@ I DATAI

The Fusemate Logic Programming System for
Situational Awareness

Peter Baumgartner

Data61 | CSIRO
The Australian National University

Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What’s the problem?

» The domain model needs to cover multiple aspects:
Temporal/causal/structural/physical/...
» Events happened = events reported (errors, incomplete, late ...)

» Can only hope for multiple plausible explanations

Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What’s the problem?

» The domain model needs to cover multiple aspects: ﬂ—« Logic program
Temporal/causal/structural/physical/... + ontologies/event calculus
» Events happened = events reported (errors, incomplete, late ...)

» Can only hope for multiple plausible explanations

Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What’s the problem?

» The domain model needs to cover multiple aspects: ﬂ—« Logic program
Temporal/causal/structural/physicall... + ontologies/event calculus
« Events happened = events reported (errors, incomplete, late ...) ﬂ—" Belief revision

» Can only hope for multiple plausible explanations

Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What’s the problem?

» The domain model needs to cover multiple aspects: ﬂ—« Logic program
Temporal/causal/structural/physicall... + ontologies/event calculus
« Events happened = events reported (errors, incomplete, late ...) ﬂ—" Belief revision

» Can only hope for multiple plausible explanations ﬂ" Models

1
5 i

Observation: truck is in Sydney at the warehouse

w&rz

1
5 i

Observation: truck is in Sydney at the warehouse

o

w&rz

Example &<y 1B R A

o=

Observation: tomatoes are loaded

w&rz

Example &<y 1B R A

o=

Observation: tomatoes are loaded

w&rz

y
5 i

Assumption as per schedule: truck is on the road

o

w&rz

y
5 i

Assumption as per schedule: truck is on the road

O -g

, o_

/AN~

Example &<z ;.

[) "—

y
5 i

Report: truck is on the road

y
5 i

Report: truck is on the road

O O

y
5 i

Conclusion: truck is on the road for too long - tomatoes are no longer fresh

® ® i

o

ol <

y
5 i

Conclusion: truck is on the road for too long - tomatoes are no longer fresh

® ® e

o

ol <

y
5 i

Report: actually, at T+1 truck was still in Sydney warehouse

= e

ol <

y
5 i

Report: actually, at T+1 truck was still in Sydney warehouse

O

1
Bl o

Conclusion: tomatoes are still fresh at T+2

® ® i

o

w7 /AN~

1
Bl o

Conclusion: tomatoes are still fresh at T+2

® ® ©

o

w7 /AN~

Example vl ,O-_@

No information at T+3

O O O
w&tz w&tz

T+3: What if truck is on the road?

w&7 w&ty

T+2

1
5 i

T+3

11

T+3: What if truck is on the road?

O O
w&tz w&tz

T+2

T+3

11

T+3: What if truck is on the road? At Canberra warehouse?

C? @ @ OR
w&tz w&tz

< < —

11

Report: truck at Canberra warehouse

O O
w&tz w&tz

T+2

T+3

12

Report: truck at Canberra warehouse

O O
w&tz w&tz

T+2

T+3

12

Report: truck at Canberra warehouse

O O O

T T+1 T+2

—> We use logic programming

12

Loglc Programmmg
J.L"_"é’ w

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

14

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

14

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

14

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

14

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

Cals d

r‘“k m\\k
Milk is in the fridge

14

Logic Programming

Algorithm = Logic + Control (Kowalski)

Pieces of reusable domain knowledge
Chained by inference engine

Milk is in the fridge
Coleg Sells mij

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) ,
cink milk

Milk is in the fridge

Pieces of reusable domain knowledge Cals d
Chained by inference engine

Co
Logic Programs les sells milk

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) .\;’;om IS a cqt
- \
Pieces of reusable domain knowledge Cals drinK m. L. :
. . . Milk is in the fridge
Chained by inference engine
Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) .\;’;om IS a cqt
- \
Pieces of reusable domain knowledge Ca¥s drmk m. o :
. . . Milk is in the fridge
Chained by inference engine
. Coles Se// .

Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

14

Logic Programming

Algorithm = Logic + Control (Kowalski) \;’;om IS q cat
\
Pieces of reusable domain knowledge Cals drink M
. . . Milk is in the fridge
Chained by inference engine
Logic Programs S milk
If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(Tom)
inFridge(5, Milk)

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) .\;’;om IS q cat
- \
Pieces of reusable domain knowledge Ca¥s dr\r\k m. o .
. . . Milk is in the fridge
Chained by inference engine
. Coles Se// .

Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(Tom)
inFridge(5, Milk)

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) .\;’;om IS a cqt
- \
Pieces of reusable domain knowledge Ca¥s dr\r\k m. o .
. . . Milk is in the fridge
Chained by inference engine
. Coles Se// .

Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(TOm)

inFridge(5, Milk) .. o
‘innocent :- not guilty”

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)

14

Logic Programming Tom i thirsty

Algorithm = Logic + Control (Kowalski) .\;’;om IS a cqt
- \
Pieces of reusable domain knowledge Ca¥s drmk m. o :
. . . Milk is in the fridge
Chained by inference engine
. Coles Se// .

Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)
Facts Cat(TOm)
inFridge(5, Milk) .. o,
‘innocent :- not guilty”
Default negation inFridge(time, Milk) :- not inBowl(time, Milk)

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

14

Logic Programming

Tom |

L . Tom

Algorithm = Logic + Control (Kowalski) K IS a cqt
- \
Pieces of reusable domain knowledge Ca¥s drmk m. o :
. . . Milk is in the fridge
Chained by inference engine
. Coles Se[/ .

Logic Programs S milk

If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(TOm)

inFridge(5, Milk) .. o
‘innocent :- not guilty”

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

Integrity constraints fail :- cat(x), mouse(x)

14

Logic Programming Tom i thirsty
Algorithm = Logic + Control (Kowalski) . m‘\lom IS a cqt
Pieces of reusable domain knowledge Cals drin Milk is in the frid
Chained by inference engine 1K 1S 1n The Tridge
. Coles S //)
Logic Programs €lls milk
If-then rules drinks(x, Milk) :- cat(x) if cat(x) then drinks(x, Milk)

inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts Cat(TOm)

inFridge(5, Milk) .. o
‘innocent :- not guilty”

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)
Integrity constraints fail :- cat(x), mouse(x)

Purpose

Query answering (who drinks milk?), planning (get Tom some milk),
abduction (why did we go to Coles?), model computation (what do we know about Tom?)

14

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”

append([], L, L)
append([H|T], L, [H|R]) :-
append(T, L, R)

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”

append([], L, L)
append([H|T], L, [H|R]) :-
append(T, L, R)

[1,2]1, [3,4], L)
(1,21, L, [1,2,3,4])
K, L, [1,2,3,4])

K, L, M)

?- append
?- append
?- append
?- append

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”

append([], L, L)
append([H|T], L, [H|R]) :-
append(T, L, R)

[1,21, [3,4]1, L)

[1,2]1, L, [1,2,3,4])

K, L, [1,2,3,4])

Ky Ly, M) [X,Y) ++ L = [X,YIL) ..

?- append
?- append
?- append
?- append

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) :- r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([laz]a [3)4]) L)
2= append([laz]a I—) [1)2)3)4])
?- append(K, L, [1,2,3,4])
(

?- append(K, L, M) ([x,y] ++ L = [XYIL) ..

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a
?- append [1)2] ’ I—) [1)2)3)4])

K, I—) [1)2)3)4])
Ka I—) M) [(X,Y) ++ L = [X,YIL] ..

?- append
?- append

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a No model
?- append [1)2]) I—) [1)2)3)4])

K, I—) [1)2)3)4])
Ka I—) M) [(X,Y) ++ L = [X,YIL] ..

?- append
?- append

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a No model
?—
- :ppzzjzﬁl,i],[i,z[g,ji?,4]) 2 . not b
° pp ()) b b b b . _ I‘IOt a

?- append(K, L, M) ([x,y] ++ L = [XYIL) ..

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a No model
?—
7~ append([1,21, L, [1.2,3,41) s - not b odel 1: {a}
f- appen E ’ ’ [Y& 99) b :- not 3 Model 2: {b}

?- append(K, L, M) ([x,y] ++ L = [XYIL) ..

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a No model
?—
7~ append([1,21, L, [1.2,3,41) s - not b odel 1: {a}
f- appen E ’ ’ [Y& 99) b :- not 3 Model 2: {b}

?- append(K, L, M) ([x,y] ++ L = [XYIL) ..

unhappy(now) :- not win(now+1)

15

Logic Programming

Prolog - “top down query answering” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)
?- append([1,2], [3,4], L) a :- not a No model
?—
7- append([1,2], L, [1,2,3,41 s - not b wodel 1+ fa
¢ appen ()))&=) b . not a3 MOdel 2: {b}
?- append(K, L, M) [x,Y) ++ L = [X,YIL) ..
unhappy(now) :- not win(now+1)

{} | {w} | {nots} | {nots,w} | {not} | {not,w}

{} P P P P NP A
{vp} || NP | AY NP AL NP AL
{v} | 22 | Ay | %5 AF %5 A3

15

Logic Programming

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M) [xy) ++ L =

“More operational”
General purpose PL
Unification/D¥BS

Answer Set Programming - “model computation”

(X.YIL) ..

