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Abstract
In this paper we introduce several new improvements to the bottom-up model

generation (BUMG) paradigm. Our techniques are based on non-trivial transfor-
mations of first-order problems into a certain implicational form, namely range-
restricted clauses. These refine existing transformations to range-restricted form
by extending the domain of interpretation with new Skolem terms in a more care-
ful and deliberate way. Our transformations also extend BUMG with a blocking
technique for detecting recurrence in models. Blocking is based on a conceptu-
ally rather simple encoding together with standard equality theorem proving and
redundancy elimination techniques. This provides a general-purpose method for
finding small models. The presented techniques are implemented and have been
successfully tested with existing theorem provers on the satisfiable problems from
the TPTP library.

1 Introduction

The bottom-up model generation (BUMG) paradigm encompasses a wide family of cal-
culi and proof procedures that explicitly try to construct a model of a given (first-order)
clause set by reading clauses as rules and applying them in a bottom-up way until com-
pletion. For instance, variants of hyperresolution and certain tableau calculi belong
to this family. BUMG methods have been known for a long time to be refutationally
complete. Comparably little effort has however been undertaken to exploit them for
the dual task of refutational theorem proving, namely, computing models for satisfiable
problems. This is somewhat surprising, as computing models is recognized as being im-
portant in software engineering, model checking, and other applications, and is becom-
ing increasingly important for building and maintaining web ontologies. The BUMG
methods we develop and study in this paper are intended to be used for consistency
testing of ontologies and software specifications, and for aiding with the debugging
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through the generation of (counter-)models. Our techniques are partially inspired by
techniques already successfully used in the area. For instance, we show how blocking
techniques of description and modal logic tableau-based theorem provers can be gen-
eralized to full first-order logic. In our approach blocking is encoded on the clausal
level and is combined with standard resolution techniques. In this way, a suitable prover
will attempt to construct models which are small and can be easily read off from the
derived clauses. Our other contributed techniques are significant improvements to the
well-known “transformation to range-restricted form” as introduced in the context of
the SATCHMO prover in the eighties [18] and later improved in e.g. [7]. The exist-
ing transformations have the disadvantage that they force BUMG methods to enumerate
the entire Herbrand universe and are therefore non-terminating except in the simplest
cases. Our method extends and combines the transformation introduced in [24] for re-
ducing first-order formulae and clauses into range-restricted clauses, which was used
to develop general-purpose resolution decision procedures for the Bernays-Schönfinkel
class. Our approach is similar in spirit to the methods in e.g. [12, 15], by capitalizing on
available first-order (equational) automated reasoning technology.

Other methods for model computation can be classified as methods that directly
search for a finite model, like the extended PUHR tableau method [9], the method
in [8] and the methods in the SEM-family [25, 29, 20]. In contrast, MACE-style model
builders [11, 19, e.g.] reduce model search to testing of propositional satisfiability. Be-
ing based on translation, the MACE-style approach is conceptually related, but different,
to our approach. Both SEM- and MACE-style methods search for finite models, essen-
tially, by searching the space of interpretations with domain sizes 1,2, . . ., in increasing
order, until a model is found. Our method operates significantly differently, as it is not
parametrized by a domain size. Consequently, there is no iterative deepening over the
domain size, and the search for finite models works differently. This way, we address
a problem often found with models computed by these methods: from a pragmatic per-
spective, they tend to identify too many terms. For instance, for the two unit clauses
P(a) and Q(b) there is a model that identifies a and b with the same object. Such mod-
els can be counterintuitive, for instance, in a description logic setting, where unique
names are often assumed. Furthermore, logic programs are typically understood with
respect to Herbrand semantics, and it is desirable to develop compatible model building
techniques. Our transformations are careful at identifying objects than the methods men-
tioned and thus work closer to a Herbrand semantics. The difference in operation also
shows up experimentally. Our methods can solve an overlapping, but disjoint set of the
satisfiable TPTP problems solvable by the state-of-the-art MACE-style model builder
Paradox.

The structure of the paper is as follows. Definitions of basic terminology and nota-
tion can be found in Section 1.1. In Section 2 we recall the characteristic properties of
BUMG methods. Section 3 defines new techniques for generating small models and gen-
erating them more efficiently. The techniques are based on a series of transformations
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which include an improved range-restricting transformation (Section 3.1), instances of
standard renaming and flattening (Section 3.2), and the introduction of blocking through
an encoding and standard saturation-based equality reasoning (Section 3.3). In Sec-
tion 4 we present and discuss results of experiments carried out with our methods on all
satisfiable TPTP problems.

1.1 Preliminaries

We use standard terminology from automated reasoning. We assume as given a signature
Σ = Σ f ∪ΣP of function symbols Σ f (including constants) and predicate symbols ΣP.
As we are working (also) with equality, we assume ΣP contains a distinguished binary
predicate symbol ≈, which is used in infix form. Terms, atoms, literals and formulas
over Σ and a given (denumerable) set of variables V are defined as usual.

A clause is a (finite) implicitly universally quantified disjunction of literals. We write
clauses in a logic-programming style, i.e. we write H1∨ ·· ·∨Hm← B1∧ ·· ·∧Bk rather
than H1∨·· ·∨Hm∨¬B1∨·· ·∨¬Bk, where m,k≥ 0. Each Hi is called a head atom, and
each B j is called a body atom. When writing expressions like H ∨H ← B∧B we mean
any clause whose head literals are H and those in the disjunction of literals H , and whose
body literals are B and those in the conjunction of literals B . A clause set is a finite set
of clauses. A clause H ← B is said to be range-restricted iff the body B contains all
the variables in it. This means that a positive clause H ←> is range restricted only if
it is a ground clause. A clause set is range-restricted iff it contains only range-restricted
clauses. For a given atom P(t1, . . . , tn) the terms t1, . . . , tn are also called the top-level
terms of P(t1, . . . , tn) (P being ≈ is permitted). This notion generalizes to clause bodies,
clause heads and clauses as expected. E.g., for a clause H ← B the top-level terms of
its body B are exactly the top-level terms of its body atoms. A proper functional term is
a term which is neither a variable nor a constant.

With regards to semantics, we use the notions of (first-order) satisfiability and E-
satisfiability in a completely standard way. We also work with standard Herbrand in-
terpretations and variants called quasi-Herbrand interpretations. A quasi-Herbrand in-
terpretation of a clause set N is a first-order logic interpretation defined over a domain
given by a finite subset of the Herbrand universe of N. The latter notion is used explicitly
in the appendix only, and its precise definition can be stated there without compromising
the readability of the main part of the paper.

