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Abstract

In this paper, we propose a novel approach to object ma-
terial identification in spectral imaging by combining the
use of absorption features and statistical machine learning
techniques. We depart from the significance of spectral ab-
sorption features for material identification and link the use
of spectral absorption features with statistical learning. We
do this by casting the identification problem into a clas-
sification setting which can be tackled using support vec-
tor machines. Hence, we commence by proposing a novel
method for the robust detection of absorption bands in the
spectra. With these bands at hand, we show how those ab-
sorptions which are most relevant to the classification task
in hand may be selected via discriminant learning. We then
train a support vector machine for purposes of classification
making use of an absorption feature representation scheme
which is robust to varying photometric conditions. We per-
form experiments on real world data and compare the re-
sults yield by our approach with those recovered using an
alternative. We also illustrate the invariance of the absorp-
tion features recovered by our method to different photomet-
ric effects.

1.. Introduction
With the advent and development of new sensor tech-

nology, it is now possible to capture image data in tens or
hundreds of bands covering a broad spectral range. Com-
pared to traditional monochrome and trichromatic cameras,
hyperspectral image sensors provide richer information on
the spectral response of materials over a number of wave-
lengths. This has posed great opportunities and challenges
on material identification. Due to the high dimensional
nature of the spectral data, many classical algorithms in
pattern recognition and machine learning have been natu-
rally borrowed and adapted so as to perform feature ex-
traction and classification [1]. Techniques such as Princi-
ple Component Analysis (PCA), Linear Discriminant Anal-
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ysis (LDA)[2], Projection Pursuit [3] and their kernel ver-
sions [4] treat raw pixel spectra as input vectors in a higher-
dimensional space, where the dimensionality is given by the
number of bands. The idea is to recover statistically opti-
mal solutions to the classification problem by reducing the
dimensionality via a projection of the feature space, often
with reduced dimensionality.

From an alternative viewpoint, Clarket al. [6] showed
that an unknown spectrum can be identified efficiently by
simply matching its dominant absorption feature with a li-
brary of spectra and finding the best fit. This is quite in-
teresting, since reflections and absorptions are two compli-
mentary concepts of light behavior. When light reaches the
surface of a material, some of it is reflected back, and some
is absorbed. While reflections are directly measurable by
image sensors, absorptions are less straightforward to re-
cover. Nevertheless, they are inherently related to the mate-
rial chemistry and, therefore, the presence of an absorption
at certain spectral range is often a ”signature” for chemicals
and their concentrations. Thus, in contrast with statistical
approaches elsewhere in the literature, the use of absorp-
tion features for material identification has a clear physical
meaning.

Here, we investigate the use of statistical learning ap-
proaches for purposes of material identification based upon
absorption features. The main advantage of this treatment
is that, by using absorptions for purposes of identification
and recognition, we can perform a localised analysis of the
spectra. Hence, the classification task depends solely on the
absorption bands. As a result of this treatment, the recogni-
tion becomes less sensitive to spectral noise and variations
outside the bands under study. Absorptions are also more
robust to varying photometric conditions, and, hence, can
be used in changing illumination conditions. Furthermore,
the use of absorption features opens up the possibility of
training statistical classifiers on a small sample set with a
marginal detriment on its generalisation properties. The
reason is that absorptions are intrinsic to the object mate-
rial and, also, classification based on absorption is done at
a much lower dimension. This contrasts with algorithms
elsewhere in the literature, where statistical classification
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methods on the raw spectral data requires a reasonably large
training sample set.

The outline of this paper is as follows. We commence,
in Section2 by providing some of the background for the
material presented throughout the paper. In Section3, we
describe the critical component of the work reported in this
paper, namely the feature extraction and classification pro-
cess. This section, hence, comprises the main contributions
of the paper, which are the presentation of an absorption
band detection algorithm based upon unimodality, a method
for selecting the most discriminant absorption band and the
developments on SVM-based classification making use of
an invariant absorption feature representation. Section4
provides an experimental evaluation of the method. Finally,
Section5 offers conclusions on the work.

