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Various Logic Program Semantics

Assign “meaning” to a program / knowledge base:

perfect model, stable models, well-founded model

Normal (logic) programs: negation in rule body allowed.

win(X) ←move(X ,Y ), not win(Y ) (1)

move(c ,d) ← (2)

move(a,b) ← (3)

move(b, a) ← (4)

The well-founded model:

True Undefined False

win(c) win(a) win(d)

win(b)

Two stable models:

(i)

True False

win(c) win(d)

win(a) win(b)

(ii)

True False

win(c) win(d)

win(b) win(a)
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More About Well-Founded Models

See [VanGelder/Ross/Schlipf 89, Przymusinski 91]

Generally accepted for “reasonable” sceptical reasoning

“well-behaved”:

always exists, stratification not required

unique model

goal-oriented procedure exists

quadratic complexity

undef is assigned to atoms which negatively depend on

themselves, and for which no independent “well-founded”

derivation exists

XSB-Prolog system (Warren et. al., top-down system)

SModels (Niemelä et. al., bottom-up system, also for stable

model semantics)
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“Building in” Information into Programs

Program P q ← r ← not s

p ← not q, s p ← not p

Partial interpretation J
True Undefined False

q p, r s

Quotient program P

J
q ← r ← true

p ← false, s p ←undef

I is a partial model of P

J
iff for all Head←Body in P

J
:

- If I(Body) = true then I(Head) = true

- If I(Head) = false then I(Body) = false

Least partial model LPM(P

J
)

True Undefined False

q, r p s
- I minimizes true atoms, and

- I maximizes false atoms
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Well-Founded Models as Fixpoint Iteration

undef

true

Step 0 Step 1 Step n

⊆-increasing
false

⊆-increasing

Maintain two sets to represent Ii :

The “true” atoms

The “true or undef ” atoms

Set I0 = “all undef ” and do Ii+1 = LPM(P

Ii
) until fixpoint, where

seqeuence (J0 = “all false”), J1 , . . . , Jn−1 , (Jn = Jn+1 = LPM(P

Ii
))

obtained with operator associated to (Head←Body) ∈ P

Ii
:

(i) If Jk(Body) = true then Jk+1(Head) = true

(ii) If Jk+1(Head) = false then Jk(Body) = false iff

If Jk(Body) 6= false
︸ ︷︷ ︸

Jk(Body)∈{true,undef }

then Jk+1(Head) 6= false
︸ ︷︷ ︸

Jk+1 (Head)∈{true,undef }
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Computing Well-Founded Models, Step 0 7 → Step 1

P

(i) build P/ a,b, c ,d, e, f

a ←

c ← not b, a

b ← not c

e ← not d

f ← e

f ← not a

a ←

c ←undef , a

b ←undef

e ←undef

f ← e

f ←undef

(ii) derive new true atoms a

(iii) derive new true or undef atoms a b, c , e, f

(iv) conclude new false atoms d

undef

true

Step 0 Step 1

false
d

b, c , e, f

a

e, f
a,b, c ,d,
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Computing Well-Founded Models, Step 1 7 → Step 2

P

(i) build P/ a b, c , e, f d

a ←

c ← not b, a

b ← not c

e ← not d

f ← e

f ← not a

a ←

c ←undef , a

b ←undef

e ← true

f ← e

f ← false

(ii) derive new true atoms a, e, f

(iii) derive new true or undef atoms a, e, f b, c

(iv) conclude new false atoms d

d

b, c , e, f

a

undef

true

Step 1 Step 2

false
d

b, c

a, e, f
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Abstraction Theory (Denecker, Marek and Truszczynski)

Recall Fitting operator for logic programs:

(i) If Ik(Body) = true then Ik+1(Head) = true

(ii) If If Ik(Body) 6= false then Ik+1(Head) 6= false

Fitting: Semantics as fixpoints of certain derived operators

Abstraction Theory

Operator (i) alone is sufficient, (ii) is derived (minor issue)

Other major knowledge representation formalisms

(Autoepistemic Logic, Default Logic) can be described by

operators comparable to (i) with same monotonicity properties

Conclusion: Develop theory on an abstract level.

Applications:

– Comparable (new) semantics for AEL and DL Logic as in

logic programming

– Abstract results on stratification
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Ordering Interpretations

Ordering of truth values:

≥k knowledge (precision, information) ordering

≥t truth ordering

≥k

≥t

⊥

f t

>

Maintain two sets (X ,Y ) ∈ 2Σ × 2Σ to represent an interpretation:

The “true” atoms X

The “true or undef ” atoms Y

Further notions:

(X ,X) is exact

(X ,Y ) is consistent iff X ⊆ Y

Ordering interpretations, bilattices (2Σ × 2Σ,≤k) and (2Σ × 2Σ,≤t):

(X ,Y ) ≤k (X
′,Y ′) iff X ⊆ X ′ and Y ′ ⊆ Y (Knowledge ordering)

(X ,Y ) ≤t (X ′,Y ′) iff X ⊆ X ′ and Y ⊆ Y ′ (Truth ordering)
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Evaluation of Formulas