2 BUMG methods

Proof procedures based on model generation approaches establish the satisfiability of
a problem by trying to build a model for the problem. In this paper we are interested
in bottom-up model generation approaches (BUMG). BUMG approaches use a forward
reasoning approach where implications, or clauses, H ← B are read as rules and are
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repeatedly used to derive (instances of) H from (instances of) B until a completion is
found. The family of BUMG includes many familiar calculi and proof procedures, such
as SATCHMO [18, 14], PUHR [10, 9], MGTP [13] and hyper tableaux [6]. The oldest
and perhaps most widely known BUMG method is hyperresolution [22].

Hyperresolution consists of two inference rules, hyperresolution and factoring. The
hyperresolution rule applies to a non-positive clause H ← B1 ∧ . . .∧Bn and n positive
clauses C1∨B′1←>, . . . , Cn∨B′n←>, and derives (C1∨ . . .∨Cn∨H)σ←>, where σ

is the most general unifier such that B′iσ = Biσ for every i ∈ {1, . . . ,n}. The factoring
rule derives the clause (C∨B)σ←> from a positive clause C∨B∨B′←>, where σ

is the most general unifier of B and B′. On range-restricted clauses, when using hyper-
resolution, factoring amounts to the elimination of duplicate literals in positive clauses
and is therefore optional when clauses are viewed as sets. A crucial requirement for
the effective use of blocking (Section 3.3) is support of equality reasoning, for exam-
ple, ordered paramodulation or superposition [21], in combination with simplification
techniques based on orderings. See e.g. [2, 3] for general notions of redundancy in
saturation-based theorem proving approaches.

Our experiments show that a certain form of the splitting rule, or the β-rule, is quite
useful for our approach. For the blocking transformation, splitting on the positive part
of (ground) clauses is in fact mandatory to make it effective. This type of splitting will
replace the branch of a derivation containing the positive clause C∨D←>, say, by two
copies of the branch in which the clause is replaced by C←> and D←>, respectively,
provided that C and D do not share any variables. Most BUMG procedures support this
splitting technique, in particular the provers that we used do.

3 Transformations

3.1 Range-Restriction

Existing transformations to range-restricted form follow Manthey and Bry [18] (or are
variations of it). The transformation can be defined by a procedure carrying out the
following steps on a given set M of clauses.

(0) Initialization. Initially, let crr(M) := M.

(1) Add a constant. Let dom be a “fresh” unary predicate symbol not in ΣP, and let c
be some constant. Extend crr(M) by the clause dom(c)← . (The constant c can
be “fresh” or belong to Σ f .)

(2) Range-restriction. For each clause H ← B in crr(M), let {x1, . . . ,xk} be the set of
variables occurring in H but not in B . Replace H ← B by the clause

H ← B ∧dom(x1)∧·· ·∧dom(xk).



3.1 Range-Restriction 5

(3) Enumerate the Herbrand universe. For each n-ary f ∈ Σ f , add the clauses:

dom( f (x1, . . . ,xn))← dom(x1)∧·· ·∧dom(xn).

We refer to the computed set crr(M) as the classical range-restricting transformation
of M. It is not difficult to see that crr(M) is indeed range-restricted for any clause
set M. The transformation is sound and complete, i.e. M is satisfiable iff crr(M) is
satisfiable [18, 10]. Clearly, the size of crr(M) is linear in the size of M and can be
computed in linear time.

Perhaps the easiest way to understand the transformation is to imagine we use a
BUMG method, e.g. hyperresolution. The idea is to build the model(s) during the deriva-
tion. The clause added in Step (1) ensures that the domain of interpretation given by the
domain predicate dom is non-empty. Step (2) turns clauses into range-restricted clauses
by shielding variables in the head that do not occur negatively within the added negative
domain literals. Clauses that are already range-restricted are unaffected by this step.
Step (3) ensures that all elements of the Herbrand universe of the (original) clause set
are added to the domain via hyperresolution inference steps. As a consequence a clause
set M with at least one non-nullary function symbols causes hyperresolution derivations
to be unbounded for crr(M), unless M is unsatisfiable. This is a distinct drawback of
the classical range-restricting transformation. However, the method has been shown
to be useful for (domain-)minimal model generation when combined with other tech-
niques [10, 9]. (Since we are interested in BUMG the possibility of using an ordering
restriction under which the positive literal is maximal is not an option.)

In Section 4 we consider the combination of the classical range-restricting transfor-
mation crr with the blocking transformation which is introduced in Section 3.3.

Let us first turn to a new transformation to range-restricted form which aims to
help avoid the brute-force enumeration of the entire Herbrand universe by BUMG ap-
proaches. The transformation involves extracting the non-variable top-level terms in
an atom. Let P(t1, . . . , tn) be an atom and suppose x1, . . . ,xn are fresh variables. For all
i∈ {1, . . . ,n} let si = ti, if ti is a variable, and si = xi, otherwise. The atom P(s1, . . . ,sn) is
called the term abstraction of P(t1, . . . , tn). Let the abstraction substitution α be defined
by α = {xi 7→ ti | 1≤ i≤ n and ti is not a variable}. Hence, P(s1, . . . ,sn)α = P(t1, . . . , tn),
i.e. α reverts the term abstraction. Now, the new range-restricting transformation, de-
noted by rr, of a clause set M is the clause set obtained by carrying out the following
steps (explanations and an example are given afterwards):

(0) Initialization. Initially, let rr(M) := M.

(1) Add a constant. Same as Step (1) in the definition of crr.

(2) Domain elements from clause bodies. For each clause H ←B in M and each atom
P(t1, . . . , tn) from B , let P(s1, . . . ,sn) be the term abstraction of P(t1, . . . , tn) and let
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α be the corresponding abstraction substitution. Extend rr(M) by the set

{dom(xi)α← P(s1, . . . ,sn) | 1≤ i≤ n and xi 7→ ti ∈ α}.

(3) Range-restriction. Same as Step (2) in the definition of crr.

(4) Domain elements from ΣP. For each n-ary P in Σp, extend rr(M) by the set

{dom(xi)← P(x1, . . . ,xn) | i≤ i≤ n}.

(5) Domain elements from Σ f . For each n-ary f in Σ f , extend rr(M) by the set

{dom(xi)← dom( f (x1, . . . ,xn)) | i≤ i≤ n}.

The intuition of the transformation reveals itself if we think of what happens when
using hyperresolution. The idea is again to build the model(s) during the derivation, but
this time terms are added to the domain only as necessary. Steps (1) and (3) are the
same as Steps (1) and (2) in the definition of crr. The clauses added in Step (2) cause
functional terms that occur negatively in the clauses to be inserted into the domain.
Step (4) ensures that positively occurring functional terms are added to the domain, and
Step (5) ensures that the domain is closed under subterms.

