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Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What’s the problem?

» The domain model needs to cover multiple aspects:
Temporal/causal/structural/physical/...
» Events happened = events reported (errors, incomplete, late ...)

» Can only hope for multiple plausible explanations
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Assumption as per schedule: truck is on the road
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Conclusion: truck is on the road for too long - tomatoes are no longer fresh
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Report: actually, at T+1 truck was still in Sydney warehouse
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Conclusion: tomatoes are still fresh at T+2
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No information at T+3

O O O
w&tz w&tz




T+3: What if truck is on the road?
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T+3: What if truck is on the road? At Canberra warehouse?
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Report: truck at Canberra warehouse
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Report: truck at Canberra warehouse
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—> We use logic programming
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Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine
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Logic Programming Tom i thirsty
Algorithm = Logic + Control (Kowalski) . m‘\lom IS a cqt
Pieces of reusable domain knowledge Cals drin Milk is in the frid
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Logic Programs €lls milk
If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(TOm)

inFridge(5, Milk) .. o
‘innocent :- not guilty”

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)
Integrity constraints fail :- cat(x), mouse(x)

Purpose

Query answering (who drinks milk?), planning (get Tom some milk),
abduction (why did we go to Coles?), model computation (what do we know about Tom?)
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Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
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Sokoban Answer Set Solver Program [DLV]

time(T) :- #int(T).
actiontime(T) :- #int(T), T != #maxint.

left(L1,L2) :- right(L2,L1).
bottom(L1,L2) :- top(L2,L1).

adj(L1,L2) :- right(L1,L2).
adj(L1,L2) :- left(L1,L2).
adj(L1,L2) :- top(L1,L2).
adj(L1,L2) :- bottom(L1,L2).

location(L) :- adj(L,_).

push(B,right,B1,T) v -push(B,right,B1,T) :- reachable(L,T), right(L,B), box(B,T),
pushable_right(B,B1,T), good_pushlocation(B1), actiontime(T).

push(B, left,B1,T) v -push(B,left,B1,T) :- reachable(L,T), left(L,B), box(B,T),
pushable_left(B,B1,T), good_pushlocation(B1l), actiontime(T).

push(B,up,B1,T) v -push(B,up,B1,T) :- reachable(L,T), top(L,B), box(B,T),
pushable_top(B,B1,T), good_pushlocation(B1), actiontime(T).

push(B,down,B1,T) v -push(B,down,B1,T) :- reachable(L,T), bottom(L,B), box(B,T),
pushable_bottom(B,B1,T), good_pushlocation(B1l), actiontime(T).

reachable(L,T) :- sokoban(L,T).
reachable(L,T) :- reachable(L1,T), adj(L1,L), not box(L,T).

pushable right(B,D,T) :- box(B,T), right(B,D), not box(D,T), actiontime(T).
pushable right(B,D,T) :- pushable_right(B,D1,T), right(D1,D), not box(D,T).
pushable left(B,D,T) :- box(B,T), left(B,D), not box(D,T), actiontime(T).
pushable_ left(B,D,T) :- pushable_left(B,D1,T), left(D1,D), not box(D,T).
pushable_top(B,D,T) :- box(B,T), top(B,D), not box(D,T), actiontime(T).
pushable_top(B,D,T) :- pushable_top(B,D1,T), top(D1,D), not box(D,T).
pushable_bottom(B,D,T) :- box(B,T), bottom(B,D), not box(D,T), actiontime(T).
pushable_bottom(B,D,T) :- pushable_bottom(B,D1,T), bottom(D1,D), not box(D,T).

sokoban(L,T1) :- push(_,right,B1,T), #succ(T,T1), right(L,B1).
sokoban(L,T1) :- push(_,left,B1,T), #succ(T,T1), left(L,Bl).
sokoban(L,T1) :- push(_,up,B1,T), #succ(T,T1), top(L,Bl).
sokoban(L,T1) :- push(_,down,B1,T), #succ(T,T1), bottom(L,B1).