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,zZ) :- r(X,Y), r(Y,Z)

a :- not a No model

a :- not b Model 1: {a}

b :- not a Model 2: {b}
unhappy(now) :- not win(now+1)

{} | {w} | {nots} | {nots,w} | {not} | {not,w}

{} P P P P NP AL
{vp} || NP | AY NP AL NP AL
{v} | 22 | Ay | %5 AF %5 Af

“More declarative”
NP-complete (or harder) search problems
Grounding (SAT solving)

15

Logic Programming

Prolog - “top down query answering"” Answer Set Programming - “model computation”
append([], L, L) r(X,X) r(a,b)
append([H|T], L, [H|R]) :- r(x,Y) := r(Y,X) r(c,b)

append(T, L, R) r(X,zZ) :- r(X,Y), r(Y,Z)

?- append([1,2], [3,4], L) a :- not a No model

?- d(L1,2], L, [1,2,3,4

, append(IE L] [2[3 47 1) a :- not b Model 1: {a}

?- append(K, L, [1,2,3,4]) b :- not a Model 2: §{b}

?- append(K, L, M) [x,¥] ++ L = [XYIL) ..
“More operational” unhappy(now) :- not win(now+1)
General purpose PL 0| {w} | {nots) | {nots,w} | {not} | {not,w}
Unification/DFfBS TR b b NP AL

Fusemate {wa} || NP | AY | NP AP NP AL
Model computation) || 2 | As | = Ay | % | A
Functions/data structures
Stratified (negation) by time “More declarative”

Belief revision: NP-complete (or harder) search problems

fail(+win(now-1)) :- happy(now) Grounding (SAT solving)

15

Sokoban Answer Set Solver Program [DLV]

time(T) :- #int(T).
actiontime(T) :- #int(T), T != #maxint.

left(L1,L2) :- right(L2,L1).
bottom(L1,L2) :- top(L2,L1).

adj(L1,L2) :- right(L1,L2).
adj(L1,L2) :- left(L1,L2).
adj(L1,L2) :- top(L1,L2).
adj(L1,L2) :- bottom(L1,L2).

location(L) :- adj(L,_).

push(B,right,B1,T) v -push(B,right,B1,T) :- reachable(L,T), right(L,B), box(B,T),
pushable_right(B,B1,T), good_pushlocation(B1), actiontime(T).

push(B, left,B1,T) v -push(B,left,B1,T) :- reachable(L,T), left(L,B), box(B,T),
pushable_left(B,B1,T), good_pushlocation(B1l), actiontime(T).

push(B,up,B1,T) v -push(B,up,B1,T) :- reachable(L,T), top(L,B), box(B,T),
pushable_top(B,B1,T), good_pushlocation(B1), actiontime(T).

push(B,down,B1,T) v -push(B,down,B1,T) :- reachable(L,T), bottom(L,B), box(B,T),
pushable_bottom(B,B1,T), good_pushlocation(B1l), actiontime(T).

reachable(L,T) :- sokoban(L,T).
reachable(L,T) :- reachable(L1,T), adj(L1,L), not box(L,T).

pushable right(B,D,T) :- box(B,T), right(B,D), not box(D,T), actiontime(T).
pushable right(B,D,T) :- pushable_right(B,D1,T), right(D1,D), not box(D,T).
pushable left(B,D,T) :- box(B,T), left(B,D), not box(D,T), actiontime(T).
pushable_ left(B,D,T) :- pushable_left(B,D1,T), left(D1,D), not box(D,T).
pushable_top(B,D,T) :- box(B,T), top(B,D), not box(D,T), actiontime(T).
pushable_top(B,D,T) :- pushable_top(B,D1,T), top(D1,D), not box(D,T).
pushable_bottom(B,D,T) :- box(B,T), bottom(B,D), not box(D,T), actiontime(T).
pushable_bottom(B,D,T) :- pushable_bottom(B,D1,T), bottom(D1,D), not box(D,T).

sokoban(L,T1) :- push(_,right,B1,T), #succ(T,T1), right(L,B1).
sokoban(L,T1) :- push(_,left,B1,T), #succ(T,T1), left(L,Bl).
sokoban(L,T1) :- push(_,up,B1,T), #succ(T,T1), top(L,Bl).
sokoban(L,T1) :- push(_,down,B1,T), #succ(T,T1), bottom(L,B1).

-sokoban(L,T1) :- push(_,_,_,T), #succ(T,T1), sokoban(L,T).

box(B,T1) :- push(_,_,B,T), #succ(T,T1).
-box(B,T1) :- push(B,_,_,T), #succ(T,T1).

box(LB,T1) :- box(LB,T), #succ(T,T1l), not -box(LB,T1).
sokoban(LS,T) :- sokoban(LS,T), #succ(T,T1), not -sokoban(LS,T1).

:- push(B,_,_,T), push(B1,_,_,T), B != Bl.
:- push(B,D,_,T), push(B,D1,_,T), D != D1.
:- push(B,D,B1,T), push(B,D,B11,T), Bl != Bll.

good_pushlocation(L) :- right(L,_), left(L,_).
good_pushlocation(L) :- top(L,_), bottom(L,_).
good_pushlocation(L) :- solution(L).

notgoal :- solution(L), not box(L,#maxint).
not notgoal?

16

)
el
: o, ’-

Recap: Issues

Domain Modelling

Multiple aspects
(temporal/causal/physical/epistemic/legal/...)
Incomplete
Events
Events happened = events reported (errors, incomplete, late ...)

Explanations
Multiple plausible explanations

fusemate:

18

Recap: Issues

Domain Modelling

Multiple aspects
(temporal/causal/physical/epistemic/legal/...)
Incomplete
Events
Events happened = events reported (errors, incomplete, late ...)

Explanations
Multiple plausible explanations

fusemate:

ﬂw Logic program
+ ontologies/event calculus

18

Recap: Issues

. . fusemate:
Domain Modelling aeema
Multiple aspects - Logic program
(temporal/causal/physical/epistemic/legal/...) + ontologies/event calculus
Incomplete
Events

Events happened = events reported (errors, incomplete, late ...) ﬂ’ Belief revision

Explanations
Multiple plausible explanations

18

Recap: Issues

. . fusemate:
Domain Modelling aeema
Multiple aspects - Logic program
(temporal/causal/physical/epistemic/legal/...) + ontologies/event calculus
Incomplete
Events

Events happened = events reported (errors, incomplete, late ...) ﬂ" Belief revision

Explanations

: . . ﬂw Models of logic program
Multiple plausible explanations

18

Events happened # events reported

“Fixing the event stream”

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, contalner)

Load(40, container, ship)

Unload(60, apples, pallet)

® . <

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, contalner)

Load(40, container, ship)

Unload(60, apples, pallet)

® @
S R—

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, contalner)

Load(40, container, ship)

Unload(60, apples, pallet)

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, contalner)

Load(40, container, ship)

Unload(60, apples, pallet)

&
10

<

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, container)

?

Load(40, container, ship)

Unload(60, apples, pallet)

&
10

<

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, container) i
i

Load(40, container, ship) ?