To illustrate the steps of the transformation consider the following clause.

q(x,g(x,y))∨ r(y,z)← p(a, f(x,y),x) (†)

The term abstraction of the body literal is p(x1,x2,x) and the abstraction substitution is
α = {x1 7→ a,x2 7→ f(x,y)}. The clauses added in Step (2) are thus:

dom(a)← p(x1,x2,x) dom(f(x,y))← p(x1,x2,x) (‡)

Notice that among the clauses so far the clauses (†) and (‡) are not range-restricted, but
are turned into range-restricted clauses in Step (3), yielding the following.

q(x,g(x,y))∨ r(y,z)← p(a, f(x,y),x)∧dom(z)
dom(f(x,y))← p(x1,x2,x)∧dom(y)

Step (4) generates clauses responsible for inserting the terms that occur in the heads of
clauses into the domain. I.e. for each i ∈ {1,2,3} and each j ∈ {1,2}:

dom(xi)← p(x1,x2,x3) dom(x j)← q(x1,x2) dom(x j)← r(x1,x2)

For instance, when a model assigns true to the instance q(a,g(a, f(a,a))) of one of the
head atoms of the clause above, then dom(a) and dom(g(a, f(a,a))) will also be true.
It is not necessary to insert the terms of the instance of the other head atom into the
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domain. The reason is that it does not matter how these (extra) terms are evaluated, or
whether the atom is evaluated to true or false in order to satisfy the disjunction. The
clauses added in Step (4) alone are not sufficient, however. For each term in the domain
all its subterms have to be in the domain, too. This is achieved with the clauses obtained
in Step (5). I.e. for each j ∈ {1,2}:

dom(x j)← dom(f(x1,x2)) dom(x j)← dom(g(x1,x2))

Proposition 3.1 (Completeness of range-restriction)
Let M be a clause set. If rr(M) is satisfiable then M is satisfiable.

See the Appendix for a proof. The proof characterizes more precisely the model associ-
ated with a satisfiable clause set rr(M).

Corollary 3.2 (Completeness of range-restriction wrt. E-interpretations)
Let M be a clause set. If rr(M)∪ {x ≈ x ← dom(x)} is E-satisfiable then M is E-
satisfiable.

Proposition 3.3
(i) The size of rr(M) is bounded by a linear function in the size of M. (ii) rr(M) can be
computed in quadratic time. (iii) rr(M) is range-restricted.

By carefully modifying the definition of rr and at the expense of some duplication it is
possible to compute the reduction in linear time.

Proposition 3.3 shows that the transformation rr preserves range-restrictedness. What
about other syntactic properties? If we look at properties characteristic of decidable
clausal classes, including PVD, BU clauses, guarded clauses, DL∗ clauses, fluted clauses,
Maslov class K, then unfortunately, in all these cases clauses obtained with Step (2), and
followed by Step (3), in particular, do not in general belong to these classes (other steps
can also produce violating clauses). Consider the clause

r(x)← q(x)∧p(f(x))

which might be part of the translation of a modal logic formula or a description logic
knowledge base. Applying Steps (2) and (3) of our transformation give us a clause,

dom(f(x))← dom(x)∧p(y), (∗)

which is splittable into dom(f(x))← dom(x) and ⊥← p(y). The first split component
clause is unpleasant, because it is an example of an “enumerate the Herbrand universe”
clause from existing standard transformations (Step (2) in the definition of crr). Such
clauses cause the entire Herbrand universe to be enumerated with BUMG approaches.
One solution is to switch off splitting when using a BUMG approach, but this is not
necessarily the best or the only solution. (Indeed, our experiments below demonstrate
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that splitting is advisable.) Before describing a solution let us analyze the problem
further.

The main rationale of our rr transformation is to constrain the generation of domain
elements and limit the number of inference steps. The general form of clauses produced
by Step (2), followed by Step (3), is the following, where y⊆ x, x⊆ y∪ z and u⊆ z.

dom( f (x))← dom(y1)∧ . . .∧dom(yn)∧P(z) dom( f (u))← P(z)

Clauses of the first form are often splittable (as in the example above), and can produce
clauses of the unwanted form dom( f (y))← dom(y1)∧ . . .∧dom(yn). Suppose therefore
that splitting of any clause is forbidden when this splits the negative part of the clause
(neither (M)SPASS nor hyper tableaux prover do this anyway). Although, compared to
the classical range-restricting transformation methods, the two types of clauses above
both do reduce the number of possible inferences, the constraining effect of the first
type of clauses is a bit limited. Terms f (s) are not generated, only when no fact P(t) is
present or has been derived. When a clause P(t) is present, or as soon as such a clause
is derived (for any (ground) terms t), then terms are freely generated from terms already
in the domain with f as the top symbol. Here is an example of a clause set for which the
derivation is infinite on the transformation. (The example is an extension of the example
above with the clause p(b)←>.)

p(b)←> r(x)← q(x)∧p(f(x))

Notice the derivation will be infinite on the classical range-restricting transformation as
well, due to the generated clauses dom(b)←> and dom( f (x))← dom(x).

The second type of clauses, dom( f (u))← P(z), are less problematic. Here is a
concrete example. For ⊥← r(x, f(x)), Step (2) produces the clause dom(f(x))← r(x,y).
Although this clause, and the general form, still cause larger terms to be built with
hyperresolution type inferences, the constraining effect is larger.

In the next two sections we discuss ways of improving the transformation further.

3.2 Shifting

The clauses introduced in Step (2) of the new transformation rr to range-restricted form
insert instantations of terms occurring in the clause bodies into the domain. This is
sometimes unnecessary and can lead to non-termination of BUMG procedures. The
shifting transformation addresses this problem. It consists of two sub-transformations,
basic shifting and partial flattening.

If A is an atom P(t1, . . . , tn) then let not A denote the atom not P(t1, . . . , tn), where
not P is a fresh predicate symbol which is uniquely associated with the predicate symbol
P. If P is the equality symbol ≈ we write not P as 6≈ and use infix notation. Now, the
basic shifting transformation of a clause set M is the clause set bs(M) obtained from M
by carrying out the following steps.
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(0) Initialization. Initially, let bs(M) := M.

(1) Shifting deep atoms. Replace each clause in bs(M) of the form H ← B1 ∧ ·· · ∧
Bm∧B , where each atom B1, . . . ,Bm contains at least one proper functional term
and B contains no proper functional term, by the clause

H ∨not B1∨·· ·∨not Bm← B.