2.. Prerequisites and Overview

Material identification is, in general, a classification
problem. In this paper, we model the classification task
as a binary classification one, which can be generalised by
combining binary classifiers between any two classes [7].
In Fig. 2, we show a diagrammatic representation of our
method for feature extraction and classification.

As mentioned earlier, our material identification method
is based upon a two stage process. The first of these in-
volves the use of absorption features for purposes of train-
ing a Support Vector Machine (SVM) classifier. Consider
N labelled spectra samples(xi, yi), wherei = {1, . . . , N}
andyi ∈ {−1, 1}. To train the SVM, we commence by re-
covering the absorption bands for each of the samples. This
is, we recover the set of all absorption bands occuring in
the training data. We then make use of the label informa-
tion so as to select the most discriminative absorption band
that best separates the training samples. Then we truncate
the raw spectra and only deal with those spectrum segments
considered to be discriminative within the absorption bands.
We do this so as to remove the continuum from the segments
and apply a transformation to make the spectrum segments
under study invariant to specular reflectance artifacts. This
treatment yields a set of feature vectors which can be used
to train a SVM.

With the SVM classifier at hand, we cast the identifica-
tion task into a classification setting. To do this, we truncate
and apply our continuum removal and invariant transforma-
tion methods to the test data. We then use the SVM clas-
sifier which has been trained using the scheme described
above, to make a decision. It is important to note that, in
the testing stage, we do not perform absorption band de-
tection and selection to the testing samples. Only simple
spectral ratio recovery and spectra processing are involved
in obtaining the absorption feature vector. As a result, the
computational cost of the testing phase is low.

Figure 1.General Framework for our absorption-based classifica-
tion algorithm

3.. Absorption Feature Extraction and Classifi-
cation

3.1.. Absorption Band Detection

Recall that absorptions are local ”dips” at certain wave-
length range of the spectra. Mathematically, an absorption
can be considered as a local valley which breaks the con-
vexity of the local spectrum in nearby bands. In order to
recover the absorption features, existing algorithms make
use of a scale-space analysis on the derivative of the spectra
with respect to wavelength [5, 9, 10]. Here, one common
assumption is that the beginning and the end of an absorp-
tion band can be located by making use of the inflexion
points, which are the zero-crossings of2nd order deriva-
tives of the spectra. As a result, these methods are prone to
noise and quantization effects.Furthermore, there is a ten-
dency to recover absorption bands that are ”narrower” than
the true shape of the absorption ”dip”. This is illustrated in
Figures2(a)and2(c).

In this paper, we propose a simple alternative to tackle
these problems. Our method is based on continuum removal
and unimodal segmentation. The continuum of a spectrum,
by definition, is a convex hull fitted over the top of the spec-
trum so as to connect local spectrum maxima. It can be
seen as an envelope spectrum that isolates the absorption
bands in the original reflectance spectra. To illustrate this,
in Figures3(a)and3(b), we have plotted the continuum as
a red, dotted line. Following this rationale, we recover the
continuum by applying standard convex hull extraction to
the original spectrum. The use of convex hull effectively
splits the original spectrum into several spectral segments
defined over local maxima. These segments assume a con-
cave shape against the continuum, as can be seen in the top
panels of Figures3(a)and3(b).

With the convex hull at hand, we perform continuum re-
moval. This is a standard technology in remote sensing to
isolate the local absorption feature from other effects such
as level changes and slopes of background absorption [11].
The removal operation is a simple normalization of the raw



spectrumR(λ) with respect to the continuum curveC(λ)
such that the continuum removed spectrumr(λ) is given by

r(λ) =
R(λ)
C(λ)

(1)

whereλ is, as usual, the wavelength variable.
Examples of continuum removed spectra are shown in

the bottom plot of Figures3(a)and3(b). The spectra shown
here have been inverted and normalised in order to turn ab-
sorptions into peaks. As we can see, the spectral segments
in Figure3(a) are unimodal, i.e. they only describe a sin-
gle peak between zero crossings. In contrast, the segment
in Figure3(b) is multimodal with two peaks between zero
crossings, which represent two absorption bands.