H(X ,Y )(φ) =







t φ is true in the interpretation defined by (X ,Y )

f otherwise

H(X ,Y )(p) =







t if p ∈ X (p an atom)

f otherwise

H(X ,Y )(φ ∧/∨ ψ) =







t if H(X ,Y )(φ) = t and/or H(X ,Y )(φ) = t

f otherwise

H(X ,Y )(¬φ) =







t if H(Y ,X)(φ) = f

f otherwise
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Associating Operators to Programs

Let P be a Program. Define operator UP : 2Σ × 2Σ 7 →2Σ:

UP(X ,Y ) = {p ∈ Σ | there is (p←q,¬r) ∈ P with HX ,Y (q ∧¬r) = t}

Note: HX ,Y (q ∧¬r) = t iff q is true and r is false in (X ,Y )

Special case

Well known two-valued operator TP : 2Σ 7 →2Σ:

X 7 →UP(X ,X)

Properties

Fixpoints of TP need not exist, take P = {p←¬p}

Fixpoints of TP are two-valued supported models

E.g. fixpoints of T{p←p} are {} and {p}

If P is definite then TP is monotone; LFP is minimal model
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Fitting Operator as Symmetric Application of UP

Recall (X ,Y ) means (“true atoms”,“true or undef atoms”)

Recall

UP(X ,Y ) = {p ∈ Σ | there is (p←q,¬r) ∈ P with HX ,Y (q ∧¬r) = t}

HX ,Y (q ∧¬r) = t iff q is true and r is false in (X ,Y )

Now swap X and Y :

UP(Y ,X) = {p ∈ Σ | there is (p←q,¬r) ∈ P with HY ,X(q ∧¬r) = t}

HY ,X(q ∧¬r) = t iff q is true or undef and r is false or undef in (X ,Y )

Define Fitting operator TP(X ,Y ) = (UP(X ,Y ),UP(Y ,X))

TP is ≤k-monotone:

if X ⊆ X ′ and Y ′ ⊆ Y

then UP(X ,Y ) ⊆ UP(X
′,Y ′) and UP(Y

′,X ′) ⊆ UP(Y ,X)
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Intuition for TP

TP(X ,Y )(p) =







true if there is (p←q,¬r) ∈ P where
q and ¬r are true in (X ,Y )

true or undef if there is (p←q,¬r) ∈ P where
q and ¬r are true or undef in (X ,Y )

false otherwise

Equivalently:

TP(X ,Y )(p) =







true if there is (p←q,¬r) ∈ P where
q and ¬r are true in (X ,Y )

false if for all (p←q,¬r) ∈ P it holds
q or ¬r is false in (X ,Y )

true or undef otherwise
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Properties of TP

TP is ≤k-monotone, thus least fixpoint exists;

Bottom element is ({},Σ)

Gives Kripke-Kleene semantics, (or Fitting semantics)

Examples

Program Fixpoint iteration

p←¬q ({}, {p,q})→ ({}, {p})→ ({p}, {p})

p←¬p ({}, {p,q})→ ({}, {p})

p←p ({}, {p,q})→ ({}, {p})
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Abstraction Theory (1)

Given a lattice (L,≤) – concrete case (2Σ,⊆)

Bilattice (L× L,≤p) – concrete case (2Σ × 2Σ,≤k)

Approximation: any ≤p-monotone operator A : L× L 7 →L× L

A can be written as

A(X ,Y )
︸ ︷︷ ︸

TP(X ,Y )

= (A1(X ,Y )
︸ ︷︷ ︸

UP(X ,Y )

,A2(X ,Y )
︸ ︷︷ ︸

UP(Y ,X)

)

Derived operators (1) - holding an argument as parameter:

A1(·,Y ) = λX .A1(X ,Y ) – concrete case A1(·,Y ) = λX .Up(X ,Y )

A2(X , ·) = λY .A2(X ,Y ) – concrete case A2(X , ·) = λY .Up(Y ,X)

Both A1 and A2 are ≤-monotone
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Abstraction Theory (2)

Derived operators (1) from above:

A1(·,Y ) = λX .A1(X ,Y )

A2(X , ·) = λY .A2(X ,Y )

Derived operators (2): (C ↓
TP
(Y ),C ↑

TP
(X)) = LPM( P

(X ,Y )
)

C
↓
A(Y ) = LFP(A1(·,Y ))

C
↑
A(X) = LFP(A2(X , ·))

Both C
↓
A and C

↑
A are ≤-antimonotone

Partial stable operator of A:

CA(X ,Y ) = (C ↓A(Y ),C ↑A(X))

Because C
↓
A and C

↑
A are ≤-antimonotone, CA is ≤p-monotone

LFP(CTP
) (wrt. ≤k) is the well-founded model

Two-valued fixpoints of CTP
are the stable models
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Summary - Abstraction Theory → Logic Programming

Start with an operator O – concrete case UP.

