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Abstract. In this paper, we propose a least-squares regression method [2] with
unitary constraints with applications to classification and recognition. To do this,
we employ a kernel to map the input instances to a feature space on a sphere. In
a similar fashion, we view the labels associated with the training data as points
which have been mapped onto a Stiefel manifold using random rotations. In this
manner, the least-squares problem becomes that of finding the span and kernel
parameter matrices that minimise the distance between the embedded labels and
the instances on the Stiefel manifold under consideration. We show the effective-
ness of our approach as compared to alternatives elsewhere in the literature for
classification on synthetic data and network behaviour log data, where we present
results on attack identification and network status prediction.

1 Introduction

The literature on classification is vast, comprising approaches such as Linear Discrimi-
nant Analysis, Projection Pursuit and kernel methods[20]. All these algorithms treat the
input data as vectors in high dimensional spaces and look for linear or non-linear map-
pings to the feature space, often with reduced dimensionality, leading to statistically
optimal solutions.

For computer network behaviour, misuse strategies are often use to guarantee secu-
rity and privacy, whereby breaches and intrusions are recognised using network states
or traffic patterns. This can be viewed as a classification over the network behaviour
data. Hence, classification methods, such as support vector machines (SVMs) [19] have
been traditionally adapted and applied to network behaviour analysis.

One of the most popular classification methods is Linear Discriminant Analysis
(LDA) [16]. LDA is a classical method for linear dimensionality reduction which can
utilise label information for purposes of learning a lower dimensional space represen-
tation suitable for feature extraction, supervised learning and classification. Both LDA
and the closely related Fisher’s Linear Discriminant (FDA) [13] are concerned with
learning the optimal projection direction for binary classes. Further, various extensions
and improvements to LDA have been proposed in the literature. For instance, non-
parametric discriminant analysis (NDA) [16] incorporates boundary information into
between-class scatter. Mika et al. [23] and Boudat and Anour [3] have proposed kernel
versions of LDA that can cope with severe non-linearity of the sample set. In a related
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development, Maximum Margin Criterion (MMC) [21] employs an optimisation proce-
dure whose constraint is not dependent on the non-singularity of the within-class scatter
matrix.

Indeed, these methods are closely related to manifold learning techniques [22],
where a distance metric is used to find a lower dimensional embedding of the data un-
der study. For instance, ISOMAP [29], focuses on the recovery of a lower-dimensional
embedding of the data which is quasi-isometric in nature. Related algorithms include
locally linear embedding [25], which is a variant of PCA that restricts the complexity
of the input data using a nearest neighbour graph and the Laplacian eigenmap method
[4] which constructs an adjacency weight matrix for the data-points and projects the
data onto the principal eigenvectors of the associated Laplacian matrix. In [15], a pair-
wise discriminant analysis method with unitary constraints is minimised making use of
unconstrained optimisation over a Grassmann manifold.

Note that LDA, PCA and their kernel and regularised versions correspond to par-
ticular cases of least-squares reduced rank regression [10,2]. Here, we present a least-
squares regression method for classification. We note that the classification labels can
be embedded in a Stiefel manifold making use of a matrix of random rotations. This
treatment allows us to arrive to a formulation in which the feature vector for an instance
to be classified is mapped onto the Stiefel manifold making use of a kernel mapping.
The matching of these features and the labels mapped onto the Stiefel manifold can
then be effected via a regularised least-squares formulation. This yields a least-squares
approach where the aim of computation are given by the parameter matrix for the kernel
function and the span of the resulting vector on the Stiefel manifold.

2 Stiefel Manifolds and Least Squares

In this section, we provide some background on Stiefel manifolds [6,1,31] and review
the concepts used throughout the paper. With these formalisms, we introduce, later on
in the paper, our least-squares approach. To this end, we depart from a linear regression
setting and view the jth coefficient zj of target vector z arising from the label y cor-
responding to the instance x in the training set Ψ as a linear combination of k kernel
functions K(Ai,x) such that

zj =

k∑
i=1

bj,iK(Ai,x) + εx (1)

where εx is the residual for x, Ai are the parameters for the ith kernel function K and
bj,i are mixture coefficients.