-sokoban(L,T1) :- push(_,_,_,T), #succ(T,T1), sokoban(L,T).

box(B,T1) :- push(_,_,B,T), #succ(T,T1).
-box(B,T1) :- push(B,_,_,T), #succ(T,T1).

box(LB,T1) :- box(LB,T), #succ(T,T1l), not -box(LB,T1).
sokoban(LS,T) :- sokoban(LS,T), #succ(T,T1), not -sokoban(LS,T1).

:- push(B,_,_,T), push(B1,_,_,T), B != Bl.
:- push(B,D,_,T), push(B,D1,_,T), D != D1.
:- push(B,D,B1,T), push(B,D,B11,T), Bl != Bll.

good_pushlocation(L) :- right(L,_), left(L,_).
good_pushlocation(L) :- top(L,_), bottom(L,_).
good_pushlocation(L) :- solution(L).

notgoal :- solution(L), not box(L,#maxint).
not notgoal?
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Recap: Issues

Domain Modelling

Multiple aspects
(temporal/causal/physical/epistemic/legal/...)
Incomplete
Events
Events happened = events reported (errors, incomplete, late ...)

Explanations
Multiple plausible explanations
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Events happened # events reported

“Fixing the event stream”
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“Fixing the event stream”
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Load( 10, tomatoes, pallet)
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Load( 40, container, ship)

Unload(60, apples, pallet)
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Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
// In transitivity t < time))
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

In(time, obj, cont) :-
Load(time, obj, cont)

“fail” heads for fixing
// Unload a different object the event stream -
fail(- Unload(time, obj, cont), ‘%,,/
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

// Frame axiom for In not (Load(t, obj, cont), t < time),
In(time, obj, cont) :- Load(t, o, cont),

In(prev, obj, cont), t < time,

Step(time, prev), SameBatch(t, b),

Egi Unload(time, obj, cont), ((b contains obj) && (b contains o))

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation + 4 more rules

(Frame axioms now via Event Calculus)
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Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..

(2) head has a time variable (“"now”)

(3) one body lit has same time variable
(4) other body lits have time < time

(5) EDB litsin not body have time < time
(6) IDB lits in not body have time < time

Examples

I(time, x) :- J(time, x, y), I(time, vy)

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂ?‘frue or false in final model
~ Efficient model computation

I,]:1DB
E: EDB
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Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

Range restriction

s.th. (1) var(head) c fvar(body, .., not body, ..) ﬂ-’ - Simple model computation

(2) head has a time variable (“now”)
(3) one body lit has same time variable - Stratification by time
: : . ~ Effective model computation
(4) other body lits have time < time
(5) EDB lits in not body have time < time Avoids guessing whether head is

(6) IDB lits in not body have time < time ﬂ*"*"“e or false in final model
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I,]:1DB
E: EDB

22



Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

Range restriction

s.th. (1) var(head) c fvar(body, .., not body, ..) ﬂv - Simple model computation

(2) head has a time variable (“now”)
(3) one body lit has same time variable - Stratification by time
: : . ~ Effective model computation
(4) other body lits have time < time
(5) EDB lits in not body have time < time Avoids guessing whether head is

(6) IDB lits in not body have time < time ﬂ;"’”‘“e or false in final model

~ Efficient model computation
Examples

I(time, x) :- J(time, X, y), I(time, vy)
I(time, x) :- J(time, x, y), I(t, y), t = time
I(time, x) :- J(time, X, y), not (I(t, y), t < time)
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Avoids guessing whether head is
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Closed world assumption
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( not exists a s.th. body(a) C Eul
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Stratified Logic Programs

Consists of rules over literals

h

s.th. (1)

(2)
(3)
(4)
(5)
(6)

Examples
I(time,
I(time,
I(time,
I(time,

I(time,

ead :- body, .., not body, ..

var(head) c fvar(body, .., not body, ..)
head has a time variable (“now”)

one body lit has same time variable

other body lits have time < time

EDB lits in not body have time < time

IDB lits in not body have time < time

X) - J(time, x, y), I(time, y)
x) = J(time, x, y), I(t, y), t = time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂ?‘frue or false in final model
~ Efficient model computation