Each of the atoms B1, . . . ,Bm is called a shifted atom.

(2) Shifted atoms consistency. Extend bs(M) by the clause set

{⊥← P(x1, . . . ,xn)∧not P(x1, . . . ,xn) |
P is the n-ary predicate symbol of a shifted atom}.

Notice that we do not add clauses complementary to the “shifted atoms consistency”
clauses, i.e., P(x1, . . . ,xn)∨not P(x1, . . . ,xn)←>. They could be included but are evi-
dently superfluous.

Let us continue the example given at the end of the previous section. We can use ba-
sic shifting to move negative occurrences of functional terms into heads. In the example,
instead of the clause (∗) we get the following.

dom(x)← not p(x) r(x)∨not p(f(x))← q(x) (∗∗)
dom(x)← r(x) ⊥← not p(x)∧p(x)

This gets rid of the problematic clause (∗). Even in the presence of an additional clause,
say, q(x)←>, which leads to the clauses dom(a)←> and q(x)← dom(x), termination
of BUMG can be achieved. For instance, in a hyperresolution-like setting and with
splitting enabled the MSPASS prover [23] splits the derived clause r(a)∨ not p(f(a)),
considers the case with the smaller literal r(a) first and terminates with a model. This
is because a finite completion is found without considering the case of the bigger literal
not p(f(a)), which would have added the deeper term f(a) to the domain. The same
behaviour can be achieved for example with the KRHyper BUMG prover.

As can be seen in the example, the basic shifting transformation trades the generation
of new domain elements for a smaller clause body (by removing literals from it). Of
course, a smaller clause body is undesirable for BUMG methods, as then the clause
can be used as a premise more often. To (partially) avoid this effect, we propose an
additional transformation to be performed prior to the basic shifting transformation. For
a clause set M, the partial flattening transformation is the clause set pf(M) obtained by
applying the following steps.

(0) Initialization. Initially, let pf(M) := M.
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(1) Reflexivity. Extend pf(M) by the unit clause x≈ x←>.

(2) Partial flattening. For each clause H ← B in pf(M), let t1, . . . , tn be all top-level
terms occurring in the non-equational literals in the body B that are proper func-
tional terms, for some n ≥ 0. Let x1, ...,xn be fresh variables. Replace the clause
H ← B[t1, . . . , tn] by the clause

H ← B[x1, . . . ,xn]∧ t1 ≈ x1∧·· ·∧ tn ≈ xn.

It should be noted that the equality symbol ≈ need not be interpreted as equality, but
could. (Un-)satisfiability (and logical equivalence) is preserved even when reading it
just as “unifiability”. This is achieved by the clause x≈ x←>.

In our running example, applying the transformations pf, bs and rr, in this order,
yields the following clauses (among other clauses, which are omitted because they are
not relevant to the current discussion).

r(x)∨ f(x) 6≈ u← q(x)∧p(u) dom(x)← x 6≈ y dom(x)← r(x)
⊥← x 6≈ y∧ x≈ y dom(y)← x 6≈ y

Observe that the first clause is more restricted than the clause (∗∗) above because of the
additional body literal p(u).

The reason for not extracting constants during partial flattening is that adding them
to the domain will not cause non-termination of BUMG methods. It is preferable to leave
them in place in the body literals because they have a stronger constraining effect than
the variables introduced otherwise. Extracting top-level terms from equations has no
effect at all. Consider the unit clause⊥← f (a)≈ b, and its partial flattening⊥← x≈ b∧
f (a)≈ x. Applying basic shifting yields f (a) 6≈ x← x≈ b, and, hyperresolution with x≈
x←> gives f (a) 6≈ b←>. This is the same result as obtained by the transformations as
defined. This explains why top-level terms of equational literals are excluded from the
definition. (One could consider using “standard” flattening, i.e. recursively extracting
terms, but this does not lead to any improvements over the defined transformations.)

Finally, combine basic shifting and partial flattening to give the shifting transforma-
tion, formally defined by sh := pf◦bs, i.e. sh(M) = bs(pf(M)), for any clause set M.

Proposition 3.4 (Completeness of shifting)
Let M be a clause set. If sh(M) is satisfiable then M is satisfiable.

Corollary 3.5 (Completeness of shifting wrt. E-interpretations)
Let M be a clause set. If sh(M) is E-satisfiable then M is E-satisfiable.
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3.3 Blocking

Our final transformation is intended to be a mechanism for detecting periodicity in the
derived models. By definition, the blocking transformation of a clause set M is the clause
set bl(M) obtained from M by carrying out the following steps.

(0) Initialization. Initially, let bl(M) := M.

(1) Axioms describing the subterm relationship. Let sub be a “fresh” binary predi-
cate symbol not in ΣP. Extend bl(M) by

sub(x,x)← dom(x)

and, for every n-ary function symbol f ∈ Σ f and all i ∈ {1, . . . ,n}, add the clauses

sub(x, f (x1, . . . ,xn))← sub(x,xi)∧dom(x)∧dom( f (x1, . . . ,xn)).

(2) Subterm equality case analysis. Extend bl(M) by these clauses.

x≈ y∨ x 6≈ y← sub(x,y) ← x≈ y∧ x 6≈ y

The blocking transformation preserves range-restrictedness. In fact, because the dom
predicate symbol is mentioned in the definition, the blocking transformation can be ap-
plied meaningfully only in combination with range-restricting transformations.

Reading sub(s, t) as “s is a subterm of t”, the Step (1) in the blocking transformation
might seem overly involved, because an apparently simpler specification of the subterm
relationship for the terms of the signature Σ f can be given. Namely:

sub(x,x)← dom(x) sub(x, f (x1,x2 . . . ,xn))← sub(x,xi)

for every n-ary function symbol f ∈ Σ f and all i ∈ {1, . . . ,n}. This clause set is range-
restricted. Yet, this specification is not suitable for our purposes. For example, for
a given constant a and a unary function symbol f, when just dom(a) alone has been
derived, a BUMG procedure derives an infinite sequence clauses: sub(a,a), sub(a, f(a)),
sub(a, f(f(a))), . . . . This does not happen with the specification in Step (1). It ensures
that conclusions of BUMG inferences involving sub are about terms currently in the
domain, and the domain is always finite.