Here, we aim at minimising the residual by considering the case where the targets z
are p-dimensional vectors in a real Stiefel manifold [18]. Recall that a Stiefel manifold
Stief(p, n) is the set of all orthonormal p-dimensional frames in <n, where n and p be
positive integers such that p ≤ n. This formalism is important since, with these ingre-
dients, we can define the span Span(v), where v ∈ Stief(p, n), in a straightforward
manner as a linear operation on a p-dimensional unit vector in <n. Moreover, in prac-
tice, we can consider the span Span(v) to be a matrix B and denote the set of vectors
spanned by all the possible choices of B as VB.
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Fig. 1. Graphical illustration of our least-squares approach. In the figure, we have denoted the
origin of the example <2 space as o and used the notation introduced in Sections 2.

To formulate our least-squares cost function, we consider the Stiefel manifold Stief(1, n),
i.e. the manifold comprised by the 1-frames in<n, and view it as the frame of a unit ball
of dimension n. In Figure 2, we use the case where n = 2 to elaborate further on the
approach taken here and provide a better intuition of the concepts presented previously
in the section. In the figure, we show a vector v in the manifold Stief(1, 2). Note that
we have used the kernel map K : <n × <m × <m → Sn to embed a vector x in <m
onto the unit n-sphere Sn such that v = K(A,x), where A is a set of parameters in
<n × <m. It is worth noting in passing that we have chosen to define the parameters
of the function K in this manner to be consistent with the linear case in Equation 1, i.e.
v = Ax

|Ax|2 where A is a matrix whose ith column is Ai and | · |2 denotes the L-2 norm.
Later on, we comment further on our choice of function K. For now, we continue

our discussion on Figure 2. Note that, in the figure, we also show a label vector y ∈
Stief(1, 3) and the target induced by the matrix Γ onto Stief(1, 2). Here, we focus on
matrices Γ that correspond to rotations about the origin, i.e. ΓΓT = I, where Γ−1 =
ΓT and I is the identity matrix. As can be observed from the figure, this treatment
leads in a straightforward manner to a geometric interpretation of the distances in the
ambient space and the consequent formulation of the least-squares cost function. With
the notation and concepts introduced above, we can write the cost function as follows

f =
∑
x∈Ψ

ε2x =
∑
x∈Ψ
|yΓ −BK(A,x)|22 (2)

where the target for the instance x is z = yΓ and the entries of the matrix B are given
by bi,j .
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3 Implementation and Discussion

3.1 Optimisation and Initialisation

As a result, the aim of computation becomes that of recovering A and B such that f
is minimum subject to |BK(A,x)|2 = 1, where | · |2 denotes the L-2 norm. Note that,
the minimisation of the cost function in Equation 2 can be rewritten as a maximisation
by using the inner product and adding an L-2 norm term so as to induce sparsity. Thus,
here we solve

Θ = max
A,B

{∑
x∈Ψ
〈yΓ,BK(A,x)〉 − λ

|Ψ |
|B|22

}
(3)

where λ is a constant that controls the influence of the regularisation term in the max-
imisation process, as before | · |2 denotes the matrix L-2 norm and we have used Θ as
a shorthand for the set of parameters comprised by the maximisers A∗ and B∗ of the
cost function over the space of solutions for A and B, i.e. Θ = {A∗,B∗}.

In practice, the ith coefficient of the label vector for the feature x can be defined as

yi =

{
1 if x belongs to the class indexed i in Ψ
0 otherwise

(4)

whereas the rotation matrix Γ can be computed exploiting the the group structure of
all rotations about the origin. We do this by using the algorithm in [11] as follows.
We commence by constructing a 2× 2 rotation matrix, i.e. a two-dimensional rotation.
With this matrix in hand, we recursively increase the dimensionality from q to q+1 by
augmenting the current q × q rotation matrix making use of the embedding of a vector
in an q+1 dimensional sphere. The idea underpinning this procedure is that a vector on
an q-dimensional sphere should correspond to the embedding induced by the rotation
matrix operating on an analogous vector on a sphere in q + 1 dimensions.