To take our analysis further and recover the absorption
features, we make use of a segmentation algorithm based on
unimodal regression. The idea is to further segment any ab-
sorption into a number of segments, each of which satisfies
unimodal constraints. This can be achieved by a two step
process. The first step is to split the spectrum into local min-
ima. The second step consists in merging these minima as
far as unimodal constraints are satisfied. Here, we enforce
unimodal constraints by requiring the error of unimodal fit
to be under the threshold valueε. In practice, unimodal re-
gression can be implemented in polynomial time through
monotonic regression and dynamic programming [12]. Ex-
amples of absorption band detection using our method are
shown in the right-hand column of Figure2. In contrast
with the standard2nd order fingerprint method, our method
can recover all the absorption bands. Furthermore, the re-
covered bands are in better accordance with the actual ab-
sorptions in the spectra than those yielded by the fingerprint
method.

In summary, the step sequence for our absorption band
detection algorithm is as follows,

1. Recover the convex hull over the spectrum and extract
continuum

2. Apply continuum removal and invert the spectrum.

3. For each spectrum segment between two zero crossing
points, perform unimodal regression. The stopping cri-
terion for the fitting procedure is given by the threshold
ε. If the segment is not unimodal, i.e. the fitting error is
above the thresholdε, perform unimodal segmentation
by splitting the segment at the local minima.

4. Merge any two adjacent segments if the unimodal con-
straint holds for their union. This is done, again, based
upon the thresholdε.

5. Interleave steps 3 and 4 until no further splitting and
merging operations can be performed.
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(b)
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Figure 2.Absorption detection results. Left-hand column: results
yield by the Fingerprint method [9]; Right-hand column: results
obtained using our unimodal segmentation method.
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Figure 3.Continuum removal results. Left-hand panel: Contin-
uum removal for a unimodal distribution; Right-hand panel: Con-
tinuum removal for a multimodal distribution.

3.2.. Discriminant Absorption Band Selection

It should be noted that, despite the accuracy of our
method in detecting the absorption bands, not all detected
absorptions are significant for purposes of classification.
For example, some absorption bands are due to the pres-
ence of water and, hence, arise in a wide variety of materi-
als. Furthermore, the spectra of the light source may, poten-
tially, skew the observed absorptions. These ”spurious” ab-
sorptions must be eliminated before further processing can
be undertaken.

In general, there could be a number of absorptions which
are not discriminative for classification purposes. Thus, the
problem is that of recovering the optimal absorption band
(λ1, λ2) in which the spectral segments for positive and
negative labelled classes are well separated. This is the so



called discriminative absorption band. To select it, we pro-
pose a supervised algorithm based on Linear Discriminant
Analysis (LDA) [2] and Kullback-Leibler divergence. The
step-sequence of the algorithm is presented in Figure4.

Given the set of training hyperspectral samples
(x1, y1), . . . , (xN , yN ), where yi ∈ {−1, 1} is, as be-
fore, the label for theith samplexi, we compute the set of
extreme spectra values(λ1

1, λ
1
2), . . . , (λ

m
1 , λm

2 ) for the m
absorption bands recovered by our algorithm, as described
in the previous section. For each tuple(λi

1, λ
i
2), we do the

following

• Extract the spectra segments between bandsλi
1 andλi

2,
i.e. the recovered absorption segments.

• Apply continuum removal to the extracted absorption
segments. The continuum for thejth sample is the
straight line connecting the values of the spectral sam-
ple at the wavelengthλi

1 andλi
2.