To justify the clauses added in Step (2) we continue this example and suppose an in-
terpretation that contains dom(a) and dom(f(a)). These might have been derived earlier
in the run of a BUMG prover. Then, from the clauses added by blocking, the (necessarily
ground) disjunction f(a) ≈ a∨ f(a) 6≈ a←> is derivable. Now, it is important to use a
BUMG prover with support for splitting and to equip it with an appropriate search strat-
egy. In particular, when deriving a disjunction like the one above, the ≈-literal should
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be split off and the clause set obtained in this case should be searched first. The reason
is that the (ground) equation f(a) ≈ a thereby obtained can then be used for simplifica-
tion and redundancy testing purposes. For example, should dom(f(f(a))) be derivable
now (in the current branch), then any prover based a modern, saturation-based theory of
equality reasoning will be able to prove it redundant from f(a)≈ a and dom(a). Conse-
quently, the domain will not be extended explicitly. The information that dom(f(f(a)))
is in the domain is however implicit via the theory of equality.

The blocking transformation was designed to realize a “loop check” for the con-
struction of a domain, by capitalizing on available, powerful equality reasoning tech-
nology and redundancy criteria from saturation-based theorem proving. To be suitable,
a resolution-based prover, for instance, should support hyperresolution-style inference,
strong equality inference e.g. superposition, splitting, and the possibility to search for
split-off equations first and standard redundancy elimination techniques. Among the
well-known, current resolution theorem provers splitting is not standard, but it is avail-
able in the saturation-based prover SPASS (and the extension MSPASS) and VAMPIRE.
Unfortunately, the hyper tableau prover KRHyper does not include suitable equality in-
ference rules. Otherwise its splitting could easily be configured to meet our needs.

The blocking transformation is inspired by a technique with the same name (and
same purpose) implemented in tableau provers for description and modal logics. In-
deed, when comparing these techniques in detail it becomes clear that our transforma-
tion rr◦bl, when applied to a knowledge base of a description logic with the finite model
property, in conjunction with a suitable BUMG method (see above), is powerful enough
to simulate various forms of blocking techniques, including (dynamic and static) subset
blocking and equality blocking [1]. But notice that our transformation applies to any
first-order clause set, not only to clauses from the translation of description logic prob-
lems. This makes our approach more widely applicable. For instance, our approach
makes it possible to extend description logics with arbitrary (first-order expressible)
“rule” languages. “Rules” provide a connection to (deductive) databases and are being
used to represent information that is currently not expressible in the description logics
associated with OWL DL. The specification of many natural properties of binary rela-
tions and complex statements involving binary relations are outside the scope of most
current description logic systems. An example is the statement: individuals who live
and work at the same location are home workers. This can be expressed as a Horn rule
(clause) homeWorker(x)← work(x,y)∧ live(x,z)∧ loc(y,w)∧ loc(z,w), but, with some
exceptions [17], is not expressible in current description logic systems.

Proposition 3.6 (Completeness of blocking wrt. E-interpretations)
Let M be any clause set. If bl(M) is E-satisfiable then M is E-satisfiable.

The converse, i.e. soundness of the transformation, is easy to prove. Basically, one needs
to observe that the clauses added in Step (2) realize a case distinction over whether two
terms are equal or not. Trivially, one of the two cases holds.
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Our main theoretical result is the following.

Theorem 3.7 (Completeness of the combined transformations with respect to E-interpretations)
Let M be a clause set and suppose tr is any of the transformations in {rr,sh◦rr, rr◦bl,sh◦
rr◦bl}. Then: (i) tr(M) is range-restricted. (ii) tr(M) can be computed in quadratic time.
(iii) If tr(M)∪{x≈ x← dom(x)} is E-satisfiable then M is E-satisfiable.

By carefully modifying the definition of rr it is possible to compute the reductions in
linear time. The reverse directions of (iii), i.e. soundness of the respective transforma-
tions, hold as well. The proofs are either easy or completely standard. The theorem is
also true if rr is replaced by crr.

Proposition 3.8
Let M and tr be as in the previous result. Then: (i) The size of tr(M) is bounded by a
linear function in the size of M. (ii) tr(M) can be computed in quadratic time.

4 Experiments

We have implemented the transformations described in the previous section and carried
out experiments on problems from the TPTP library, Version 3.1.1. The implementation,
in SWI-Prolog, is available from the first author’s website:; it is called Yarralumla (Yet
another range restriction avoiding loops under much less assumptions). Since the em-
phasis in this paper is on disproving theorems, i.e. on reporting whether a given clause
set is satisfiable, we have selected for the experiments only satisfiable (clausal) problems
from the TPTP suite, yet all 514 of them. The test were carried out with the BUMG sys-
tems MSPASS (Version 2.0g.1.4+) [23],1 using ordered resolution with maximal selec-
tion of negative literals, and to a lesser extent the KRHyper theorem prover [28]. Both
were run on a Linux PC with an Intel Pentium 4 3.80GHz processor and 1 GByte main
memory.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,

1MSPASS is an extension of the prover SPASS [27], but except for a small modification in the code
we did not use any of the extra features of MSPASS. We used MSPASS because it satisfies the suitability
criteria (see previous section), the source code is available, the options are documented and we are familiar
with it.
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rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1: Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

crr ◦ bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting



15

helps in particular to “forget” those atoms in the head of a clause that were introduced
by shifting, which otherwise generates new domain elements.

The combination (sh◦ rr,−sp) was inferior to (rr◦bl,+sp). Our explanation is that
shifting without splitting often generates many deep and long clauses in the search space
(possibly infinitely many) which are not redundant according to standard redundancy
criteria. Nevertheless, these clauses are redundant in the sense that they are satisfied by
a finite model.

The results obtained for the combinations (sh ◦ rr,+sp) and (rr ◦ bl,+sp) are in-
comparable. There were many problems over all categories that were solved by either
approach. This confirms our expectation that the shifting and range-restriction tech-
niques are orthogonal. Shifting tries to avoid the generation of domain elements, but
it is sometimes not strong enough. Blocking, by contrast, is a strong technique, which
helps to discover finite models more often, but creates a larger search space.

The combination (sh◦ rr,+sp) was strictly inferior to (sh◦ rr◦bl,+sp). It suggests
that adding blocking to shifting is advisable. This result is somewhat surprising. We
expected that the additional search space introduced by blocking renders some examples
unsolvable that can be solved with shifting alone. Interestingly, not even time-wise did
blocking cause a penalty when shifting alone was sufficient.

The combination (rr ◦ bl,+sp) was in most cases inferior to (sh ◦ rr ◦ bl,+sp). The
result was not as uniform as in the previous case, though. There were some satisfiable
problems that were solved with the (rr◦bl,+sp) combination alone (but no other com-
bination). It is not entirely clear, why. On the other hand, there were also some problems
that were not solved with rr ◦ bl, but were solved with most other transformations. For
these problems the search overhead when using blocking seems too big.