For the optimisation, we employ a coordinate descent scheme [14]. The idea is
to optimise the multivariable cost function in Equation 3 by maximising it along one
coordinate direction at a time while keeping all other coordinates fixed. Thus, the mul-
tivariable problem is in fact solved by computing a sequence of two optimisation sub-
problems, i.e. one for A and another one for B. For each subproblem, we perform line
search optimisation in the steepest gradient descent direction.

Our choice of this optimisation scheme resides in the notion that, when maximising
in the coordinate direction spanned by A, the problem in hand turns into a standard
non-linear least-squares one which can be solved, in a straightforward manner, using an
interior point trust region method [8]. Once the matrix A∗ for the current iteration is in
hand, computing the iterate of B∗ can be done by viewing the problem as a standard
regularised linear least squares one. We iterate until convergence is reached, which is
when the norm difference between A∗ and B∗ for consecutive iterations is less or equal
to a predefined tolerance τ .

In practice, for our gradient descent approach above, we require an initial estimate
of A prior to the recovery of B for our first iteration. For our initial estimate of A, we
have used randomly generated values in the interval [−1, 1] and normalised the columns
of A to unity.
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3.2 Classification

Note that, so far, we have not constrained the dimensionality of the feature vector or the
vectors given by yΓ . Its clear, however, that if the feature vector dimensionality is m
and that of the vector Ax is n, the matrix A should be of size n ×m. Similarly, for a
training set containing k classes, the vector y is expected to be of length k and, hence,
the matrix Γ is of size k × k. Further, since we have imposed the constraint BBT = I,
B should also be k × k.

Nonetheless at first glance this fixes the dimensionality of the matrices A and B to
correspond to k × m and k × k, respectively, note the length of the vector y can be
set to any length m ≥ k. This implies that those coefficients whose indexes are greater
than k will be identical to zero. The main advantage of this treatment strives in the fact
that the dimensionality of both matrices, A and B, can be rendered independent of the
number of classes.

To classify a testing instance x̂, we employ a nearest-neighbour classifier [12] with
respect to the vectors yΓ as yielded by BK(A, x̂). This is consistent with the notion
that the cost function being minimised at training is, in effect, the Euclidean distance of
the feature vectors with respect to their label vectors embedded in the Stiefel manifold
under consideration. For the kernel function, here we use both, a Radial Basis func-
tion (RBF) [5] and a linear kernel. For the linear kernel, the ith element of the vector
K(A,x) is given by

KL(Ai,x) =
〈Ai,x〉
| Ax |2

(5)

where Ai denotes the ith column of the matrix A. Similarly, for a matrix A with n
columns the RBF kernel is given by

KRBF (Ai,x) =
exp

(
− ρ|Ai − x|22

)∣∣∣∣∑n
i=1 exp

(
− ρ|Ai − x|22

)∣∣∣∣
2

(6)

where, as before, | · |2 denotes the vector L-2 norm, ρ−1 is the bandwidth of the kernel
function and 〈·, ·〉 accounts for the dot product.

3.3 Relation to Neural Networks and Support Vector Machines

As mentioned above, here we use RBF and linear kernels. These are kernels commonly
used in neural networks [17] and Support Vector Machines (SVMs) [9]. Further, the
nearest neighbour classifier as used here is reminiscent of the mean-squared error soft-
max linear classifier in feed forward neural networks [24]. Despite these apparent sim-
ilarities, there are a number of differences between our method and single-layer neural
networks and SVMs.

Regarding SVMs, we commence by noting that, for binary classification, the dual
form of the support vector machine depends on a single set of parameters, i.e. the alpha-
weights, where the dividing hyperplane is given by 〈w,x〉 + b = 0 where b is the
intersect of the hyperplane and w is its normal vector.