• Apply LDA to the continuum removed segments based
on label informationyj . This is, effectively, a pro-
jection of the absorption data onto a one dimensional
space.

• Choose the tuple(λi
1, λ

i
2) that maximises the KL di-

vergence between the two training classes. To this end,
we maximise the divergence given by

KL = log (
σ2
−

σ2
+

) +
σ2

+

σ2−
+

(µ− − µ+)2

σ2−
(2)

whereµ+, σ+, µ−, σ− are the mean and standard devi-
ation for the classes with labels1 and−1, respectively.

Figure 4.Discriminant Absorption Band Selection Algorithm

The idea underpinning the algorithm above is that the
optimal absorption band should best discriminate between
positive and negative spectral classes by maximizing the KL
divergence between distributions of corresponding contin-
uum removed spectral segments. It is worth noting that,
in the algorithm above, Equation2 is, in fact, the closed
form solution for the KL divergence between two Gaus-
sians. This, in turn, implies that we have assumed the posi-
tive and negative sample-set distributions to be Normal in
nature. This is a reasonable assumption due to the uni-
modality of the absorptions.

For every candidate absorption band(λi
1, λ

i
2), each

spectral segment can be seen as a feature vector inN -
dimensional space, where the dimensionalityN is given by
the number of bands in the absorption spectral segment. As

the number of bands may be different for two candidate ab-
sorptions, the computed KL divergence may be biased to-
wards those absorptions with a greater number of bands.
This is regardless of the separability of the two classes as a
result of the distributions in higher dimensional spaces be-
ing more scattered than those defined in lower dimensions.
To balance this effect, we project all the segments to the
same dimensional space by making use of LDA as a pre-
processing step for the algorithm above. We then compute
the KL divergence for the distributions and select the most
discriminative absorption band.

3.3.. Invariant Representation
In this section, we elaborate on the representation of

the absorption features and the invariance of these fea-
tures to various photometric conditions. In previous stud-
ies [6, 10], absorption features are usually represented in
parametric form by a 4-element vector, i.e. the extreme
spectral bands, the area and the depth of the absorption
under study. However, this representation is an empirical
one, which lacks theoretical justification. Moreover, it in-
evitably loses discriminant information due to the lower or-
der statistics which it comprises. In this paper, we adopt
a non-parametric representation of the absorption features.
We simply use the spectral band-values of the continuum
removed spectrum segment within the chosen absorption
band given by the tuple(λ1, λ2).

As mentioned earlier, we treat these spectral values as
feature vectors in a high dimensional space and look at the
invariance problem from this perspective. First, note that
the extracted absorption feature in the above form is au-
tomatically invariant to shading. To see this, consider the
diffuse reflectance model for the hyperspectral image un-
der study. For the pixel locationu and wavelengthλi, the
radiance value at wavelength is given by

I(λi, u) = g(x)E(λi)S(λi, u) (3)

whereE(λi) is the light source spectral component as a
function of the wavelength,S(λi, u) is the surface albedo
andu is the shading factor at the pixel locationu, which
depends solely on the geometry of the object.

In imaging spectroscopy, we usually deal with re-
flectance data so as to remove the effects of the light source
continuum. This can be achieved, simply, by normalizing
I(λi) with respect toE(λi). Note that, due to the shading
factor, we still cannot recover the true albedo. Nonethelss,
we should also notice that, at the normalisation step of the
continuum removal process of the previous sections, we are,
effectively, normalising the ratioR(λi) = I(λi,u)

E(λi)
by the

termg(u). As a result, the absorption representation based
on the continuum removed spectrum segment is shading in-
variant.