Semantics of derived operators:

TP(X) = UP(X ,X)

Fixpoints: 2-valued supported models

TP(X ,Y ) = (UP(X ,Y ),UP(Y ,X))

Fixpoints: 3-valued supported models

LFP: Kripke-Kleene semantics

Let A = TP. Partial stable operator CA(X ,Y ) = (C ↓A(Y ),C ↑A(X))

Fixpoints: (partial) stable models

LFP: well-founded model
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Application to Default Logic and Autoepistemic Logic

Default Logic and Autoepistemic Logic semantics can be described

by suitable operators O. Then:

Usual Moore semantics for AEL is given by 2-valued supported

models (“X 7 →UP(X ,X)”)

Usual Reiter semantics for DL is given by 2-valued stable models

Intuitive mapping from DL to AEL:

Default logic inference

rule:

α : β1 , . . . , βn

γ

Translation to Autoepistemic

Logic:

Lα∧¬L¬β1 ∧ · · · ∧¬L¬βn→ γ

Reiter semantics for DL is the same as the 2-valued stable

model semantics for the translation!
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Dependency Graph leads to Stratification

Example, Σ = {p,q, r}:

s ←p,q (1)P:

p ←¬q,¬r (2)

q ←¬p,¬r (3)

Dependency graph:

Σ0 = {r}

Σ1 = {p,q}

Σ2 = {s}

p q

s

r

Suggests splitting Σ = Σ0

.
∪ Σ1

.
∪ Σ2

Contribution: The program P is not stratified in the standard

sense, but models can still be constructed in a stratified way

Σ0→Σ1→Σ2 .
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Stratification in Abstraction Theory - Product Lattices

So far: lattice (2Σ,⊆) and bilattice (2Σ × 2Σ,≤k)

Now:

Product lattice (
⊗

i=0 ,...,n 2Σi ,⊆), where

(
⊗

i=0 ,...,n 2Σi ,⊆) = (2Σ0 , . . . ,2Σn), and

(x0 , . . . , xn) = x ⊆ y = (y0 , . . . , yn) iff

x0 ⊆ y0 and . . . and xn ⊆ yn

Example: Σ = {r}
︸︷︷︸

Σ0

.
∪ {p,q}

︸ ︷︷ ︸

Σ1

.
∪ {s}

︸︷︷︸

Σ2

x = ({r}, {p}, {}) ∈
⊗

i=0 ,1 ,2 2Σi

y = ({r}, {p,q}, {s}) ∈
⊗

i=0 ,1 ,2 2Σi

It holds x ⊆ y

Bilattice of product lattices (
⊗

i=0 ,...,n 2Σi ×
⊗

i=0 ,...,n 2Σi ,“≤k”)

Product lattice of bilattices (
⊗

i=0 ,...,n(2
Σi × 2Σi ),“≤k”)
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Stratification in Abstraction Theory - Results

Notation: e.g. x = ({r}, {p}, {}). Then x |≤1 = ({r}, {p})

Definition: (“Applying O at stratum i does not depend from strata > i.”)

Operator O on a product lattice L is stratifiable iff

for all x , y ∈ L and all i = 0 , . . . ,n:

if x |≤i = y |≤i then O(x)|≤i = O(y)|≤i .

Theorem: (“Logic programming: splitting results in stratification”)

Let P be a logic program and (Σi)i=0 ,...,n a splitting.

Then the operator TP on the bilattice of the product lattice

(
⊗

i=0 ,...,n 2Σi ×
⊗

i=0 ,...,n 2Σi ,“≤k”) is stratifiable.

Theorem: (“Stratum-wise computation of fixpoints”)

Let L be a product lattice, O a stratifiable operator and x ∈ L.

Then x is a fixpoint of O iff for all i = 0 , . . . ,n:

x |i is a fixpoint of O(x)|i (x |i fixpoint of O
x |<i

i
).

→ similar result for least fixpoints
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Stratification: Example

O is TP, where

s ←p,q (1)P:

p ←¬q,¬r (2)

q ←¬p,¬r (3)

Task: compute well-founded model x of P (i.e. least fixpoint of TP)

Construct well-founded models of P
x |<0

0 , P
x |<1

1 , P
x |<2

2

Σ0 = {r}, P0 = ∅, P
x |<0

0 = ∅, well-founded model is x |<1 = ({}, {})

Σ1 = {p,q}, P1 = {(2), (3)}, with x |<1(r) = false have

p ←¬q, t (2’)P
x |<1

1 :

q ←¬p, t (3’)

Well-founded model is x |<2 = (({}, {}), ({}, {p,q}))
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Stratification: Example

O is TP, where

s ←p,q (1)P:

p ←¬q,¬r (2)

q ←¬p,¬r (3)

Recall well-founded model x |<2 = (({}, {}), ({}, {p,q}))

Σ2 = {s}, P2 = {(1)},

with x |<2(r) = false, x |<2(p) = undef and x |<2(q) = undef have

P
x |<2

2 :
s ←u,u (1’)

Well-founded model is x |<3 = (({}, {}, {}), ({}, {p,q}, {s}))

This is the well-founded model of P
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Conclusions

Abstraction theory: framework to explain and construct

semantics of knowledge representation formalism in a uniform

way

Abstract concept of stratification: useful for own work
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