6 Antonio Robles-Kelly

Amongst those variants of the SVMs elsewhere in the literature, the least-squares
support vector machine [30] imposes a quadratic penalty function which is probably the
one that most closely resembles our formulation. Here, we limit our discussion to the
linear case. We do this without any loss of generality and for the sake of clarity. Further,
extending the following to the “kernelised” setting is a straightforward task. For non-
linearly separable training data, the minimisation in hand for the linear least-squares
SVM is given by [27]

min
w

{
〈w,w〉+ ς

∑
x∈Ψ

(
y − (〈w,x〉+ b)

)2}
(7)

where 〈·, ·〉 denotes, as usual, the dot product, y ∈ −1, 1 is the instance label and the
hyperplane normal vector is

w =
∑
x∈Ψ

yαx (8)

ς is a hyperparameter and α is a positive scalar, i.e. a slack variable, such that∑
x∈Ψ

yα = 0 (9)

In the equations above, we have written y instead of y to reflect the fact that y is
a vector, which in the binary case where the length of the vector equals the number of
classes in the training set is given by [1, 0]T or [0, 1]T whereas y is a scalar in {−1, 1}.
In addition to this, from inspection, its clear the two cost functions, ours in Equation
3 and that of the least-squares SVM in Equation 7 are quite distinct. Also, note that
there is no constraint on the number of support vectors in Equation 7, i.e. the number of
feature vectors x contributing to the hyperplane normal vector w. This contrasts with
our method, where the complexity of evaluating the kernel is given by the number of
rows in A. This is a major difference with respect to SVMs, where non-linear kernels
can be quite cumbersome to evaluate when the number of support vectors is large.

Now we turn our attention to the multiple class case and comment on the similarities
of our method with single-layer feed forward networks [17]. Note that the matrix A can
be viewed as the weights of the hidden layer of the network and the B as the coefficients
of the all-connected layer. That said, there are two major differences. The first of these
pertains the cost function itself, whereby, there is no evident analogue of our rotation
matrix Γ in neural networks. The second relates to the optimisation scheme used here.
Recall that, in neural networks, the training is often achieved by back propagation [26].
In contrast, our approach is an iterative coordinate descent one which imposes unitary
constraints on BK(A,x). For our approach, the final classification step via a nearest-
neighbour classifier is akin to the classification layer often used in neural networks. This
opens-up the possibility of using well known techniques on soft-max and entropy-based
classification layers as an alternative to our nearest-neighbour classifier.

4 Experiments

In this section, we show classification results yielded by our approach and provide com-
parison with alternative methods elsewhere in the literature. To this end, we commence
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Fig. 2. Classification results on synthetic data. Left-hand column: Input point clouds; Middle
column: Results yielded by our approach; Right-hand column: Results delivered by a LS-SVM
(top panel) and an RBF neural network (bottom panel).

by presenting qualitative results using synthetic data and, later on in the section, we
focus our attention on intrusion detection using a widely available network behaviour
data set.

4.1 Synthetic Data

To illustrate the utility of our method for classification, we have used two synthetically
generated point clouds in 2D. The first of these accounts for a binary classification
setting comprising 750 points arranged in an annulus where the centre corresponds to
one class and the periphery to another one. The second of these data sets is given by
1500 points describing two annuli distributed into four well defined clusters.

For both points clouds, we have used an A matrix with 10 rows, i.e. n = 10, and a
rotation Γ and B matrices of size 10 × 10. For purposes of comparison we have used
a least-squares SVM (LS-SVM) [30] for binary classification and, for the multiclass
annuli data, an stochastic feed forward neural network [28] with a single hidden layer
composed of 10 neurons.