Unload(60, apples, pallet)

Happened
Load(10, tomatoes, pallet)
Load(20, pallet, contalner)

Load(40, container, ship)
Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, tomatoes, pallet)

Events happened # events reported

“Fixing the event stream”

Reported
Load(10, tomatoes, pallet)

Load(20, pallet, contalner)

f

Load(40, container, ship)

Unload(60, apples, pallet)

Happened
Load(10, tomatoes, pallet)

Load(20, pallet,
Load(40, container,
Unload(45, container,
Unload(50, pallet,
Unload(60, tomatoes, pallet)

Events happened # events reported

“Fixing the event stream”

Reported

Load(10, tomatoes,
Load(20, pallet,
Load(40, contalner,
Unload(60, apples,
Happened

Load(10, tomatoes,
Load(20, pallet,
Load(40, container,

Unload(45, container,
Unload(50, pallet,
Unload(60, tomatoes,

pallet)

contaliner)

f

ship)

3 A X

pallet)

pallet)

contalner)

R

N
\s

container) s
pallet)

Happened

Load(10,
Load(20,
Load(40,
Unload (45,
Unload(50,
Unload(60,

apples,
pallet,
container,
container,
pallet,
apples,

ship)
ship)
container)
pallet)

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(10,

Load(20,
Load(40,

Unload(60,

Happened
Load(10,

Load(20,
Load(40,
Unload(45,
Unload(50,
Unload (60,

tomatoes,
pallet,

contalner,

apples,

tomatoes,
pallet,
contailner,
container,
pallet,

tomatoes,

pallet)

contaliner)

!

ship)

pallet)

pallet)

pallet)

Happened
Load(10,
Load(10,
Load(20,
Load(40,
Unload (45,
Unload(50,
Unload(60,

Happened

Load(10,
Load(20,
Load(40,
Unload (45,
Unload(50,
Unload(60,

tomatoes,
apples,
pallet,
container,
container,
pallet,
apples,

apples, pallet) ‘K‘.
pallet, container) e
container, ship)

container, ship)
pallet, container)
apples, pallet)

container)
ship)

ship)
container)
pallet)

19

Events happened # events reported

“Fixing the event stream”

Reported
Load(

Load (
Load (

10,
20,
40,

tomatoes,
pallet,

contalner,

Unload(60, apples,

Happened
Load(10,

Load(20,
Load(40,
Unload(45,
Unload(50,
Unload (60,

tomatoes,
pallet,
contailner,
container,
pallet,

tomatoes,

Next:

logic program
pallet)

® — & expressing this
container) i T
ship) i ~
? ‘ Happened
pallet) 0 Load(10, apples, pallet)
Load(20, pallet, container;‘
Load(40, container, ship)
Unload(45, container, ship)
pa'l_'l_e-t) Unload(50, pallet, container)
Unload(60, apples, pallet)
Happened
Load(10, tomatoes, pallet)f”
Load(10, apples, pallet)'&fihay
Load(20, pallet, container)
Load(40, container, ship)
Unload(45, container, ship)
Unload(50, pallet, container)
pa-l--l-et) Unload(60, apples, pallet)

19

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

20

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

In(time, obj, cont) :-
Load(time, obj, cont)

20

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

20

Logic Program for the Supply Chain Example

Derived “In” relation

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In
In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),
Unload(time, c, cont))

Integrity constraints and revision

20

Logic Program for the Supply Chain Example

Derived “In” relation

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity
In(time, obj, cont) :
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
Egi Unload(time, obj, cont),

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation

Integrity constraints and revision

20

Logic Program for the Supply Chain Example

Derived “In” relation

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity
In(time, obj, cont) :
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
Egi Unload(time, obj, cont),

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation

Integrity constraints and revision
// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
t < time))

20

Logic Program for the Supply Chain Example

Derived “In” relation

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
225 Unload(time, obj, cont),

not (In(prev, obj, c),
| Unload(time, c, cont))

Default negation

Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
t < time))

// Unload a different object
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),
Load(t, o, cont),
t < time,
SameBatch(t, b),
((b contains obj) && (b contains o))

20

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
// In transitivity t < time))
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

In(time, obj, cont) :-
Load(time, obj, cont)

“fail” heads for fixing
// Unload a different object the event stream -
fail(- Unload(time, obj, cont), ‘%4,/
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

// Frame axiom for In not (Load(t, obj, cont), t < time),
In(time, obj, cont) :- Load(t, o, cont),

In(prev, obj, cont), t < time,

Step(time, prev), SameBatch(t, b),

Egi Unload(time, obj, cont), ((b contains obj) && (b contains o))

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation

20

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
// In transitivity t < time))
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

In(time, obj, cont) :-
Load(time, obj, cont)

“fail” heads for fixing
// Unload a different object the event stream -
fail(- Unload(time, obj, cont), ‘%4,/
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

// Frame axiom for In not (Load(t, obj, cont), t < time),
In(time, obj, cont) :- Load(t, o, cont),

In(prev, obj, cont), t < time,

Step(time, prev), SameBatch(t, b),

Egi Unload(time, obj, cont), ((b contains obj) && (b contains o))

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation + 4 more rules

20

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
// In transitivity t < time))
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

In(time, obj, cont) :-
Load(time, obj, cont)

“fail” heads for fixing
// Unload a different object the event stream -
fail(- Unload(time, obj, cont), ‘%,,/
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

// Frame axiom for In not (Load(t, obj, cont), t < time),
In(time, obj, cont) :- Load(t, o, cont),

In(prev, obj, cont), t < time,

Step(time, prev), SameBatch(t, b),

Egi Unload(time, obj, cont), ((b contains obj) && (b contains o))

ot (In(prev, obj, c),
| Unload(time, c, cont))

Default negation + 4 more rules

(Frame axioms now via Event Calculus)
20

Situational Awareness = Stratified Model Computation

“Situational awareness” task is naturally stratified

21

Situational Awareness = Stratified Model Computation

“Situational awareness” task is naturally stratified

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

21

Situational Awareness = Stratified Model Computation
“Not known now” -> “never known”

“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events
— Stratification by sets of literals EDB /IDB (extensional database / intensional database)

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified “ Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

EDBs Eo12

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

EDBs Eo 12....

IDBs Ip,1....

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

EDBs Eo 12....

Bottom-up application |
of logic program .

program > QY
rules until fixpoint
IDBs Ip1.2,...

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)

Revising events is simply addition/removal
Stratified model computation (ignoring revision .
P (ig g) Time 0,1,2 ==+ >

EDBs Eo 12....

Bottom-up application |
of logic program .

ren b O
rules until fixpoint
IDBs Io,1,2,...

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

Bottom-up application |

of logic program .

rules until fixpoint
IDBs Io,1,2,...

Time 0,1,2 ===~ >

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

Bottom-up application |

of logic program .

rules until fixpoint
IDBs Ip,12,... @

Time 0,1,2 ===~ >

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

* Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

e () — () — G0
Bottom-up application |

of logic program .

rules until fixpoint
IDBs Ip,12,... @

Time 0,1,2 ===~ >

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (ignoring revision)

I

Time 0,1,2 ===~ >

EDBs Eo,1.2,..
Bottom-up application

of logic program ,.-s——mb

rules until fixpoint
IDBs Ip,12,...

Q

l

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future”
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (i ' isi)
P (ignoring revision) Time 0,1,2 === >

EDBs Eo,1... _— @ S @ >
Bottom-up application
of logic program /'Mb Ql\ \ l
rules until fixpoint

IDBs Ip12,... I4 | @ ---- >

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future” (*)
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (i ' isi)
P (ignoring revision) Time 0,1,2 === >

— o) — (e
l\\J%‘ l (*) Cannot change past state

EDBs Eo,1.2,..
Bottom-up application

of logic program ,.-s——mb

rules until fixpoint
IDBs Ip,12,...

Q

9
l
o

21

Situational Awareness = Stratified Model Computation

“Not known now” -> “never known”
“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future” (*)
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (i ' isi)
P (ignoring revision) Time 0,1,2 === >

®@ >

l\\l‘§‘ l (*) Cannot change past state
I —> @ >

Next: Stratified logic programs for computing models (Eul)o, (EUI):1, (EUI)z, ..

EDBs Eo,1.2,..
Bottom-up application

of logic program ,.-s——mb

rules until fixpoint
IDBs Ip,12,...

Q

21

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..

(2)
(3)
(4)
(5)
(6)

head has a time variable (“now”)

one body lit has same time variable
other body lits have time < time

EDB lits in not body have time < time
IDB lits in not body have time < time

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..

(2)
(3)
(4)
(5)
(6)

head has a time variable (“now”)

one body lit has same time variable
other body lits have time < time

EDB lits in not body have time < time
IDB lits in not body have time < time

. Range restriction
ﬂ ~ Simple model computation

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..

(2)
(3)
(4)
(5)
(6)

head has a time variable (“now”)

one body lit has same time variable
other body lits have time < time

EDB lits in not body have time < time
IDB lits in not body have time < time

Range restriction

ﬂ ~ Simple model computation

<

Stratification by time
~ Effective model computation

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1)

(2)
(3)
(4)
(5)
(6)

var(head) c fvar(body, .., not body, ..

head has a time variable (“now”)

one body lit has same time variable
other body lits have time < time

EDB lits in not body have time < time
IDB lits in not body have time < time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂﬂ“h‘ue or false in final model
~ Efficient model computation

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1)

(2)
(3)
(4)
(5)
(6)

Examples

var(head) c fvar(body, .., not body, ..

head has a time variable (“now”)

one body lit has same time variable
other body lits have time < time

EDB lits in not body have time < time
IDB lits in not body have time < time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂﬂ“h‘ue or false in final model
~ Efficient model computation

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..