However, the above continuum removed spectrum rep-
resentation is not invariant to specular effects. This is



due to the fact that specular reflections follow a different
model. The Dichromatic model [13] has long been used in
physics-based vision for modeling specular reflections for
non-lambertian surfaces. The model can be expressed as
follows

I(λi, u) = g(u)E(λi)S(λi, u) + k(u)E(λi) (4)

whereI(λi, u),g(u),E(λi) andS(λi, u) are the same as in
Equation3. Compared to the diffuse model, an additional
right-hand term has been added to account for the specu-
lar reflection. Here,k(u) is the specular factor which de-
pends on the specular geometry at locationu. Note that the
specular component is a simple scaling of the illumination
spectrum independent of the surface albedo. Normalising
Equation4 by the light source spectrumE(λi), we have

R(λi, u) = g(u)S(λi, u) + k(u) (5)

Now, we see that the second term in the equation above has
been reduced to only variable, which depends on the spec-
ular geometry term. By taking the difference of reflectance
data between two arbitrary bandsλi andλj , we can, there-
fore, eliminate the specular component, i.e.

R(λi, u)−R(λj , u) = g(u)
(
S(λi, u)− S(λj , u)

)
(6)

Now the difference in Equation6 only depends on the factor
g(u), which can be further removed by continuum removal.

To summarize, our invariant transformation is outlined
as follows.

Given the reflectance spectraR(λ, u), the absorption band
interval(λ1, λ2) and a bandλj ∈ (λ1, λ2), do the following

• Take the spectral differenceR(λi, u) − R(λj , u), for
anyλi such thatλ1 ≤ λi ≤ λ2 andλi 6= λj

• Recover the continuum of the spectral difference by
interpolating a line betweenR(λ1, u) − R(λj , u) and
R(λ2, u)−R(λj , u).

• Apply continuum removal to the spectrum difference.

Notice that all training spectra must be subtracted from
the same bandλj within the absorption interval. Here, we
have chosen the band with minimum mean spectral value,
which corresponds to the “valley” of the absorption band.
We have done this so as to recover difference spectral values
which are positive.

Although the above invariant representation holds for
normalised reflectance data only, in practice, we can ap-
ply it directly to raw spectra if the illumination spectrum is
smooth across absorption bands. Despite this will certainly

lead to bias with respect to the true invariant representa-
tion, this effect can be compensated by utilising a maxi-
mum margin classifier for the discriminant band selection.
This assures maximum separability between the two sample
classes.

Another important invariance we have so far overlooked
is the invariance to light source spectra, which is almost im-
possible to achieve without knowing the spectrum of the
illuminant. However, in our experiments, light source vari-
ations do not seriously affect the performance. This may be
due to the fact that, if the light source has a smooth spectrum
in the discriminant absorption band, the unimodal approach
presented earlier and the continuum removal step will make
illuminant variations appear as Normally distributed errors,
which are accounted for by the maximum margin classifier
used in our experiments.

3.4.. Feature Classification

As mentioned earlier, in this paper, we cast the prob-
lem of recognition into a classification setting. Here, we
have used, to this end, a Support Vector Machine (SVM)
[8]. Amongst all the alternatives in the literature, we
have chosen the maximum margin classifier[14], which has
been widely used in the pattern recognition, machine learn-
ing and computer vision communities. Given the labelled
data (xi, yi), where i = 1, . . . , N and yi ∈ {−1, 1},
the SVM recovers an optimal separating hyperplane which
maximises the margin of the classifier. LetwT xi + b = 0
denote this hyperplane, wherew is a vector of weights,b is
a constant andxi is, as in Section3, the ith hyperspectral
sample. The vectorw and the constantb can be found by
solving the following constrained optimisation problem,

min
w,b

‖w‖2
2

+ C
∑

i

εi (7)

s.t.yi(wT xi + b) >= 1− εi; i = {1, . . . , N}

where εi >= 0 is the ith slack variable andC is the
regularization parameter controlling the trade-off between
model complexity and training error. Equation7 can be
transformed into its dual form, whose solution is given by
w =

∑
i αiyixi andb = 1 − εi −wT xs, whereαi >= 0.

This holds iffxs is an arbitrary support vector for which the
constraint in Equation7 becomes an equality.