We also used KRHyper [28], which is an efficient implementation of the hyper
tableau calculus [6]. On range-restricted clause sets, the hyper tableau calculus is closely
related to resolution with maximal selection and splitting, the instance of MSPASS that
we used. KRHyper, as a tableau calculus, has splitting “built-in”, but it does not in-
clude equality inference rules. It therefore lacks the refinements needed to support the
blocking transformation effectively. We therefore selected all satisfiable TPTP problems
without equality for the tests. There are 309 of these (out of a total of 514).

The results were as follows. The performance of KRHyper for the transformation rr
was inferior to sh◦ rr. The latter was better on almost all problems, over all categories.
The results parallel those above obtained with MSPASS. This was expected.

Perhaps the most interesting comparison is between KRHyper equipped with the
transformation sh◦ rr and MSPASS equipped with the combination (sh◦ rr,+sp). With
these settings 134 problems were solved by KRHyper and 121 problems were solved by
MSPASS. Specifically, there are 17 problems that were solved by KRHyper but not by
MSPASS, in any combination. The rating of these problems is between 0.00 and 0.80.
Most of them are from the NLP category. The reason why KRHyper performed better
than MSPASS lies in its splitting strategy, which is more suitable for our purposes than
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Rating # MSPASS
KRHyper
additional Rating # MSPASS

KRHyper
additional

1.00 4 0 0.40 47 26 1
0.80 57 24 4 0.33 8 4 1
0.67 26 5 0.20 70 50
0.60 44 23 10 0.17 31 10
0.50 5 0 0.00 223 198 1

Table 2: Result summary wrt. problem rating.

the one utilized in MSPASS. It would therefore be interesting to modify the way splitting
is done in MSPASS so that it mimics KRHyper’s splitting. Other (probably) significant
differences are the non-chronological backtracking schemes employed in KRHyper and
MSPASS.

Table 2 summarizes the results with respect to problem rating. The column with the
heading “MSPASS” reflects how many problems were solved, among all the combina-
tions mentioned in Table 1 except crr◦bl. The “KRHyper additional” column says how
many problems were solved by KRHyper (using the transformation sh ◦ rr) that were
not solvable in any combination with MSPASS. As far as we know, problems with rat-
ing 0.80 have so far been solved by one theorem prover only. It was notable that each
problem with a rating 0.80 or 0.67 solvable by MSPASS required blocking. On the other
hand, there were several unsolvable “easy” problems.

Together, this indicates that the approach presented here and the more established
methods are orthogonal. This finding was confirmed by a comparison with MSPASS (in
autonomous mode) and Paradox [11], a state-of-the-art MACE-style finite model builder.
We ran Paradox on the same problem set, with the same time limit of five minutes
(CPU time) and a limit on 400 MByte main memory consumption. There were several
problems that were solved by Paradox but not with our methods. On the other side, there
were 21 problems, all of the NLP category, that were be solved with our methods but
not by Paradox. Each of these problems required shifting (and splitting) to be solvable
by our methods. In about half of the cases blocking was essential, while the other half
were solved by shifting alone. Without shifting (with or without splitting), none of
these problems were solved. In particular, standard range restriction and blocking was
not sufficient. The runtimes varied between two and at most 15 seconds. Memory
consumption was not an issue at all. By contrast, for 13 of these 21 problems Paradox
was stopped prematurely because the memory limit was exceeded before the time limit
was reached. We sampled some of these problems and re-ran Paradox without artificial
limits. For the problem NLP049-1, for instance, about 10 million (ground) clauses were
generated for a domain size of 8 elements, consuming about 1 GByte of main memory,
and the underlying SAT solver did not complete its run within 15 minutes (we stopped
it then). This picture seems typical for these problems. Regarding the comparison with
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MSPASS in autonomous mode, the differences in which problems were solvable were
more pronounced.

5 Conclusions

We have presented and tested a number of enhancements for BUMG methods. An im-
portant aspect is that our enhancements exploit the strengths of readily available BUMG
system without any, or only little modifications. Our techniques have the advantage
over existing approaches based on transformations to range-restricted clauses that terms
are added to the domain of interpretation on a “by need” basis. Moreover, we present
methods that allow us to extend BUMG methods with a blocking technique, which has
only been used in more the specialized setting for non-classical logics (with tree model
properties). Related research in automated theorem proving has concentrated on devel-
oping refinements of resolution, mainly ordering refinements, for deciding numerous
fragments of first-order logic. These fragments are complementary to the fragments that
can be decided by refinements using the techniques presented in this paper. We thus
extend the set of techniques available for resolution methods to turn them into more
effective and efficient (terminating) automated reasoning methods. For example, based
on the results of [24] we can use our transformations to decide the Bernays-Schönfinkel
(BS) class. In particular, we can show that all procedures based on hyperresolution or
BUMG can decide the class of BS formulae and the class of BS clauses (with equality).

Our approach is especially suitable for generating small models and we believe the
approach allows us to compute finite models when they exist. The generated models do
not need to be Herbrand models. It follows from how the transformations work that the
generated models are quasi-Herbrand models, in the following sense. Whenever dom(s)
and dom(t) hold in the (Herbrand) model constructed by the BUMG method, then (as in
Herbrand interpretations) the terms s and t are mapped to themselves in the associated
(possibly non-Herbrand) model. Reconsidering the example in the Introduction of the
two unit clauses P(a) and Q(b), the associated model will map a and b to themselves,
regardless as to which transformations are applied (as long as it includes rr). In this
way, more informative models are produced than those computed by, e.g., MACE- and
SEM-style finite model searchers.

We have implemented the approach and tested it with existing first-order logic the-
orem provers. The results demonstrate that our transformations are quite effective and
many difficult TPTP problems can now be solved by BUMG methods, especially reso-
lution with maximal selection or hyperresolution in MSPASS, and KRHyper. However,
the results are far from conclusive, and we plan to develop and evaluate variants of
our transformations, and experiment with alternative splitting strategies (particularly for
MSPASS). Some readers may be dismissive of this study in particular the experiments
with MSPASS. Conducting this study within saturation-based resolution theorem prov-
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ing was a concious and natural decision. The availability of a prover that we could use
without major changes to its implementation and the versatility of the theoretical frame-
work gives it an edge for systematic, exploratory studies and prototyping over trying to
suitably enhance a dedicated BUMG prover. Studying how well the ideas and tech-
niques discussed in this paper can be exploited and behave in BUMG provers, and also
tableau-based provers and other provers (including resolution-based provers) is very im-
portant but is beyond the scope of the present paper. We have started experimenting
with another prover, Darwin [5, 4], and first results are very encouraging. An in-depth
comparison and analysis of BUMG approaches with our techniques and MACE-style or
SEM-style model generation would also be of interest. Another source for future work
is to combine our transformations with available BUMG techniques and improvements,
such as magic sets transformations [16, 26], a typed version of range-restriction [7],
and minimal model computation. We speculate that our transformations carry over to
the case with default negation, thus advancing, for example, answer-set programming
beyond its current limitations.