(2) head has a time variable (“"now”)

(3) one body lit has same time variable
(4) other body lits have time < time

(5) EDB litsin not body have time < time
(6) IDB lits in not body have time < time

Examples

I(time, x) :- J(time, x, y), I(time, vy)

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂ?‘frue or false in final model
~ Efficient model computation

I,]:1DB
E: EDB

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

Range restriction

s.th. (1) var(head) c fvar(body, .., not body, ..) ﬂ-’ - Simple model computation

(2) head has a time variable (“now”)
(3) one body lit has same time variable - Stratification by time
: : . ~ Effective model computation
(4) other body lits have time < time
(5) EDB lits in not body have time < time Avoids guessing whether head is

(6) IDB lits in not body have time < time ﬂ*"*"“e or false in final model

~ Efficient model computation
Examples

I(time, x) :- J(time, X, y), I(time, vy)
I(time, x) :- J(time, x, y), I(t, y), t = time

I,]:1DB
E: EDB

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

Range restriction

s.th. (1) var(head) c fvar(body, .., not body, ..) ﬂv - Simple model computation

(2) head has a time variable (“now”)
(3) one body lit has same time variable - Stratification by time
: : . ~ Effective model computation
(4) other body lits have time < time
(5) EDB lits in not body have time < time Avoids guessing whether head is

(6) IDB lits in not body have time < time ﬂ;"’”‘“e or false in final model

~ Efficient model computation
Examples

I(time, x) :- J(time, X, y), I(time, vy)
I(time, x) :- J(time, x, y), I(t, y), t = time
I(time, x) :- J(time, X, y), not (I(t, y), t < time)

I,]:1DB
E: EDB

22

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..)
(2) head has a time variable (“"now”)
(3) one body lit has same time variable
(4) other body lits have time < time
(5) EDB litsin not body have time < time
(6) IDB lits in not body have time < time

Examples
I(time, x) :- J(time, X, y), I(time, vy)
I(time, x) :- J(time, x, y), I(t, y), t = time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂﬂ“h‘ue or false in final model
~ Efficient model computation

Closed world assumption
Eul = not body(x) iff

(not exists a s.th. body(a) C Eul

I(time, x) :- J(time, X, y), not (I(t, y), t < time)

I,]:1DB
E: EDB

22

http://s.th

Stratified Logic Programs

Consists of rules over literals

head :- body, .., not body, ..

s.th. (1) var(head) c fvar(body, .., not body, ..)

(2) head has a time variable (“"now”)

(3) one body lit has same time variable
(4) other body lits have time < time

(5) EDB litsin not body have time < time
(6) IDB lits in not body have time < time

Examples
I(time, x) :- J(time, X, y), I(time, vy)
I(time, x) :- J(time, x, y), I(t, y), t = time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂﬂ“h‘ue or false in final model
~ Efficient model computation

Closed world assumption
Eul = not body(x) iff

(not exists a s.th. body(a) C Eul

I(time, x) :- J(time, X, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), not (I(t, y), t = time) No! I,J:1IDB

E: EDB

22

http://s.th

Stratified Logic Programs

Consists of rules over literals

h

s.th. (1)

(2)
(3)
(4)
(5)
(6)

Examples
I(time,
I(time,
I(time,
I(time,

I(time,

ead :- body, .., not body, ..

var(head) c fvar(body, .., not body, ..)
head has a time variable (“now”)

one body lit has same time variable

other body lits have time < time

EDB lits in not body have time < time

IDB lits in not body have time < time

X) - J(time, x, y), I(time, y)
x) = J(time, x, y), I(t, y), t = time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂ?‘frue or false in final model
~ Efficient model computation

Closed world assumption
Eul = not body(x) iff

(not exists a s.th. body(a) C Eul

x) - J(time, x, y), not (I(t, y), t < time)

x) :- J(time, x, y), not (I(t, y), t = time) No! I,J:1DB
x) :- J(time, x, y), not (E(t, y), t = time) E: EDB

22

http://s.th

Integrity Constraints and Belief Revision
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

[IJCAR 2020]

23

Integrity Constraints and Belief Revision [JJCAR 2020]
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

Example

// Unload a different object
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),
Load(t, o, cont), t < time,

23

Integrity Constraints and Belief Revision
Usual integrity constraints

fail :- body, .., not body, ..

Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, ..

s.th. « “conditions for body as for ordinary rules”
 EDB lits e and f have time < time

Example
// Unload a different object = Unload(60, apples,
fail(- Unload(time, obj, cont),

+ Unload(time, o, cont)) :- ‘l
Unload(time, obj, cont),
not (Load(t, obj, cont), t < time),

Load(t, o, cont), t < time,
=4+ Unload(60, tomatoes,

[IJCAR 2020]

pallet)

pallet)

23

Integrity Constraints and Belief Revision [JJCAR 2020]
Usual integrity constraints

fail :- body, .., not body, .. Semantics

Eul
Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, .. if Eul = (body, ..,

not body, ..)o
s.th. « “conditions for body as for ordinary rules”

» EDB lits e and f have time < time (E\ eo) u fo
Example
// Unload a different object = Unload(6®, apples, pa'l_let)
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

not (Load(t, obj, cont), t < time),

Load(t, o, cont), t < time,
<4 Unload(60, tomatoes, pallet)

23

Semantics of Programs With Fail Rules

Einit v E v E>
/ / /
/ / :
| / l

_—

l
|

S A | I
| /
|
l

/

fail() 1) I, , I} fail() 1) I fail() fail(e))~
/

fail(zgj ;aiI(E(l) ————— -
Operational
for a given EDB E
fortimet=0,1,2, ..., nOW
compute {9, I, ... allIDBs fortime <t}
fori=1,1, ..
let F={fail(..) heads derivable from Eul }
if Fis non-empty then
obtain new EDBs £, E;, ... as per F and
abandon model candidate I

' Principles

fail as early as possibly
Collect all possible fails

24

Semantics of Programs With Fail Rules

Einit /V E;q //y E> J__EEE
// I/
/ |
/ |
,’ ' Principles
: - Fail as early as possibly
I /
/ - Colle ssible fails
fail) 19 1) Il fail() /,' 19 1) fail() fail(20) ollect all possible fail
fail (20) fall(————— -
Operational
for a given EDB E
fortimet=012 .. Now k Can branch out because of disjunctive heads

compute {9, I, ... all IDBs fortime <t}
forI=101, ..
let F={fail(..) heads derivable from Eul }
if Fis non-empty then
obtain new EDBs £, E;, ... as per F and
abandon model candidate I

24

Semantics of Programs With Fail Rules

Einit /V E;q //y E> J__EEE
// I/
/ |
/ |
,’ ' Principles
: - Fail as early as possibly
I /
/ - Colle ssible fails
fail) 19 1) Il fail() /,' 19 1) fail() fail(20) ollect all possible fail
fail (20) fall(————— -
Operational
for a given EDB E
fortimet=012 .. Now k Can branch out because of disjunctive heads

compute {9, I, ... all IDBs fortime <t}
forI=10 11, ...
let F={fail(..) heads derivable from Eul }

if Fis non-empty then
obtain new EDBs F, E, ... as per F and Declarative semantics: see paper

abandon model candidate I

24

Description Logics

-» A (usually) decidable fragment of first-order logic
-» Semantic web ontologies (“is-a” and “has-a" relations)

Instances
-» Reasoning on concepts and concept instances “ABox"
Concepts Box C V temp.TempClass
“TBox"

FruitBox C d temp.TempClass
ToyBox C =3 temp.TempClass
FruitBox C Box
ToyBox C Box

temp 1is a functional role

X
N
/ \ "0‘&~Q :A
o :.

25

Description Logics

-» A (usually) decidable fragment of first-order logic
-» Semantic web ontologies (“is-a” and “has-a" relations)
-» Reasoning on concepts and concept instances

Concepts

Box C V temp.TempClass Low : TempClass
“TBox”

FruitBox C 3 temp.TempClass High : TempClass
ToyBox C =3 temp.TempClass
FruitBox C Box
ToyBox C Box
temp 1is a functional role

0..1] tem
Box ..[.....] X > TempC|aSS
/ \ X 4 >\v\
o”(QQ . N\
. ,"’\,Q/ :. \ \N
ToyBox FruitBox <7 \ N

Low High

Instances

“ABox"

25

Description Logics

-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
*PReasoning on concepts and concept Instances “ABox”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C d temp.TempClass High : TempClass Boxj : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Box [O1]temp> TempC|aSS
bV
/ \ ég ‘ Vo N
: 2 \
ToyBox FruitBox < ¢ NN

......................... Low High

Description Logics

-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
-» Reasoning on concepts and concept instances “ABox"”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C 3 temp.TempClass High : TempClass Box; : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Reasoning
[0..1] temp
BOX -eeseeencvanenns > TempC|aSS .
/ v\ A4 Is Box4 a FruitBox?
RN N Is Boxs a FruitBox?
: o R \
ToyBox FruitBox - RN Are FruitBox and ToyBox disjoint?