In the linearly inseparable case, we can apply a nonlin-
ear, kernel-based transformation to the input vectors by pro-
jecting them to a high dimensional space. In this way, the
optimal separating plane can be found. Though the exact
mapping of the input vector to the nonlinear feature space
usually can not be obtained, the inner product between two
projected feature vectors can be computed efficiently via
substitutingxi with a kernel functionφ(xi). Thus, in the



nonlinear case, the optimal hyperplane becomes

wT φ(xi) + b =
∑

i

αiyiK(xj ,xi) + b = 0 (8)

whereK(xj ,xi) = φ(xj)T φ(xi) is the inner product be-
tween feature vectors. Written in this manner,w andb can
be obtained by solving the same quadratic programming
problem as in Equation7.

There are different options for the kernels used in nonlin-
ear SVMs. In this paper, we choose the Radial Basis Func-
tion kernel given byK(xj ,xi) = exp (−β‖xj − xi‖2)
whereβ is a scale parameter.

4.. Experimental Results
Having presented the theoretical foundation for our

method, in this section we perform experiments so as to
demonstrate the performance of our algorithm on imagery
of apples infected with the fungus Venturia inaequalis and
wheat infected with rust (Puccinia striformis). We have
collected our imagery using a hyperspectral camera sys-
tem from Opto-Knowledge Systems Inc (OKSI) [15], which
is comprised by a broad band monochrome camera and a
Varispec liquid crystal tunable filter (LCTF) manufactured
by Cambridge Research Instruments (CRI). The spectral
resolution of the imagery is of 10nm between the 400nm to
720nm wavelengths, i.e. 33 bands in the visible spectrum.
The image spatial resolution is696 by 520 pixels.

First, we turn our attention to the apple data. In the first
experiment, a hyperspectral image of two infected Granny
Smith apples was taken against black background under an
artificial sunlight illuminant with Correlated Colour Tem-
perature (CCT) of 5500K. Each pixel in the image was
then normalised by the sunlight illumination spectrum to
get the reflectance data. The pseudo-colour image is shown
in left-hand panel of the top row of Figure5(a). For train-
ing purposes, two small areas in the image were selected in
one from the image depicting healthy tissue and the other
from the one comprising infected tissue. These areas are
those within the black and red rectangles drawn on the im-
age. Pixel spectra plots of positive (healthy) and negative
(infected) labelled samples from the selected regions are
shown in Figure5(b). After running our absorption band
detection and selection algorithms, the optimal absorption
band leading to maximum discriminability between the two
classes was found to be between 560nm and 700nm, as indi-
cated by black arrows in Figure5(b). We have then trained
the SVM classifier on the invariant absorption features to
get our classification model. For this purpose, we used the
LIBSVM package [16]. The SVM parameters were chosen
by 5-fold cross validation.

With the trained SVM classifier at hand, we have run
tests on all foreground pixels in Fig5(a). For visualisation
purposes, we have mapped the test result back to the image

(a)
500 550 600 650 700

Training Spectra

band(nm)

Positive samples (healthy region)

Negative samples (scabbed region)

(b)

(c) (d)
Figure 5.(a) Pseudo-colour apple image; (b) Spectra of the train-
ing pixels. Red plots correspond to infected tissue and green traces
to healthy tissue; (c) Surface map inferred by our algorithm. (d)
Surface map inferred by the direct application of the SVM classi-
fier to the raw spectral data.