Acknowledgements. Thanks to U. Furbach for comments on the paper and discussions.
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A Proofs

Before presenting the proofs we fix some semantical issues.
A (Herbrand) interpretation I is a set of ground atoms, namely, those that are true in

the interpretation. Satisfiability/validity in a Herbrand interpretation of ground literals,
clauses, and clause sets is defined as usual. Also, as usual, a clause set stands semanti-
cally for the set of all its ground instances. We write I |= F to denote that I satisfies F ,
where F is a ground literal or a (possibly non-ground) clause (set).

A (not necessarily Herbrand-) E-interpretation is a standard first-order interpretation
I such that (I,µ) |= s ≈ t (where µ is a valuation, a mapping from the variables to the
domain |I| of I) if and only if (I,µ)(s) = (I,µ)(t). We say that I E-satisfies F iff IE |= F .
Instead of IE |= F we write I |=E F .

It is well-known that E-interpretations can be characterized by fixing the domain as
the Herbrand universe and requiring that t ≈ t ∈ I for every ground term t, and for every
ground atom A (including ground equations) the following is true: whenever I |= A[s]
and I |= s≈ t, then I |= A[t]. Another characterization is to add to a given clause set M its
equality axioms EAX(ΣP ∪Σ f ), i.e. axioms expressing that ≈ is a congruence relation
on the terms and atoms induced by the predicate symbols ΣP and function symbols
Σ f occurring in M. It is well-known that M is E-satisfiable iff M ∪EAX(ΣP ∪Σ f ) is
satisfiable.

We work mostly, but not always, with Herbrand interpretations. If not, we will al-
ways make this clear, and the interpretations considered then are first-order logic inter-
pretations with domains that are (proper) subsets of the Herbrand universe of the clause
set under consideration. Such interpretations will be called quasi-Herbrand interpre-
tations. When constructing such interpretations the requirement that function symbols
are interpreted as total functions over their domain is not always trivially satisfied. For
instance, in the presence of a constant a, a unary function symbol f , and the domain
{a, f (a)}, say, one has to assign a value in the interpretation to every term. However
f ( f (a)), for instance, cannot be assigned to itself, as f ( f (a)) is not contained in the
domain.

Proposition 3.1 (Completeness of range-restriction)
Let M be a clause set. If rr(M) is satisfiable then M is satisfiable.

Proof. Suppose rr(M) is satisfiable. Let Irr be a Herbrand model of rr(M). We define a
quasi-Herbrand interpretation I and show that it is a model of M.

First, the domain of I is defined as the set

|I|= {t | Irr |= dom(t)} .

Now, to define a total interpretation for the function symbols, we map each n-ary
function symbol f in Σ f to the function f I : |I|×· · ·×|I| 7→ |I|, where, for all d1, . . . ,dn ∈
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|I|,

f I(d1, . . . ,dn) :=

{
f (d1, . . . ,dn) if f (d1, . . . ,dn) ∈ |I|
c otherwise

The constant c mentioned here is the one mentioned in Step (1) of the transformation.
(It is clear that |I| contains c.)

Notice that due to Step (5) the domain |I| must contain with each term all its sub-
terms. An easy consequence is that all terms in |I| are evaluated to themselves, exactly
as in Herbrand interpretations. Each other (ground) term is evaluated to some other term
from |I|.2 In sum, f is indeed mapped to a total function over the domain |I|, as required.

Regarding the interpretation of the predicate symbols in I, define for every n-ary
predicate symbol P in ΣP and for all d1, . . . ,dn ∈ |I|:

P(d1, . . . ,dn) ∈ I iff P(d1, . . . ,dn) ∈ Irr . (1)

That is, the interpretation of the predicate symbols in I is the same as in Irr under the
restriction of the domain to |I| ⊆ |Irr|.

It remains to show that I is a model of M. It suffices to pick a clause H ← B from
M arbitrarily and to show that I satisfies this clause. We do this by assuming that I does
not satisfy H ← B and derive a contradiction from it.

That I does not satisfy H ←B means there is a valuation3 µ such that (I,µ) |= B but
(I,µ) 6|= H .

Because the domain |I| consists of (ground) terms, the valuation µ can be seen as
a substitution. Thus, Bµ is a set of ground atoms, and Bµ ⊆ I may or may not hold.
Indeed, we will show next that (I,µ) |= B , as given, entails Bµ⊆ I. In other words, the
body is satisfied in I because |I| contains all body atoms Bµ, but not for the reason that
I assigns true to some body atom B with some argument term evaluated to c, and that
atom being contained in I.4 The relevance of this result is that it allows syntactically
based reasoning further below to show that I is a model of M.

To show Bµ ⊆ I it suffices to chose any body literal P(t1, . . . , tn) from B arbitrarily
and show P(t1, . . . , tn)µ ∈ I. We will do that next.

From (I,µ) |= B it follows trivially (I,µ) |= P(t1, . . . , tn). In other words, again read-
ing µ as a ground substitution this means P(I(t1µ), . . . , I(tnµ)) ∈ I. With the equiva-
lence (1) it follows P(I(t1µ), . . . , I(tnµ)) ∈ Irr. To show P(t1, . . . , tn)µ ∈ I, as desired
above, it thus suffices to show I(tiµ) = tiµ, because P(t1, . . . , tn)µ ∈ I will follow from
P(I(t1µ), . . . , I(tnµ)) ∈ Irr and, again, equivalence (1). Thus, we are going to show
I(tiµ) = tiµ now.

2For instance, when |I|= {c, f (c)} then I( f (g(c))) = f I(I(g(c))) = f I(gI(c)) = f I(c) = f (c).
3As usual, a valuation is a (total) mapping from the variables to the domain under consideration.
4An example for the latter case is |I|= {c}, B = P(x), I = {P(c)} and µ = {x 7→ a}. Although we have

(I,µ) |= P(x), in essence because aI = c, it does not hold P(a) ∈ I.
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From the definition of the interpretation function ·I it follows it is enough to show
tiµ ∈ |I| (as said above, terms from |I| are evaluated to themselves).