Closed world assumption
Eul = not body(x) iff

( not exists a s.th. body(a) C Eul

x) - J(time, x, y), not (I(t, y), t < time)

x) :- J(time, x, y), not (I(t, y), t = time) No! I,J:1DB
x) :- J(time, x, y), not (E(t, y), t = time) E: EDB
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Integrity Constraints and Belief Revision
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

[IJCAR 2020]

23



Integrity Constraints and Belief Revision [JJCAR 2020]
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

Example

// Unload a different object
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),
Load(t, o, cont), t < time,
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Integrity Constraints and Belief Revision
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

Example
// Unload a different object = Unload(60, apples,
fail(- Unload(time, obj, cont),

+ Unload(time, o, cont)) :- ‘l
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),

Load(t, o, cont), t < time,
=4+ Unload(60, tomatoes,

[IJCAR 2020]

pallet)

pallet)
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Integrity Constraints and Belief Revision [JJCAR 2020]
Usual integrity constraints

fail :- body, .., not body, .. Semantics

Eul
Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, .. if Eul = (body, ..,

not body, ..)o
s.th. « “conditions for body as for ordinary rules”

» EDB lits e and f have time < time (E\ eo) u fo
Example
// Unload a different object = Unload(6®, apples, pa'l_let)
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

not (Load(t, obj, cont), t < time),

Load(t, o, cont), t < time,
<4 Unload(60, tomatoes, pallet)
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Semantics of Programs With Fail Rules

Einit v E v E>
/ / /
/ / :
| / l

_—

l
|

S A | I
| /
|
l

/

fail() 1) I, , I} fail() 1) I fail() fail(e))~
/

fail(zgj ;aiI(E(l) ————— -
Operational
for a given EDB E
fortimet=0,1,2, ..., nOW
compute {9, I, ... allIDBs fortime <t}
fori=1,1, ..
let F={fail(..) heads derivable from Eul }
if Fis non-empty then
obtain new EDBs £, E;, ... as per F and
abandon model candidate I

' Principles

fail as early as possibly
Collect all possible fails
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Einit /V E;q //y E> J__EEE
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/ |
/ |
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I /
/ - Colle ssible fails
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Semantics of Programs With Fail Rules

Einit /V E;q //y E> J__EEE
// I/
/ |
/ |
,’ ' Principles
: - Fail as early as possibly
I /
/ - Colle ssible fails
fail) 19 1) Il fail() /,' 19 1) fail() fail(20) ollect all possible fail
fail (20) fall( ————— -
Operational
for a given EDB E
fortimet=012 .. Now k Can branch out because of disjunctive heads

compute {9, I, ... all IDBs fortime <t}
forI=10 11, ...
let F={fail(..) heads derivable from Eul }

if Fis non-empty then
obtain new EDBs F, E, ... as per F and Declarative semantics: see paper

abandon model candidate I
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Description Logics

-» A (usually) decidable fragment of first-order logic
-» Semantic web ontologies (“is-a” and “has-a" relations)

Instances
-» Reasoning on concepts and concept instances “ABox"
Concepts Box C V temp.TempClass
“TBox"

FruitBox C d temp.TempClass
ToyBox C =3 temp.TempClass
FruitBox C Box
ToyBox C Box

temp 1is a functional role

X
N
/ \ "0‘&~Q :A
o :.
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Box C V temp.TempClass Low : TempClass
“TBox”

FruitBox C 3 temp.TempClass High : TempClass
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0..1] tem
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-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
*PReasoning on concepts and concept Instances “ABox”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C d temp.TempClass High : TempClass Boxj : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Box [O1]temp> TempC|aSS
bV
/ \ ég ‘ Vo N
: 2 \
ToyBox  FruitBox < ¢ NN