so as to indicate the probability of the apple tissue being
healthy at a given pixel location. The inferred surface map
is shown in Figure5(c). In the figure, pixel brightness indi-
cates the status of the tissue at the corresponding pixel lo-
cation. The brighter the pixel, the more probable is that the
apple tissue is healthy at the location under study. For pur-
poses of comparison, we have also trained an SVM classi-
fier directly on the reflectance spectra. At the training stage,
each band was properly scaled before a spectrum vector was
input to the SVM. As in our method, the parameters of SVM
were also chosen from 5-fold cross validation. The surface
map inferred by directly applying the SVM classifier to the
pixel spectra is shown in Figure5(d). From the figures, it
becomes evident that the inferred surface map is prone to
shading effects, where pixels near the boundary of the ap-
ple are significantly darker than pixels in the center. This
incorrectly indicate that regions near the boundary are not
as healthy as regions in the center. In contrast with this, the
surface map inferred by our algorithm, based on invariant
absorption features, is shading invariant. Moreover, some
specular pixels were incorrectly labeled as “unhealthy” by
direct SVM application, while our algorithm correctly iden-
tifies these pixels as healthy ones.

To further illustrate the invariance of our absorption rep-
resentation to specularities, we have selected pixels from
different regions on the apple which show a number of pho-
tometric conditions. These are those pixels in regions la-
beled A, B, C in Figure6(a). There is almost no shading for
region A, while region B is highly shaded and region C is
highly specular. Their corresponding spectra are plotted in
Figure6(b). The absorption features extracted making use
of our invariant representation have been plotted in Figure
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(c)
Figure 6.(a) Apple with different regions selected; (b) Spectra for
those pixels in the selected regions. Each colour corresponds to
different photometric conditions; (c) Invariant absorption features
delivered by our algorithm.

6(c). It can be clearly seen that the absorption features re-
covered in this manner show a good degree of invariance to
shading and specular effects.

To take our analysis further, we have have been taken ap-
ple images under different illuminations than the one from
which the model training samples were drawn. We took two
more hyperspectral images of exactly the same apples. The
first of these, shown in Figure7(a), making use of an ar-
tificial sunlight. The second, shown in Figure7(b), taken
under yellow halogen light. With the images at hand, we
have attempted to classify, making use of the SVMs trained
in the previous experiment, the apple tissue captured in the
new imagery. The surface maps inferred by our algorithm
are shown in the middle row of Figure7. Again, we have
compared our experiments with those results yield using the
raw pixel spectra as input features. The results of directly
running the SVM on the raw pixel spectra are shown in bot-
tom row of Figure7. In contrast with the SVM classifier
based on the raw spectra, our algorithm still yields good
results for testing data obtained from different illumination
conditions.

We now turn our attention to the wheat infected with
stem rust. This is a more challenging classification exam-
ple for which we provide a quantitative analysis. Two hy-
perspectral images were taken for two specimens of wheat,
one healthy and one infected, illuminated from two dif-
ferent light source directions. The pseudo-colour images
are shown in the top row of Figure8. In both panels, the
healthy wheat was placed in the left-hand side and the in-
fected wheat on the right-hand side. The two images differ
only in terms of light source direction. For the image in
Figure8(a), the illuminant was placed approximately45o

left of the camera axis. In Fig.8(a), the light source direc-
tion is approximately45o right of the camera direction. The
healthy and infected plants look very similar and is hard to
distinguish them by colour. We randomly picked 100 pix-
els from both, the healthy and the deceased wheat from the
image in Figure8(a). The plots for the spectra of these pix-
els are shown in Figure8(c). From the plots, its clear that,
despite the intensity, the spectral traces for both specimens
have similar shapes. We apply our discriminant band selec-
tion algorithm to select the most discriminative absorption
band, which is between 550nm and 720nm, as indicated by

(a) (b)

(c) (d)

(e) (f)
Figure 7.Top row: apples under artificial sunlight and halogen
light; Middle row: surface maps inferred by our algorithm. Bot-
tom row: surface maps inferred by SVM.

the black arrows in Figure8(c). The plots for the invariant
absorption features recovered by our algorithm are shown in
Figure8(d), where green curves denote features of healthy
wheat and red traces correspond to infected wheat.