If ti is a variable then tiµ ∈ |I| follows trivially from the fact that µ was chosen as a
substitution into |I|. Hence assume now that ti is not a variable and let P(s1, . . . ,sn) be
the term abstraction of P(t1, . . . , tn) and α its abstraction substitution. By transformation
Step (2), rr(M) includes the clause

dom(xi)α← P(s1, . . . ,sn) , (2)

where {xi 7→ ti} ∈ α. By definition of abstraction, for all j ∈ {1, . . . ,n}, s j is a fresh
variable whenever t j is not a variable.

Recall from above P(I(t1µ), . . . , I(tnµ)) ∈ Irr. We are going to show now that with
clause (2) this entails dom(tiµ). By the construction of |I| this suffices to prove tiµ ∈ |I|,
as desired.

Consider the substitution

µ′ = µ{x j 7→ I(t jµ)|x j 7→ t j ∈ α}

which agrees with µ (in particular) when t j is a variable and otherwise maps the variable
x j to I(t jµ).

When t j is a variable then s j = t j be definition of abstraction. That means s jµ′ =
s jµ = t jµ = I(t jµ) (the latter identity holds, again, because µ is a substitution into |I|
and elements from |I| evaluate to themselves). And when t j is not a variable then s j is
the variable x j. By construction of µ′ we have s jµ′ = x jµ′ = I(t jµ). In both cases, thus,
s jµ′ = I(t jµ).

Applying the substitution µ′ to the clause (2) yields

dom(xi)αµ′← P(s1, . . . ,sn)µ′ .

With the identities s jµ′ = I(t jµ), the equalities dom(xi)αµ′ = dom(ti)µ′ and the fact that
P(I(t1µ), . . . , I(tnµ)) ∈ Irr it follows dom(ti)µ′ ∈ Irr. The substitution µ and µ′ differ in
their domains only on the fresh variables x1, . . . ,xn. Therefore dom(ti)µ′ = dom(ti)µ and
dom(ti)µ ∈ Irr follows, as desried.

In sum, this was the last subgoal to be proven to establish P(t1, . . . , tn)µ ∈ I, which,
in turn, remained to be shown to complete the proof that Bµ⊆ I.

The next step in the proof is to show that the clause body of the corresponding clause
to H ← B in rr(M) is satisfied by Irr. That clause is the range-restricted version of the
clause H ← B in M. According to Step (3) of the transformation it has the form

H ← B ∧dom(x1)∧·· ·∧dom(xk) (3)

for some variables x1, . . . ,xk, those that occur in H .
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From Bµ ⊆ I as derived above and with the equivalence (1) it follows Bµ ⊆ Irr.
Recall that µ is a valuation into the domain |I|. Reading it as a substitution gives x jµ∈ |I|,
for all j ∈ {1, . . . ,k}. From the construction of |I| it follows dom(x jµ) ∈ Irr. Together
with Bµ⊆ Irr and the fact that Irr is a model of rr(M), and hence of clause (3), it follows
that Irr satisfies H µ. This means Aµ ∈ Irr for some head atom A in H .

The atom A is of the form Q(s1, . . . ,sm) for some m-ary predicate symbol Q and
terms s1, . . . ,sm. By Step (4) of the transformation, rr(M) includes, for all i ∈ {1, . . . ,m}
the clause

dom(xi)← Q(x1, . . . ,xm) (4)

Again by reading µ as a substitution, because Irr is a model of rr(M), and hence of
clause (4), and by the identities Q(s1µ, . . . ,smµ) = Q(s1, . . . ,sm)µ = Aµ ∈ Irr conclude
dom(siµ) ∈ Irr, for all i ∈ {1, . . . ,m}. By construction of |I| we have siµ ∈ |I|. By
equivalence (1) then Q(s1µ, . . . ,smµ) ∈ I.

Recall that Q(s1, . . . ,sm) is a head atom of the clause (3) and hence a head atom of
the clause H ← B . Further recall that siµ ∈ |I| entails that siµ is evaluated to itself in
I. Together with Q(s1µ, . . . ,smµ) ∈ I this means, in other words, (I,µ) |= Q(s1, . . . ,sm).
This is a plain contradiction to (I,µ) 6|= H as concluded above, and thus the proof is
complete.

Corollary 3.2 (Completeness of range-restriction wrt. E-interpretations)
Let M be a clause set. If rr(M)∪ {x ≈ x ← dom(x)} is E-satisfiable then M is E-
satisfiable.

Proof. We prove the contrapositive statement. Thus assume M is E-unsatisfiable. Equiv-
alently, M∪EAX(ΣP∪Σ f ) is unsatisfiable. By Proposition 3.1, rr(M∪EAX(ΣP∪Σ f ))
is unsatisfiable. Observe that the transformation steps (2) and (3), which are the only
ones that apply directly to the given clauses, have no effect on the equality axioms
EAX(ΣP ∪Σ f ), except for the reflexivity axiom x ≈ x, which is replaced by x ≈ x←
dom(x). The transformed set rr(M∪EAX(ΣP∪Σ f )) can thus be written as

rr(M)∪ (EAX(ΣP∪Σ f )\{x≈ x})∪{x≈ x← dom(x)}.

Adding back the reflexivity axiom trivially preserves unsatisfiability, i.e. with rr(M ∪
EAX(ΣP∪Σ f )) being unsatisfiable, so is

rr(M)∪EAX(ΣP∪Σ f )∪{x≈ x← dom(x)}.

Equivalently, rr(M)∪{x≈ x← dom(x)} is E-unsatisfiable.

We emphasize that we do not propose to actually use the equality axioms in conjunction
with a theorem prover. They serve merely as a theoretical tool to obtain the desired
completeness result.

Let M be a clause set. If sh(M) is satisfiable then M is satisfiable.
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Proposition 3.4 (Completeness of shifting)
Let M be a clause set. If sh(M) is satisfiable then M is satisfiable.

Proof. Not difficult.

Corollary 3.5 (Completeness of shifting wrt. E-interpretations)
Let M be a clause set. If sh(M) is E-satisfiable then M is E-satisfiable.

Proof. Using the same argumentation as in the proof of Corollary 3.2, proving preserva-
tion of E-satisfiability can be reduced to proving preservation of satisfiability by means
of the equality axioms (observe that the shifting transformation does not modify the
equality axioms).

Proposition 3.6 (Completeness of blocking)
Let M be a clause set. If bl(M) is E-satisfiable then M is E-satisfiable.

Proof. Trivial, as M ⊆ bl(M) by definition.
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