Low High

.0
*
.
llll
L] .
llllllllllllllll

25

Description Logics

-» A (usually) decidable fragment of first-order logic

-» Semantic web ontologies (“is-a” and “has-a" relations) Instances
-» Reasoning on concepts and concept instances “ABox"”
Concepts Box C V temp.TempClass Low : TempClass Boxg : FruitBox
TBox FruitBox C 3 temp.TempClass High : TempClass Box; : FruitBox
ToyBox C =3 temp.TempClass Box, : Box
FruitBox C Box Boxs : ToyBox
ToyBox C Box Box4 : Box MV temp.—TempClass
temp 1s a functional role Boxs : Box M d temp.TempClass
Reasoning
[0..1] temp
BOX -eeseeencvanenns > TempC|aSS .
/ \ A4 Is Box4 a FruitBox?
RN N Is Boxs a FruitBox?
: o R \
ToyBox: FruitBox "> NN Are FruitBox and ToyBox disjoint?
[— Low High

(CADE-2021]): map to fusemate disjunctive logic program + loop check

Description Logics, Event Calculus and Rules

-» Description logics and logic programming are “very different”

Open world vs closed world, Entailment vs Models, Infinite models vs finite models

-» Attractive to integrate for modelling complementary aspects

Boxg :
. FruitBox

Box;

Box» :
Boxs :
Boxy4 :
: Box 1 3 temp.TempClass

BOX5

FruitBox

Box
ToyBox
Box MV temp.—-TempClass

Description Logics, Event Calculus and Rules

-» Description logics and logic programming are “very different”

Open world vs closed world, Entailment vs Models, Infinite models vs finite models

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Boxg :
. FruitBox

Box;

Box» :
Boxs :
Boxy4 :
Boxs :

FruitBox

Box

ToyBox

Box MV temp.—-TempClass
Box M d temp.TempClass

Time 10 20 30 40 50
Action Load Boxg Load Box, Load Boxs Unload
Load Box; Load Boxy
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°

Description Logics, Event Calculus and Rules

-» Description logics and logic programming are “very different”

Open world vs closed world, Entailment vs Models, Infinite models vs finite models

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Boxg :
. FruitBox

Box;

Box» :
Boxs :
Boxy4 :
Boxs :

FruitBox

Box

ToyBox

Box MV temp.—-TempClass
Box M d temp.TempClass

Time 10 20 30 40 50
Action Load Boxg Load Box, Load Boxs Unload
Load Box; Load Boxy
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°

Fusemate + DL integration
-» Rules can call description logic reasoner
-» Rules can extend current ABox / fix past ABox

Description Logics, Event Calculus and Rules

-» Description logics and logic programming are “very different”

Open world vs closed world, Entailment vs Models, Infinite models vs finite models

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Boxg :
. FruitBox

Box;

Box» :
Boxs :
Boxy4 :
Boxs :

FruitBox

Box

ToyBox

Box MV temp.—-TempClass
Box M d temp.TempClass

Time 10 20 30 40 50
Action Load Boxg Load Box, Load Boxs Unload
Load Box; Load Boxy

Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°

"\ [DL): Box2 is “High temp box” at =20

Fusemate + DL integration [EC rules): ..
-» Rules can call description logic reasoner
-» Rules can extend current ABox / fix past ABox

and temp stays at 10° at t=30, 40, SO

Description Logics, Event Calculus and Rules Boxg : FruitBox

-» Description logics and logic programming are “very different”

Box; : FruitBox
Box, : Box

Open world vs closed world, Entailment vs Models, Infinite models vs finite models Box3 : ToyBox

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Box4 : Box MY temp.—~TempClass
Boxs : Box M 3 temp.TempClass

Box0 (High)
Time 10 20 30 40 50 Boxl (?)
Action Load Boxg Load Box, Load Boxs Unload Box2 (High)
Load Box; Load Boxy
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°) Box3 (N/A)
* Box4 (N/A)

[DL): Box2 is “High temp box” at +=20

Fusemate + DL integration

Cooling broken?

(EC rules): .. and temp stays at 10° at t=30, 40, 50

-» Rules can call description logic reasoner

-» Rules can extend current ABox / fix past ABox

Description Logics, Event Calculus and Rules Boxg : FruitBox

Box; : FruitBox

-» Description logics and logic programming are “very different” Box, : Box
Open world vs closed world, Entailment vs Models, Infinite models vs finite models Box3 : ToyBox

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Box4 : Box MY temp.—~TempClass
Boxs : Box M 3 temp.TempClass

Box0 (High)
Time 10 20 40 50 Boxl (?)
Action Load Boxg Load Box, Load Boxs Unload Box2 (High)
Load Box; Load Boxy N\
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20° Box3 (N/A)
* Box4 (N/A)

N [DL): Box2 is “High temp box” at t=20 Cooling broken?

Fusemate + DL integration [EC rules): ..
-» Rules can call description logic reasoner
-» Rules can extend current ABox / fix past ABox

ColdBox(time, box) :-
IsAAt(time, x, Box),

and temp stays at 10° at t=30, 40, SO

NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

|= means “provably” (not “consistently”)

Description Logics, Event Calculus and Rules Boxg : FruitBox

Box; : FruitBox

-» Description logics and logic programming are “very different” Box, : Box
Open world vs closed world, Entailment vs Models, Infinite models vs finite models Box3 : ToyBox

-» Attractive to integrate for modelling complementary aspects

Timed ABoxes

Box4 : Box MY temp.—~TempClass
Boxs : Box M 3 temp.TempClass

Box0 (High)
Time 10 20 30 40 50 Boxl (?)
Action Load Boxg Load Box, Load Boxs Unload Box2 (High)
Load Box; Load Boxy
Sensor Boxg : —10° Box, : 10° Boxg : 2° Boxg : 20°) Box3 (N/A)
* Box4 (N/A)

[DL): Box2 is “High temp box” at +=20
(EC rules): .. and temp stays at 10° at t=30, 40, 50

Fusemate + DL integration

-» Rules can call description logic reasoner
-» Rules can extend current ABox / fix past ABox

ColdBox(time, box) :-
IsAAt(time, x, Box),

NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

Cooling broken?

|= means “provably” (not “consistently”)

\-
€

25

ki »-:
NG =) S,

Embedding Into Scala: Translation

Input program = Scala source code

Logic

Scala

Pred/Fun signature
Interpretation
Variable

Rule

Matching subst

Class

Set of class instances
Variable

Partial function
Pattern matching

28

Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class
InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :-= (In(time, obj, c), In(time, c, cont))

28

Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class
InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &

val rules = List(In(time, obj, cont) := (In(time, obj, c), In(time, c, cont))

28

Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class
InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &
val rules = List(In(time, obj, cont) := (In(time, obj, c), In(time, c, cont))
case List(In(time, obj, c), In(time®, c1, cont)) L Macro expansion

if ¢ == cl && time == time0 into partial
=> In(time, obj, cont) function

28

Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class

InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &

val rules = List(In(time, obj, cont) :-= (In(time, obj, c), In(time, c, cont))
case List(In(time, obj, c), In(time®, c1, cont)) - __Macro expansion
if ¢ == cl && time == time0 info partial
=> In(time, obj, cont) function

+ given-clause loop operating on such rules-as-partial-functions

(In reality the macro expansion is more complicated because of default negation)

28

Embedding into Scala: Method

val = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again

map { =>
split(",") match {
case Array("Load", , :) => Load(.tolnt, ;)
}
} saturate { @rules ..
fail(..) :—
(b 3) & (b 3 o),
where { val b = sameBatch(t) }
Fmap { I =>
.tolList.sortBy(_.time) flatMap {
case Load(, ,) => List(s"Load, : : ")
}

}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) o9

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 3 0),
where { val b = sameBatch(t) }
ymap { I =>

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 3 0),
where { val b = sameBatch(t) }
ymap { I =>

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 2 0),
where { val b = sameBatch(t) }
ymap { I =>
I.toList.sortBy(_.time) flatMap {
case Load(time, obj, cont) => List(s"Load,$time, $obj,$cont")

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 2 0),
where { val b = sameBatch(t) }
ymap { I =>
I.toList.sortBy(_.time) flatMap {
case Load(time, obj, cont) => List(s"Load,$time, $obj,$cont")

}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) 29

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container”, ..)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
Lline.split(",") match {
case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)

}

} saturate { @rules ..
fail(..) :—

(b 2 obj) & (b 2 0),
where { val b = sameBatch(t) }
ymap { I =>
I.toList.sortBy(_.time) flatMap {
case Load(time, obj, cont) => List(s"Load,$time, $obj,$cont")

def sameBatch(time: Time) =
- if (time ==10) Set("tomatoes", "apples") else Set.z[String]

}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) 29

Embedding into Scala: Discussion

Two-way calling interface

» Scala -> Rules calls trivial
* Rules -> Scala calls trivial

Data structures integration is trivial

» Use any Scala data structure in rules
» Logic data structures (models) are Scala data structures
« Unmatched aggregation and introspection capabilities

Disadvantage

* Must rely on Scala pattern matching implementation
» Difficult to implement efficiently

30

Embedding into Scala: Discussion

Two-way calling interface

» Scala -> Rules calls trivial
* Rules -> Scala calls trivial

Data structures integration is trivial

» Use any Scala data structure in rules
» Logic data structures (models) are Scala data structures
« Unmatched aggregation and introspection capabilities

Disadvantage

* Must rely on Scala pattern matching implementation
» Difficult to implement efficiently

- Tighter coupling than in every other system (I know of)
- Adds “interpretations” as a container data structure to functional/00 programming
with “logic programming” as an operator

30

Three and a Half
Case Studie

V

Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability

........
© w
.....
oo “ The New Zealand RFID
. .:% :Pathfinder
........ Group January 2013

32

Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

32

Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability

(LI T L]
©

L 3
© The New Zealand RFID

Pathfinder

vents: from farm (NZ) to retailer (DE) encoded in EPCIS

Gary Hartley
New Zealand RFID Pathfinder Group
January 2013

Process Step 4 - Animals arrive at Mountain River Processors’ stun box

Figure 5.7 - Stun Box Figure 5.8 - RFID reader at Stun Box

Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box.

Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River
processor and moved from the boning room into chiller room

Figure 5.9 - UHF RFID tags Figure 5.10 - UHF RFID Figure 5.11 — Tagged cartons
used on cartons tags positioned on cartons moving from boning room to
chiller room

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation
for loading the shipping container.

32

Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability

:“""E Gary Hartley

© The New Zealand RFID :
: .:5 E Pathfinder New Zealand RFID Pathfinder Group
esessses Group January 2013

Process Step 4 - Animal

Figure 5.7 -

Figure 5.7 illustrates anima
animals. Figure 5.8 illustrat

Process Step 5 - Cartons
processor and moved fro

Figure 5.9 - UHF RFID t
used on cartons

Figure 5.9, Figure 5.10 an
in the boning room and mi
for loading the shipping col

EPCIS Event Details

Event Time
Timezone Offset
Event Type
Action

EPC

BizStep

Disposition
BizLocation
Read Point

16/10/2012 11:54:38 +1300
+13:00
ObjectEvent
ADD

urn

urn

urn

urn

urn

urn

urn

urn:
urn:

urn:
urn:
epc:
epc:
epc:
:id:sgtin:9421900217.003.1073742115

urn:
urn:
urn:
urn:

urn:
urn:
urn:
urn:

epc

epc:
1epc:
epc:
:id:sgtin:9421900217.003.1073742111

epc

epc

epc:
repc:
urn:
urn:

epc

epc:
repc:
epc:
:id:sqgtin:9421900217.003.1073742122

epc

epc:
epc:
epc:
urn:

epc

:id:sgtin:9421900217.003.1073742106

id:sgtin:9421900217.003.1073742107
id:sgtin:9421900217.003.1073742109
id:sgtin:9421900217.003.1073742110

id:sgtin:9421900217.003.1073742112
id:sgtin:9421900217.003.1073742113
id:sgtin:9421900217.003.1073742114

id:sgtin:9421900217.003.1073742116
id:sgtin:9421900217.003.1073742117

:id:sgtin:9421900217.003.1073742118

id:sgtin:9421900217.003.1073742119
id:sgtin:9421900217.003.1073742120
id:sgtin:9421900217.003.1073742121

id:sgtin:9421900217.003.1073742123
id:sgtin:9421900217.003.1073742124
id:sgtin:9421900217.003.1073742126

:id:s@tin:9421900217.003.1073742127
:epcglobal:cbv:bizstep:commissioning

:epcglobal:cbv:disp:active

urn:

urn:

epc:

epc:

id:sgln:942900.009772.0N_FARM
id:sgIn:942900.009772.DEER_CRUSH

Table 6.3 - Commissioning event - tagging of animals

_____________________ILJ'
Events: from farm (NZ) to retailer (DE) encoded in EPCIS

=S ===

nat?
nere?
nen?

ny?

32

Case Study 1 - Deer Supply Chain

The Use of EPC RFID Standards for
Livestock and Meat Traceability

:“""E Gary Hartley

© The New Zealand RFID :
: .:5 E Pathfinder New Zealand RFID Pathfinder Group
esessses Group January 2013

Process Step 4 - Animal

Figure 5.7 -

Figure 5.7 illustrates anima
animals. Figure 5.8 illustrat

Process Step 5 - Cartons
processor and moved fro

Figure 5.9 - UHF RFID t
used on cartons

Figure 5.9, Figure 5.10 an
in the boning room and mi
for loading the shipping col

EPCIS Event Details

Event Time
Timezone Offset
Event Type
Action

EPC

BizStep

Disposition
BizLocation
Read Point

18/10/17N1D 11:84:20 120N

EPCIS Event Details

Event Time
Timezone Offset
Event Type
Action

EPC

BizStep

Disposition
BizLocation
Read Point

12/12/2012 01:58:34 +1300
+01:00

ObjectEvent

DELETE

nat?
nere?

urn:epc:id:sgtin:94130000.01420.11
urn:epc:id:sgtin:94130000.01420.18
urn:epc:id:sgtin:94130000.01420.2

urn:epc:id:sgtin:94130000.01420.22
urn:epc:id:sgtin:94130000.01420.23

nen?

urn:epcglobal:cbv:bizstep:receiving

urn:epcalobal:sellable_accessible

=S ===

ny?

urn:epc:id:sgln:4023339.00000.IN_STORE
urn:epc:id:sgln:4023339.00000.RECEIVING_BAY

urn:epc:id:sgtin:9421900217.003.1073742127
urn:epcglobal:cbv:bizstep:commissioning

urn:epcglobal:cbv:disp:active

urn:epc:id:sgln:942900.009772.0N_FARM
urn:epc:id:sgln:942900.009772.DEER_CRUSH

Table 6.3 - Commissioning event - tagging of animals

" Y

r

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

32

Case Study 1 - Deer Supply Chain

From Farm to Supermarket

Deer-2 Deer-2 Deer-2
DownlandsDeer/NewZealand/DEER_CRUSH DownlandsDeer/NewZealand/LOADING_RAMP iver UNLOADING_RAMP
DownlandsDeer/NewZealand/ON_FARM iverP 'HOLDING_PEN_2

commissioning - active

shipping - in_transit

receiving - in_progress

Add

Observe

Observe

2012-10-16T11:54:38+13:00

2012-10-24T08:02:32+13:00

2012-10-24T10:42:03+13:00

ONING_ROOM_EXIT

P land/CHILLER_ROOM

commissioning - active

Add

2012-10-25T11:25:53+13:00

Carton-2

ONING_ROOM_EXIT

F Land/CHITTER_ROOM

commissioning - active

Add

2012-10-25T11:25:53+13:00

Carton-3

ONING_ROOM_EXIT

P /CHILLER_ROOM

commissioning - active

Add

2012-10-25T11:25:53+13:00

Carton-4

ONING_ROOM_EXIT

HILLER_ROOM

commissioning - active

Add

2012-10-25T11:25:53+13:00

WWwWw

Carton-11

PrimeMeat/Germany/DOCK |

shipping - in_transit

Observe

2012-12-11T22:40:28+17

-

The Use of EPC RFID Standards for
Livestock and Meat Traceability

The New Zstand RFID
Pathfinder
Group

Deer-1 Deer-1 Deer-1 Deer-1 Carton-5 ShippingContainer-1 ShippingContainer-1 Carton-18
DownlandsDeer/NewZealand/DEER_CRUSH DownlandsDeer/NewZealand/LOADING_RAMP iver UNLOADING_RAMP TUN_BOX ONING_ROOM_EXIT XIT_POINT PortOfLyttleton/NewZealand/ ENTRY_GATE PrimeMeat/Germany/DOCK _
DownlandsDeer/NewZealand/ON_FARM iverF HOLDING_PEN_2 ONING_ROOM P HILLER_ROOM
commissioning - active shipping - in_transit receiving - in_progress transforming - in_progress commissioning - active shipping - in_transit shipping - in_transit shipping - in_transit receiving - sellable_accessible
Add Observe Observe Delete Add Observe Observe Observe Delete