......................... Low High



Description Logics

-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
-» Reasoning on concepts and concept instances “ABox"”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C 3 temp.TempClass High : TempClass Box; : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Reasoning
[0..1] temp
BOX -eeseeencvanenns > TempC|aSS .
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Description Logics

-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
-» Reasoning on concepts and concept instances “ABox"”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C 3 temp.TempClass High : TempClass Box; : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Reasoning
[0..1] temp
BOX -eeseeencvanenns > TempC|aSS .
/ \ A4 Is Box4 a FruitBox?
RN N Is Boxs a FruitBox?
: o R \ . . ..
ToyBox: FruitBox "> NN Are FruitBox and ToyBox disjoint?
[ — Low High

(CADE-2021]): map to fusemate disjunctive logic program + loop check



Description Logics, Event Calculus and Rules

-» Description logics and logic programming are “very different”

Open world vs closed world, Entailment vs Models, Infinite models vs finite models

-» Attractive to integrate for modelling complementary aspects

Boxg :
. FruitBox

Box;

Box» :
Boxs :
Boxy4 :
: Box 1 3 temp.TempClass

BOX5

FruitBox

Box
ToyBox
Box MV temp.—-TempClass
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Box; : FruitBox

-» Description logics and logic programming are “very different” Box, : Box
Open world vs closed world, Entailment vs Models, Infinite models vs finite models Box3 : ToyBox

-» Attractive to integrate for modelling complementary aspects
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Box4 : Box MY temp.—~TempClass
Boxs : Box M 3 temp.TempClass

Box0 (High)
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Action Load Boxg Load Box, Load Boxs Unload Box2 (High)
Load Box; Load Boxy
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[DL): Box2 is “High temp box” at +=20
(EC rules): .. and temp stays at 10° at t=30, 40, 50

Fusemate + DL integration

-» Rules can call description logic reasoner
-» Rules can extend current ABox / fix past ABox

ColdBox(time, box) :-
IsAAt(time, x, Box),

NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

Cooling broken?

|= means “provably” (not “consistently”)
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Embedding Into Scala: Translation

Input program = Scala source code

Logic

Scala

Pred/Fun signature
Interpretation
Variable

Rule

Matching subst

Class

Set of class instances
Variable

Partial function
Pattern matching

28



Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class
InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List( In(time, obj, cont) :-= (In(time, obj, c), In(time, c, cont) )
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Pred/Fun signature Class
InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &
val rules = List( In(time, obj, cont) := (In(time, obj, c), In(time, c, cont) )
case List(In(time, obj, c), In(time®, c1, cont)) L Macro expansion
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=> In(time, obj, cont) function
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Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class

InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &

val rules = List( In(time, obj, cont) :-= (In(time, obj, c), In(time, c, cont) )
case List(In(time, obj, c), In(time®, c1, cont)) - __Macro expansion
if ¢ == cl && time == time0 info partial
=> In(time, obj, cont) function

+ given-clause loop operating on such rules-as-partial-functions

(In reality the macro expansion is more complicated because of default negation)

28



Embedding into Scala: Method

val = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again

map { =>
split(",") match {
case Array("Load", , : ) => Load( .tolnt, ; )
}
} saturate { @rules ..
fail(..) :—
(b 3 ) & (b 3 o),
where { val b = sameBatch(t) }
Fmap { I =>
.tolList.sortBy(_.time) flatMap {
case Load( , , ) => List(s"Load, : : ")
}

}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) o9
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“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—
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where { val b = sameBatch(t) }
ymap { I =>
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}
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Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 2 0),
where { val b = sameBatch(t) }
ymap { I =>
I.toList.sortBy(_.time) flatMap {
case Load(time, obj, cont) => List(s"Load,$time, $obj,$cont")

def sameBatch(time: Time) =
- if (time ==10) Set("tomatoes", "apples") else Set.z[String]

}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) 29



Embedding into Scala: Discussion

Two-way calling interface

» Scala -> Rules calls trivial
* Rules -> Scala calls trivial

Data structures integration is trivial

» Use any Scala data structure in rules
» Logic data structures (models) are Scala data structures
« Unmatched aggregation and introspection capabilities

