
Mining Multiple Queries for Image Retrieval:
On-the-fly learning of an Object-specific Mid-level Representation -

Supplementary material

1. Supplementary material

In supplementary material section we provide some ad-
ditional information about proposed method. In section 1.1
we give a simple data mining example to understand terms
such as patterns, transactions and bag-of-patterns. In sec-
tion 1.2, we give details of the offline transaction index-
ing algorithm. In section 1.3 we give detailed algorithm
for online image retrieval using pattern matching. In sec-
tion 1.4, we show some visual patterns that we detected. In
section 1.5, we perform an analyzis of execution time and
memory requirement of our retrieval algorithm.

1.1. Data mining example

In this section we provide a simple data mining exam-
ple to understand terms such as transaction, pattern, model
and pattern matching. Consider we are given two images
I1 consist of three transactions I1 = {t1, t2, t3} and the
second image consist of three transactions I2 = {t4, t5, t6}
as shown in Table 1. Lets say that we are given a query
image consist of four transactions as given in Table 2.
By pattern mining we discover two patterns x1, x2; where
x1 = {1, 2, 3} and x2 = {3, 5, 6}. Now we can perform
pattern matching to build bag-of-patterns for image I1 and
I2. See Table 3. Note that because pattern x1 ⊂ t1; we say
pattern x1 is matched/mapped to transaction t1. This way
we count how many times each pattern occured in database
images and build bag of patterns. To do this efficiently we
use inverted file systems.

Transaction Visual words
t1 1 2 3 7
t2 3 5 6 8
t3 1 2 3 8
t4 3 5 6 7
t5 1 2 3 4
t6 3 5 6

Table 1. Transactions from database images.

Transaction Visual words
tq1 1 2 3
tq2 3 5 6 1
tq3 1 2 3 5
tq4 3 5 6 8

Table 2. Transactions from query images.

Pattern Matched transactions
x1 = {1, 2, 3} t1 t3 t5
x2 = {3, 5, 6} t2 t4 t6
Table 3. Transactions from query images.

1.2. Indexing algorithm

Here we give implementation details of transaction in-
dexing. By indexing transactions from database images
we construct two inverted file systems called IFS1 and
IFS2. The key of the IFS1 is a visual word and the cor-
responsing entries are the transaction IDs (TIDs) that con-
tains the visual word. We need to initialize three things,
1. IFS1 which has D number of keys (D is the dictionary
size) 2. IFS2 is initialized to an empty inverted file sys-
tem at the begining and 3. the list of unique transactions
(TRANS) which contains unique transactions. We do not
need TRANS variable at the end of the algorithm. At the
end of the algorithm we return only IFS1 and IFS2. The
highlevel transaction indexing algorithm is given in Algo-
rithm 1 and the detailed indexing algorithm in Algorithm 2.

1.3. Retrieving list of images that contains a pattern

In this section we give implementation details of the re-
trieval algorithm. We show how to obtain a list of images
that contains a given pattern. We use IFS1 and IFS2 to
retrive images containing pattern x = {w1 . . . wp}. Note
that a pattern is a set of visual visual words that occured
in a specific feature configuration. The retrival algorithm is
given in Algorithm 3.

1.4. Detected patterns

The local patterns are considerably large (compared to
individual key points) and possess some local spatial and

1

Data: Images and Transactions from images
Result: IFS1 and IFS2

Initialization;
IFS1 ← IFS(1 . . . D)(φ) ;
IFS2 ← IFS(φ)(φ) ;
TRANS ← φ ;
foreach Image I do

foreach Transaction T ∈ I do
if T ∈ IFS1 then

TID ← Find(IFS1, T) ;
else

TID ← Insert(IFS1, T) ;
end

end
IFS2(TID)← IFS2(TID) ∪ I ;

end
Algorithm 1: Highlevel explanation of the indexing algo-
rithm.

Figure 1. First row: original image with some of the detected pat-
terns in different colors, next closed up view of some of the pat-
terns. (see supplementary material for more examples)

structural information. Figure 8 shows some example pat-
terns. Note how each pattern describes part of the object of
interest.

1.5. Execution times and memory analyzis

In this section we provide an analyzis on execution time
and memory requirements of our transaction indexing and
image retrival algorithms. We perform all experiments us-
ing a single CPU (2.6GHz). We retrive images using Al-
gorithm 3 in 0.3 ± 0.01 miliseconds for a dataset of 105K

Data: Images and Transactions from images
Result: IFS1 and IFS2

Initialization;
IFS1 ← IFS(1 . . . D)(φ) ;
IFS2 ← IFS(φ)(φ) ;
TRANS ← φ ;
foreach Image I do

foreach Transaction T ∈ I do
T ← sort(T) ;
isnew ← false ;
list← φ ;
foreach word ∈ T do

if empty(IFS1(word)) then
isnew ← true ;
break;

else
if word is the first word in T then

list← IFS1(word) ;
else

list←
intersect(list, IFS1(word)) ;
if empty(list) then

break ;
end

end
end

end
foundit← false ;
temptr ← φ ;
if !empty(list) then

foreach tid ∈ list do
if |T | == |tid| then

foundit← true ;
temptr ← tid ;

end
end

end
if isnew or empty(list) or !foundit then

foreach word ∈ T do
IFS1(word) = IFS1(word) ∪ TID

end
IFS2(TID) = IFS2(TID) ∪ I ;
TRANS(TID) = T ;
TID = TID + 1 ;

else
IFS2(temptr) = IFS2(temptr) ∪ I ;

end
end

end
Algorithm 2: Indexing algorithm

Data: Inverted file systems IFS1, IFS2 and the
pattern x

Result: List of images imlist containing pattern x
Initialization;
imlist← φ;
x← sort(x) ;
foreach word ∈ x do

if word is the first element in x then
list← IFS1(word) ;

else
list← intersect(list, IFS1(word)) ;

end
if empty(list) then

break ;
end

end
foreach TID ∈ list do

imlist← imlist ∪ IFS2(TID)
end

Algorithm 3: Retrieving a list of images containing a pat-
tern x

images for a single pattern. The retrival time for 300 pat-
terns using a single CPU is 0.085 seconds. We also indexed
data using a dataset of 250K images. In this case we can re-
trive images using 300 patterns in roughly the same time. In
Figure 2, we show how retrival time varies with number of
images. IFS1 and IFS2 are kept in memory for efficiency.
105K images are indexed using 1500Mb of ram. 250K im-
ages are indexed using roughly 3000Mb of ram. Note that
memory requirement of our approach is sublinear in num-
ber of images in the dataset as shown in Figure 3.

0 50K 100K 150K 200K 250K
0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

Number of Images

R
e
t
r
i
e
v
a
l

T
i
m
e

(
S
e
c
o
n
d
s
)

Figure 2. Execution time for 300 patterns by varying the number
of images.

0 50K 100K 150K 200K 250K
0

500

1000

1500

2000

2500

3000

3500

Number of Images

M
e
m
o
r
y

i
n

M
b

Figure 3. Memory requirement of inverted file systems (IFS1 and
IFS2) by varying the number of images in the dataset.

Figure 4. Sample query from the new dataset and obtained results using our method.

Figure 5. Sample query from the new dataset and obtained results using our method.

Figure 6. Sample query from the new dataset and obtained results using our method.

Figure 7. Example patterns detected from Pitt Rivers Oxford.

Figure 8. Some of the patterns we detected using our approach in Oxford buildings dataset.

Figure 9. Some of the patterns we detected using our approach in Oxford buildings dataset.