2012-10-16T11:54:38+13:00

2012-10-24T08:02:32+13:00

2012-10-24T10:42:03+13:00

2012-10-24T12:21:24+13:00

2012-10-25T11:25:53+13:00

2012-10-26T07:53+13:00

2012-10-26T09:13+13:00

2012-12-11T22:40:28+13:00

2012-12-12T01:58:34+13:00

Of Interest
e Handling structured XML
e Speculating whereabout of missing item

- A box enters supply
- Track same batch b

Association

T~

Carton-6
1P ONING_ROOM_EXIT
iverP HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-7
P ONING_ROOM_EXIT
iver HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-8
P ONING_ROOM_EXIT
iver HILLER_ROOM
commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-9

rocessors/NewZealand/BONING_ROOM_EXIT

erProcessors/NewZealand/CHILLER_ROOM

commissioning - active

Add

2012-10-25T11:25:53+13:00

oxes as proxies

gregation

W

Carton-2

Carton-2

PrimeMeat/Germany/DOCK_DOOR

Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE

shipping - in_transit

receiving - sellable_accessible

Observe

Delete

2012-12-11T22:40:28+13:00

2012-12-12T01:58:34+13:00

Disaggregation

chain but does not arrive at destination

Gary Hartley
New Zealand RFID Pathfinder Group

January 2013

33

Case Study 2 - D61 Project “Supply Chain Awareness”

- Partner company BeefLedger ships boxed meat products

- Stringent cooling requirements ensure quality of products

- D61 sensors measure box temperatures
(S. Khalifa / K. v. Richter)

- Task: Pricing model, anomaly detection

1 temp M20 temp W11 temp

34

Case Study 2 - D61 Project “Supply Chain Awareness”

- Partner company BeefLedger ships boxed meat products

- Stringent cooling requirements ensure quality of products

- D61 sensors measure box temperatures
(S. Khalifa / K. v. Richter)

- Task: Pricing model, anomaly detection

Anoaly

1 temp M20 temp W11 temp

34

Case Study 2 - D61 Project “Supply Chain Awareness”

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts & E

10:05

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies
BoxAtCoord(time, at, id, temp),
s BoxAtCoord(prev < time, = gme_ 'evs
SECONDS.between(prev, til le. ‘ e,
HoldsAt(time, On(id, truc..__,,,
HoldsAt(prev, On(id, truckId)),

Fix GPS dropouts T E
TruckAtCoordT(t > prev, truckAtT, trl'cQI:dQ,G
10:05 10:06 10:07 e

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

10:06 10:07 €< tine

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

10:06 10:07 €< tine

“Behaves differentlys =
Anomaly =

? +BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

10:05 10:06 10:07 ¢ < tine

“Behaves differently s
Anomaly

? +BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, gme ‘ev ﬁ
SECONDS.between(prev, til le: ‘ #e,
HoldsAt(time, On(id, truc..__,,,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

10:05 10:06 10:07 ¢ < tine

“Behaves differently s
Anomaly

? +BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, gme ‘ev ﬁ
SECONDS.between(prev, til le: ‘ #e,
HoldsAt(time, On(id, truc..__,,,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

t < time

10:05 10:06

1))

“Behaves differentl

< Box moved to cabin?
Anomaly

? +BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts & E

Anomaly

“Is different”
Anomaly

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
Iay,

TruckAtCoordT(t > prev, truckAtT, trlc
t < time

Box moved to cabin?

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

t < time

10:05 10:06

“Behaves differently &3
Anomaly

Box moved to cabin?

il

“Is different”
Anomaly

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts & E

Anomaly

“Is different”
Anomaly

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
Iay,

TruckAtCoordT(t > prev, truckAtT, trlc
t < time

Box moved to cabin?

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Fix GPS dropouts

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
Iay,

TruckAtCoordT(t > prev, truckAtT, trlc
t < time

10:05 10:06

“Behaves differently &3
Anomaly

Box moved to cabin?

——— Clustering based on similarity
measure for feature vector

“Is different”
Anomaly

? +BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

Anomaly

“Is different”
Anomaly

Cooling OK? VS

Pricing? |
Actual Expected

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

t < time

Box moved to cabin?

o
< -
U N
sl
~
9 A
=TT

——— Clustering based on similarity
measure for feature vector

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Fix sensor dropouts, anomalies

HoldsAt(time, On(id, truc..__,,,

HoldsAt(prev, On(id, truckId)), 1996
TruckAtCoordT(t > prev, truckAtT, trUcKIdJ,

t < time

Box moved to cabin?

o
< -
U N
sl
~
9 A
=TT

——— Clustering based on similarity

Anomaly

“Is different”

Anomaly measure for feature vector

Cooling OK? VS | Concrete scenarios:

Pricing? ’ normal, latecool,
Actual Expected missingbox, cabinbox

+BoxEvent(t, truckAt, id, (temp + prevTemp) / 2) :-

BoxAtCoord(time, at, id, temp), ﬁ
BoxAtCoord(prev < time, gme . v
SECONDS.between(prev, til le. ‘ e,

35

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
BoxAtCoord(time, at, id, temp),
BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
BoxOnTruck(prev, 1id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

Time
Loc

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
BoxOnTruck(prev, 1id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C

Time 10
Loc A

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
BoxOnTruck(prev, 1id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C 10°C
m m
Time 10 20

Loc A C

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
BoxOnTruck(prev, 1id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C 10°C
= ? =
Time 10 20

Loc A C

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (
@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
® BoxOnTruck(prev, id),
BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C 10°C
a ? =
o
o
Time 10 20

Loc A C

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (

BoxAtCoord(time, at, id, temp),

BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,

BoxOnTruck(prev, 1id),

BoxOnTruck(time, id),

TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C

i, ?
o0

Time 10

Loc A

Cd 0O

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout
FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (

@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
SECONDS.between(prev, time) < SensorDropoutAllowance,
® BoxOnTruck(prev, id),
@ BoxOnTruck(time, id),
® TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))
2°C
., .
Time 10

LocC A B

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout
FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (

@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
(6) SECONDS.between(prev, time) < SensorDropoutAllowance,
® BoxOnTruck(prev, id),
@ BoxOnTruck(time, id),
® TruckAtCoord(t, truckAt) STH prev < t A t < time,

NOT (TruckAtCoord(s, _) STH prev < s A s < t))

2°C
., .

Time 10

LocC A B

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout
@ FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (

@ BoxAtCoord(time, at, id, temp),
€@ BoxAtCoord(prev < time, _, id, prevTemp) STH
(6) SECONDS.between(prev, time) < SensorDropoutAllowance,
® BoxOnTruck(prev, id),
@ BoxOnTruck(time, id),
® TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))
. 6°C
2°C '
o
Time 10

Loc A

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

@ FAIL(+ BoxEvent(t, truckAt, id, (prevTemp + temp)/2)) :- (e Similar rule for truck

@ BoxAtCoord(time, at, id, temp), location recovery
@ BoxAtCoord(prev < time, _, id, prevTemp) STH e 25 rules altogether
(6) SECONDS.between(prev, time) < SensorDropoutAllowance,
® BoxOnTruck(prev, id),
@ BoxOnTruck(time, id),
® TruckAtCoord(t, truckAt) STH prev < t A t < time,
NOT (TruckAtCoord(s, _) STH prev < s A s < t))
. 6°C
2°C '
o
Time 10

Loc A

36

Fusemate System Demo

Fusemate Messages

Model 1 at 10:00:00

o . y r; -y =
Chermside: N \ / . llsland_,‘
+ West Virginia J 192 Port of Brisbane
Co \ 7/ | » v 4
-— : oK Nor;hl ate yo 4 fl
3 m Everton Hills 9 W Brisbane’Airpon $ =
erny Hills Stafford Heights Wavell ngms, | J/ W ol =
/ f
« Nundah ¢ 108 /s 1£
! Ferny Grove L
Y 3N / £\ Everton Park Kedron f 5 AL =
- ff 3 <t 105 -
& ,' ~ Ml(chelto\n glafiopd K“""gd, e h*\ l-w/ 4 /
P o | ¥ / ‘
=X CAi Upper Kedron Gaythorne. BofdonEags ’(R Hendra, -
N - < :
e . [Clayfield ™, Pinkenbd -
Enoggero it 3/ g [! - 4 Ly“o? B
Albion A LEagle Farm s
Enoggera Reservoir Borracks AR A Wilston &} RSSE <106 =
ol o~
J \“_,’ Hamilton W Sy
Eonoey 31 x4 -
;:(\‘.J.M :‘l,, 8 The Gap Bowen Hills - - Wy\nnum
¢ Kelvin Grove _ x| 103 2 Hemmant \ A
% Red Hill_Fortitude Valley | Balmoral o ynnumestyManly
e Sg oy : z Hawthorne Murargle Manly West
Petrie Terrace =~ 4§ 2 - £ N
e 4 \ e X
~~ Brisbane| ', =" Cannon Hill 100 Lota
MountCoot: Auchenflower X (' N ¢ Tindsloe P \
Upper Brookfield tha 4 % # S ¢ 2 100 1'ngalpa -
o ’ South Brisbane Ci UL : Wakerley TRornes
Toowong \ = L %
£ Highgate Hill f ~
’ Tarin a" ST, N3 % —
Kenmore Hills & \ AW Camp Hill 9 Gumdale
/ | St Lucia ¢ n
[nduordoplliy] S A Carina Heights <)
p —) 97 >
fos F“""“,'d 5 Greenslopes ')" Chandler S
Chelmer s ! - \-l
Kenmore ~ Yeronda Belmont v
y . Iy Holland Park .
Sl i SLRILE =~ Yeeroraoillv) Leaflet | © OpenStreetMap contributors
K
10 Al 10:05 10:1C 10:15 10:2 10:25 1 10:35 10:4 0:45 105 10:55 n