Disadvantage

* Must rely on Scala pattern matching implementation
» Difficult to implement efficiently
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Embedding into Scala: Discussion

Two-way calling interface

» Scala -> Rules calls trivial
* Rules -> Scala calls trivial

Data structures integration is trivial

» Use any Scala data structure in rules
» Logic data structures (models) are Scala data structures
« Unmatched aggregation and introspection capabilities

Disadvantage

* Must rely on Scala pattern matching implementation
» Difficult to implement efficiently

- Tighter coupling than in every other system (I know of)
- Adds “interpretations” as a container data structure to functional/00 programming
with “logic programming” as an operator

30
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Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability
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©
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© The New Zealand RFID
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vents: from farm (NZ) to retailer (DE) encoded in EPCIS

Gary Hartley
New Zealand RFID Pathfinder Group
January 2013

Process Step 4 - Animals arrive at Mountain River Processors’ stun box

Figure 5.7 - Stun Box Figure 5.8 - RFID reader at Stun Box

Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box.

Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River
processor and moved from the boning room into chiller room

Figure 5.9 - UHF RFID tags Figure 5.10 - UHF RFID Figure 5.11 — Tagged cartons
used on cartons tags positioned on cartons moving from boning room to
chiller room

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation
for loading the shipping container.
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EPCIS Event Details

Event Time
Timezone Offset
Event Type
Action

EPC

BizStep

Disposition
BizLocation
Read Point

16/10/2012 11:54:38 +1300
+13:00
ObjectEvent
ADD

urn

urn

urn

urn

urn

urn

urn

urn:
urn:

urn:
urn:
epc:
epc:
epc:
:id:sgtin:9421900217.003.1073742115

urn:
urn:
urn:
urn:

urn:
urn:
urn:
urn:

epc

epc:
1epc:
epc:
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Table 6.3 - Commissioning event - tagging of animals

\_____________________ILJ'
Events: from farm (NZ) to retailer (DE) encoded in EPCIS

=S ===
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=S ===
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Case Study 1 - Deer Supply Chain

From Farm to Supermarket

Deer-2 Deer-2 Deer-2
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Add

2012-10-25T11:25:53+13:00

WWwWw

Carton-11

PrimeMeat/Germany/DOCK |

shipping - in_transit

Observe

2012-12-11T22:40:28+17

-

The Use of EPC RFID Standards for
Livestock and Meat Traceability

The New Zstand RFID
Pathfinder
Group

Deer-1 Deer-1 Deer-1 Deer-1 Carton-5 ShippingContainer-1 ShippingContainer-1 Carton-18
DownlandsDeer/NewZealand/DEER_CRUSH DownlandsDeer/NewZealand/LOADING_RAMP iver UNLOADING_RAMP TUN_BOX ONING_ROOM_EXIT XIT_POINT PortOfLyttleton/NewZealand/ ENTRY_GATE PrimeMeat/Germany/DOCK _
DownlandsDeer/NewZealand/ON_FARM iverF HOLDING_PEN_2 ONING_ROOM P HILLER_ROOM
commissioning - active shipping - in_transit receiving - in_progress transforming - in_progress commissioning - active shipping - in_transit shipping - in_transit shipping - in_transit receiving - sellable_accessible
Add Observe Observe Delete Add Observe Observe Observe Delete

2012-10-16T11:54:38+13:00

2012-10-24T08:02:32+13:00

2012-10-24T10:42:03+13:00

2012-10-24T12:21:24+13:00

2012-10-25T11:25:53+13:00

2012-10-26T07:53+13:00

2012-10-26T09:13+13:00

2012-12-11T22:40:28+13:00

2012-12-12T01:58:34+13:00

Of Interest
e Handling structured XML
e Speculating whereabout of missing item

- A box enters supply
- Track same batch b

Association

T~

Carton-6
1P ONING_ROOM_EXIT
iverP HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-7
P ONING_ROOM_EXIT
iver HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-8
P ONING_ROOM_EXIT
iver HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-9

rocessors/NewZealand/BONING_ROOM_EXIT

erProcessors/NewZealand/CHILLER_ROOM
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Add