In Figure 4.1, we show the results yielded by our method and the alternatives. In the
left-hand column, we show the input point clouds. In the middle and right-hand columns
we show the results yielded by our method and the alternatives, respectively. Note that,
from the figure, we can note that our method delivers very similar results to those ob-
tained by the LS-SVM. Nonetheless these classification boundaries are very similar, the
LS-SVM yields 116 support vectors. This contrasts with our approach, which employs
a matrix A with 10 rows. Thus, for testing, the evaluation of the kernel for our method
is approximately an order of magnitude less computationally costly. Regarding mul-
ticlass classification, note the boundaries yielded by the neural network are smoother
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mean st. dev.
Our method (linear) 1.056 1.011
Our method (RBF) 0.967 0.974
LS-SVM 4.839 3.331

Table 1. Average false classification
rate and std. deviation (in percentage)
for the attack detection task on the Ky-
oto University benchmark data.

mean st. dev.
Our method (linear) 14.273 3.893
Our method (RBF) 9.027 2.941
Neural network 11.746 4.342
LDA 33.656 19.379

Table 2. Average false classification rate and
std. deviation (in percentage) for the attack-
connection state combinations on the Kyoto
University benchmark data.

than those obtained by our method. As a result, the region comprising the small group of
points next to the centre of the second annulus are completely misclassified. In contrast,
the decision boundary yielded by our algorithm does classify these points correctly.

4.2 Network Behaviour Classification

We now turn our attention to the task of cyber attack discrimination in network be-
haviour data. Here, we view this task as a classification one where the aim is to discern
attacks from legitimate connections in the network. For our experiments, we have used
the sanitized Kyoto University benchmark data 1. These benchmark dataset is com-
prised of the traffic net logs for the Kyoto University’s honeypots from November 2006
to August 2009 2. The data contains 24 features including the attack label and the con-
nection state identifier and is arranged by day per calendar month.

For our experiments, we have used the data corresponding to November 2006 and
trained our method on the connections established on the even days of the month. We
have then tested our method and the alternatives on the data corresponding to each of
the odd days. For our method, we have used a matrix A with 30 rows and, for the neural
network, whenever applicable, have set to 30 the number of hidden neurons.

Here, we make use of our method for both, attack detection and attack-connection
state classification. The former of these tasks is a binary classification one whereas the
latter is a multiple class one. The data contains a label entry which indicates whether
the connection under study was an attack. It also contains a connection state variable
that indicates the status of the connection, generally when it ends. Since the dataset
provides 13 different connection states, this yields 26 classes, i.e. for each state, there
is the possibility of the connection being an attack or not.

In Tables 1 and 2 we show the mean false classification rate and the corresponding
std. deviation for our method and the alternatives for both, attack detection and attack-
connection state classification. Since our method employs a random initialisation for
the matrix A, we have effected ten trails and averaged accordingly before computing
the mean and std. deviation results shown in the tables. In our experiments, for the at-
tack detection, we have again compared our results to those yielded by the LS-SVM.
For the attack-connection state classification task, we have compared our results with

1 The data is accessible at http://www.takakura.com/Kyoto data/
2 The description of the data can be found at http://www.takakura.com/Kyoto data/BenchmarkData-

Description-v5.pdf

http://www.takakura.com/Kyoto_data/
http://www.takakura.com/Kyoto_data/BenchmarkData-Description-v5.pdf
http://www.takakura.com/Kyoto_data/BenchmarkData-Description-v5.pdf
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those delivered by the neural network in [28] and those yielded by linear discriminant
analysis (LDA) [7]. From the tables, its clear that our method outperforms the alter-
natives. Moreover, when an RBF is used, our method can correctly predict an attack
99.033% of the time and can account for the status of the network at termination of the
connection with 90.973% accuracy. It also delivers a lower standard deviation and is
quite competitive even when a linear kernel is used.

5 Conclusions

In this paper, we have proposed a least-squares reduced rank regression method on
with applications to classification. Departing from the notion that a kernel function
can be used to map an input instance to a Steifel manifold, we have used a rotation
matrix to pose the problem of recovering the span and kernel parameter matrices in a
least-squares minimisation setting. We have discussed the link between our approach
and support vector machines and feed forward neural networks and shown qualitative
results on synthetic data. We have also performed experiments on a widely available
network behaviour dataset and compared our approach to alternatives elsewhere in the
literature.
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