Sensors

Waypoints

37

Fusemate System Demo

Fusemate Messages

Model 1 at 10:00:00

o . y r; -y =
Chermside: N \ / . llsland_,‘
+ West Virginia J 192 Port of Brisbane
Co \ 7/ | » v 4
-— : oK Nor;hl ate yo 4 fl
3 m Everton Hills 9 W Brisbane’Airpon $ =
erny Hills Stafford Heights Wavell ngms, | J/ W ol =
/ f
« Nundah ¢ 108 /s 1£
! Ferny Grove L
Y 3N / £\ Everton Park Kedron f 5 AL =
- ff 3 <t 105 -
& ,' ~ Ml(chelto\n glafiopd K“""gd, e h*\ l-w/ 4 /
P o | ¥ / ‘
=X CAi Upper Kedron Gaythorne. BofdonEags ’(R Hendra, -
N - < :
e . [Clayfield ™, Pinkenbd -
Enoggero it 3/ g [! - 4 Ly“o? B
Albion A LEagle Farm s
Enoggera Reservoir Borracks AR A Wilston &} RSSE <106 =
ol o~
J \“_,’ Hamilton W Sy
Eonoey 31 x4 -
;:(\‘.J.M :‘l,, 8 The Gap Bowen Hills - - Wy\nnum
¢ Kelvin Grove _ x| 103 2 Hemmant \ A
% Red Hill_Fortitude Valley | Balmoral o ynnumestyManly
e Sg oy : z Hawthorne Murargle Manly West
Petrie Terrace =~ 4§ 2 - £ N
e 4 \ e X
~~ Brisbane| ', =" Cannon Hill 100 Lota
MountCoot: Auchenflower X (' N ¢ Tindsloe P \
Upper Brookfield tha 4 % # S ¢ 2 100 1'ngalpa -
o ’ South Brisbane Ci UL : Wakerley TRornes
Toowong \ = L %
£ Highgate Hill f ~
’ Tarin a" ST, N3 % —
Kenmore Hills & \ AW Camp Hill 9 Gumdale
/ | St Lucia ¢ n
[nduordoplliy] S A Carina Heights <)
p —) 97 >
fos F“""“,'d 5 Greenslopes ')" Chandler S
Chelmer s ! - \-l
Kenmore ~ Yeronda Belmont v
y . Iy Holland Park .
Sl i SLRILE =~ Yeeroraoillv) Leaflet | © OpenStreetMap contributors
K
10 Al 10:05 10:1C 10:15 10:2 10:25 1 10:35 10:4 0:45 105 10:55 n

Sensors

Waypoints

37

Fusemate System Demo

Beef Transport Demo

crovmane . _ gy 7
Chermside: \ /’ s Y& Sensors
+ A West Vigginiayy Port of Brisbane
Cc N/ ;
- : Nor;hl ate f/ -
3 m Everton Hills 9 N =
erny Hills Stafford Heights Wavell HGIgh(S/ /. VoY R T~
Ferny afove Nundah 1 .
N e £
3N /° N Everton Park Kedron 5 {) V=
a y. > C
b ,’ g Mitcheiton glafiopd Kalinga 7% Mo 'y
P, = | / / |
=X SUsba Upper Kedron Gaythorne.L GolKion Ak ” \'\ Hendra .
— —) e v -
A!d.erley Lutwyche :>(Iayr|eld ' ‘ m;enba 5 Lytton=s
Enoggero N\ 4 e 5 3 (
Albion A watagle Farm o
Enoggera Reservoir Barracks e B A Wilston & 4 ASChn 1 et 06 = |
- 3 E.>
9 *‘) Hamilton TN
Enoggera) 5. o : L
Weseril B The Gap Bowen Hills ~ S Wynnum
€5 Kelvin Grove __ ! > 103 g Hemmant \ A
Red Hill - Fortitude Valley Balmoral Wynnum West «k,q(,my
Reservoir Bardon | ¥ Py
PétrieTecrace ~ #h Hawthorne M‘E’)“’ Manly West \\
e AN \ e , |
»~ _'Brisbane! ', =" Cannon Hill 00 Lota
Mount Coot-" Peiat \ / ! s y <
Auchenflower 4 S ¢ 2 Ny
Upper Brookfield tha & i 7 A\ \\ / /S T 100 Tingalpa 1
P r i South Brisbane 5 Wakerley Thornes
i Toowong \ / E £
g - Highgate Hill o ~
- 2 ~
Taringa \ Ny - A
Kenmore Hills 4 & X Pl " Camp Hill 9 Gumdale
/ St Lucia !
Indcort‘:opllly & |‘ S A Carina Heights T
) £ - | .
N Fairfield & 5 Greenslopes ')‘ Chandler
K himery 4 s’ Belmont
enmore \ X " = Yeronga
Moggill ! . Iy Holland Park .
Eonservation L J Grac‘evll\e = Yeeroriapillv 8 Leaflet | © OpenStreetMap contributors
Chart
. Waypoints
2
0 Al 5 10:1(10:15 10:2 10:25 10 10:35 4 10:45 10:50 10:55 1

Fusemate Messages

Model 1 at 10:00:00

Of Interest

e GPS -> Symbolic Loc

e Integrating
information sources

e Noisy sensor data

e Robust anomaly
detection

37

Case Study 3 - Taxi Rides Anomalies

2 Million taxi rides in New York City

Ride(taxi, license,from,to,start,end, fare)

W AR o z
&(-822436 4529705)~ 2481 &5

189

'7('—822362 5,4529035) = 37

Fusemate

)

New York

i (-8220085,453214.

20385,4529965);- 68.
TES

) g (O
25,4529935),= 3370,

5
A
2& ‘k‘.tm
SIS
g

Ride

4

&4

S AT AT

7'5,4528925) -\431 |

«4195 189 "
Y 208 87
0] B

245 ;
J185244296 195 J 1

178 248224 227 287 238
{ -

/
N,

4

2048 83 Y
20 T

N

Sisz s 27’;-12 14

T

(1) Rules for hotspot clustering and concave hull
(2) Rules for anomaly detection

Pickup/dropoft
clusters

38

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, —, From, _, P
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

.license = "42" : ‘
, saturateFirstK fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

.license = "42" : ‘
, saturateFirstK fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back
val gaps42 = rides filter {

.license = "42" : ‘
, saturateFirstK fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

val gaps42 = rides filter {

.license = "42" : ‘
, saturateFirstK fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _,),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

} functional + Logic programming

Declarative and concise :)

39

Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km

pickup anomaly from: hotspot-15

hour: (0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44 24 64 69 38 21

dropoffs: (16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74 70 76 36 13 | 34| 18

40

Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km

pickup anomaly from: hotspot-15

hour: (0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44

dropoffs: (16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74

Of Interest

e Reasoning with non-trivially sized data sets

e Deploying Logic Programming as a method for data analysis
(as a Jupyter notebook)

e Interaction fusemate with host programming language Scala

18
24
70

19
64
76

20
69
36

21 22
38 ((109]
13 | 34|

23
21
18)

40

Data Cleansing as Situational Awareness

Example: Employments Database

Company
ABM
BBM
ABM

Employee
Alice

Bob

Alice

Since

1/3/18
5/3/18
1/6/19

Full-time
No
No
Yes

41

Data Cleansing as Situational Awareness

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 NO e
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a
full-time contract at the
same time

41

Data Cleansing as Situational Awareness

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 NO e
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a
full-time contract at the

same time

How to explain and fix this inconsistency?

Approach

* There is a fixed set of contract operators: cessation, conversion, new contract
* Try them out as “fixes” for the problem
* Or was it Bob? Or someone else?

41

Conclusions

Summary
“Situational awareness = time-stratified logic programming + belief revision”
-> Good balance between expressivity and declarativity

The implementation is meant to be practical (workflow integration, ease of use)

Current and Future Work
Classical negation

Proper belief revision (ramification problem)

Timed LTL constraints []¢ . shipped(B) = {)s . s < t+ 5 A received(B)

Probabilities and combination with machine learning
 Probabilistic EDBs a la ProbLog Load(10, “tomatoes”, “pallet”) : 0.3
« ML as a subroutine for anomaly detection?

Context may help to favoid false positives

Implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/

42