2012-10-25T11:25:53+13:00

oxes as proxies

gregation

W

Carton-2

Carton-2

PrimeMeat/Germany/DOCK_DOOR

Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE

shipping - in_transit

receiving - sellable_accessible

Observe

Delete

2012-12-11T22:40:28+13:00

2012-12-12T01:58:34+13:00

Disaggregation

chain but does not arrive at destination

Gary Hartley
New Zealand RFID Pathfinder Group

January 2013
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Case Study 2 - D61 Project “Supply Chain Awareness”

- Partner company BeefLedger ships boxed meat products

- Stringent cooling requirements ensure quality of products

- D61 sensors measure box temperatures
(S. Khalifa / K. v. Richter)

- Task: Pricing model, anomaly detection

1 temp M20 temp W11 temp
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Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies
BoxAtCoord(time, at, id, temp),
s BoxAtCoord(prev < time, = gme_ 'evs
SECONDS.between(prev, til le. ‘ e,
HoldsAt(time, On(id, truc..__,,,
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+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-
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Fix sensor dropouts, anomalies

HoldsAt(time, On(id, truc..__,,,
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Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
BoxOnTruck(prev, 1id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT ( TruckAtCoord(s, _) STH prev < s A s < t) )

Time
Loc
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Rule for recovering sensor dropout
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Fusemate System Demo

Fusemate Messages
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Fusemate System Demo

Beef Transport Demo
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Of Interest

e GPS -> Symbolic Loc

e Integrating
information sources

e Noisy sensor data

e Robust anomaly
detection
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Case Study 3 - Taxi Rides Anomalies

2 Million taxi rides in New York City

Ride(taxi, license,from,to,start,end, fare)
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(1) Rules for hotspot clustering and concave hull
(2) Rules for anomaly detection
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clusters
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Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, —, From, _, P
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}
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Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

val gaps42 = rides filter {

.license = "42" : ‘
, saturateFirstK fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, ),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

} functional + Logic programming

Declarative and concise :)
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Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km

pickup anomaly from: hotspot-15

hour: (0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44 24 64 69 38 21

dropoffs: ( 16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74 70 76 36 13 | 34| 18
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Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km

pickup anomaly from: hotspot-15

hour: (0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44

dropoffs: ( 16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74

Of Interest

e Reasoning with non-trivially sized data sets

e Deploying Logic Programming as a method for data analysis
(as a Jupyter notebook)

e Interaction fusemate with host programming language Scala

18
24
70

19
64
76

20
69
36

21 22
38 ((109]
13 | 34|

23
21
18 )
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Data Cleansing as Situational Awareness

Example: Employments Database

Company
ABM
BBM
ABM

Employee
Alice

Bob

Alice

Since

1/3/18
5/3/18
1/6/19

Full-time
No
No
Yes
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Data Cleansing as Situational Awareness

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 NO e
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a
full-time contract at the
same time
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Data Cleansing as Situational Awareness

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 NO e
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a
full-time contract at the

same time

How to explain and fix this inconsistency?

Approach

* There is a fixed set of contract operators: cessation, conversion, new contract
* Try them out as “fixes” for the problem
* Or was it Bob? Or someone else?
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Conclusions

Summary
“Situational awareness = time-stratified logic programming + belief revision”
-> Good balance between expressivity and declarativity

The implementation is meant to be practical (workflow integration, ease of use)

Current and Future Work
Classical negation

Proper belief revision (ramification problem)

Timed LTL constraints []¢ . shipped(B) = {)s . s < t+ 5 A received(B)

Probabilities and combination with machine learning
 Probabilistic EDBs a la ProbLog Load(10, “tomatoes”, “pallet”) : 0.3
« ML as a subroutine for anomaly detection?

Context may help to favoid false positives

Implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/
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