeans“AUT k /\7 as FOL formulas

Description Logic Interface - Examples Box C V temp. TempClass
FruitBox C d temp.TempClass
ToyBox C —d temp.TempClass
FruitBox C Box

ToyBox E Box

Materialization g~ Con derive new ABox assertions (even in the past)!

X : Box @ time :-
(x:_ @ time), //xisanindividual in an ABox assertion at “time”

TBox |=x: Box // Implicit ABox (A(I, time)
; Boxo : FruitBox @ 10

Variables in DL Queries grounded now .
Box:> : Box @ 20

Box has temp (Boxo, High): temp @ 20
TempBox(time, box) :-
box : Box @ time,

TBox |= box : 3 Temp . TempClass Box never had known high temp in the past

ColdBox(time, box) :-
box : Box @ time,

Box has known temp not (t<time

KnownTempBox(time, box) :- (AL 1), TBox) |= box : Box, (box, High) : Temp)
box : Box @ time,
temp € { Low, High }, // Guess (Stratifed) DL call under default negation!

TBox | = (box, temp): Temp

10

Description Logic Interface - Semantics

Query Evaluation
Reduce query evaluation to standard DL knowledge base satisfiability

A, TYEa:C iff (AU {a :—C},T)is unsatisfiable
(A, T)FE (a,b) : r iff (AU {a:Vr.-B, b: B}, T)is unsatisfiable, with B fresh

Stratification

- Implicit ABox A(/, 1) - use concept and role assertions timed ¢

« Explicit ABox: not automatically, use with care :) See paper for details

Unique Name Assumption (UNA)
* DL does not assume UNA

Eg. A= {(c,a):r,(c,b) : r} with functional r is satisfiable only if I(a) = I(b)
 LP does assume unique name assumption, i.e., I(a) # I(b)
 Solution: enforce UNA in DL by adding axioms

E.g. N={a,b,c} are all current named ABox individuals

Addto ABox {a:N_,b:-N,,a:N,,c:-N

ac’ o ---) Where N,'s are fresh concept names

11

Description Logic Interface - Soundness and Completeness

Model computation soundness and completeness rests on the following properties

DL-safe rules

- Named individuals: those that appear explicitly in ABox assertions Box2 : 3 temp . TempClass

« Unnamed individuals: implicitly constructed (Skolem)
* Rules are DL-safe: unnamed individuals cannot escape their query scope

Monotonicity
« Rules H :- B must be monotonic:if/ F BandJ O IthenJ E B

* No problem with stratified negation

- [OK] DL queries T E ‘¢ and DLISUNSAT(T) are always monotonic by monotonicity of FOL
. DL queries (A, T) E ¢, DLISUNSAT(A,T), DLISSAT(T) and DLISSAT(A,T) use with care

Compactness

: : : C e : . 0)1 < 0)2 <
 Fixpoint model requires transfinite induction in general
+ Not effective for aggregation operator {P(x,?) | Q(x,s), s <t} [E —(B) — E, 4;}

» However not a problem because interest only in finite models lm l
* (DL query evaluation always compact because of FOL) — (j "Iz‘ \

Event Calculus

13

Event Calculus [Kowalski & Sergot 1986]

« The event calculus (EC) is a logical language for representing and reasoning about actions and their effects
« The formulation below follows the original logic program, with adaptions and extensions for DL
Actions and Fluents

A fluent is a property that HoldsAt over a time period

« Fluents are initiated or terminated by actions that happen at given time point

Time 10 20 30 40 50
Action Load Boxg Load Boxy Load Boxz Unload
Load Box; Load Boxy

Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°
t=20 Load(Box;) initiates OnTruck(Box>) HoldsAt(20, OnTruck(Boxz)) €1
=50 Unload terminates OnTruck(Box)) HoldsAt(50, OnTruck(Box;)) €& I
Problem Specific Axioms Problem Specific Events EC Library
Initiates(time, Load(box), OnTruck(box)) :- Happens(20, Load(Boxy)) HoldsAt(time+1, 1) -

Initiated(time, f),
box : Box @ time not Terminated(time, f)

Terminates(time, Unload(box), OnTruck(box)) :- Happens(50, Unload) HOIdSAIt_fglrng?(t;;n e-1, 1)

HoldsAt(time, OnTruck(box)) not Terminated(time, f)
14

Event Calculus

Linking DL with EC

« Often, ABox assertions are meant to hold over time instead of time points only
« That is, timed ABox assertions can be fluents now

“From time 0 on” vs “Attime 0”
HoldsAt(0, Boxs: Box m 3 Temp . TempClass) vs Boxs: Box 3 Temp . TempClass @ 0

« Add axioms for turning ABox fluents into timed ABox assertions again (but not vice versa)

X:C@ time :- (X, y): r @ time :-
HoldsAt(time, x : c) HoldsAt(time,(x, y) : r)

Rule with ABox Fluent, Action and Concrete Data

Initiates(time, SensorEvent(box, temp), (box, High) : Temp) and If box temp sensor >0
Terminates(time, SensorEvent(box, temp), (box, Low) : Temp)) :- then box temp is *high” from now on and

Happens(time, SensorEvent(box, temp)), no longer “low” from on

temp >0

15

Conclusion

Contributions

« Theoretical: very liberal Rule + DL combination, conditions for soundness and completeness

« KR language design: extension of LP with DL + EC “very useful” for situational awareness
Hard to quantify, but see paper for “complex” anomaly detection example

« Implementation: Fusemate https://bitbucket.csiro.au/users/bau050/repos/fusemate

Open Problem

« The ramification problem is concerned with indirect consequences of actions, such as conflicts

o | rs in a pronoun way her
t occurs in a pronounced way here Box C V temp.TempClass

- Example: rule for terminating a box’ temp fluent FruitBox C 3 temp.TempClass
Terminated(time+1, (box, temp) : Temp)) :- ToyBox C —3 temp.TempClass
RemoveTemp(time, box), // Some condition for removing box Temp FruitBox T Box
(box, temp) : Temp @ time // Attribute to be removed ToyBox E Box

_ temp is a functional role
 This rule does not always work

E.g, for a FruitBox the box’ temp attribute is entailed by the “black box” TBox

« AFAIK “repairing” ABoxes is ongoing research but can be done in special cases o

https://bitbucket.csiro.au/users/bau050/repos/fusemate