Since the healthy and the infected wheat were placed
apart, we can easily separate and label them from the im-
ages to obtain ground truth data. To provide a quantitative
analysis, we have randomly selected pixels from the healthy
and the infected wheat samples in Figure8(a). We have then
trained the classifiers using both, the absorption features de-
livered by our algorithm and the raw spectra and tested the
SVMs on the images under study. For our analysis, differ-
ent number of training pixels were chosen from each class,
ranging from 10 to 1000. In Figure9, we show some sur-
face maps inferred by our algorithm and the alternative us-
ing a training sample size of 100. The surface maps recov-
ered from Figure8(a), shown in Figures9(a)and9(b), are
quite similar for the two algorithms. Nonetheless, the sur-
face map inferred by our algorithm for Figure8(a), shown
in Figure9(d), is better than that delivered by the alternative
(Figure9(d)).

In Table 1, we show the classification error rates and
variances for our algorithm (ABS+SVM) and the alterna-
tive (SVM). For purposes of verification, we have repeated
each pair of training-test operations 5 times, every one of
these with a different set of randomly selected training pix-
els. Again, the SVM parameters were chosen from 5-fold
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Figure 8.(a) and (b) Pseudo Images of wheat illuminated from
different directions; (c) Wheat spectra; (d) Absorption features re-
covered by our algorithm.

Table 1.Error rates and variances for our method (ABS+SVM)
and the alternative (SVM)

Error rate(%)
Sample Image 1 Image 2

size SVM ABS+SVM SVM ABS+SVM
10 19.35± 3.79 16.81± 3.66 25.39± 10.06 17.41± 3.10

50 7.28± 1.87 7.12± 1.21 10.27± 2.56 6.99± 1.34

100 4.78± 0.34 5.17± 0.70 7.68± 2.38 5.62± 0.45

500 3.50± 0.27 3.79± 0.27 9.18± 4.81 4.96± 0.12

1000 3.10± 0.14 3.30± 0.05 6.82± 3.82 4.63± 0.36

cross validation and proper scaling was applied to the raw
spectra input vectors to ensure optimal tuning of the SVM
classifiers.

From Table1, our method is more stable, performance-
wise, than the direct application of SVMs to the raw spectra.
First, while blind SVM training can do quite a good job on
the image from where the training samples were selected, it
fails to classify as accurately as our absorption-based algo-
rithm the data on the image in Figure8(b). This problem
can be somehow alleviated by using more training samples,
but in the case of our method, no matter how many train-
ing samples are used, the performance is always better than
that of the alternative when the image in Figure8(b) is used
for testing purposes. Second, the variation of the test re-
sults for the raw spectral data is larger than that for our
algorithm. As training samples are chosen randomly, this
indicates that the alternative relies more on the quality of
the training samples, i.e. it requires the use of clean data for
training, while our algorithm is more robust to noise and,
hence is less limited on the choice of the training sample-
set. Third, the alternative requires a reasonably large sample
set for training. With increasing number of samples in each
class, the performance of the algorithm based upon the raw
spectra also increased. Although our algorithm also needs

(a) (b)

(c) (d)
Figure 9.Results yield by the two algorithms. (a),(c) Surface maps
inferred by our algorithm; (b),(d) Results yield by the alternative.

a number of training samples, it outperforms the alternative
for small training sample sizes.

5.. Conclusion
In this paper, we have presented a novel recognition

method which exploits absorption features for invariant ma-
terial identification under changing photometric conditions.
To this end, we have adopted an invariant representation and
developed a method in which the optimal absorption band
was automatically learned from training data via statistical
analysis. We have illustrated the utility of the method for
purposes of identification on real world imagery, where our
algorithm compares favorably with blind SVM classifica-
tion on raw spectral data.

6. Acknowledgment

The authors are indebted with the Cooperative Research
Centre for National Plant Biosecurity (CRC for Plant Biose-
curity), Australia, for facilitating them the apple and wheat
samples used in the experimental section of this paper.

References
[1] D. Landgrebe, “Hyperspectral Image Data Analysis,”IEEE Signal

Processing Mag.,19:17-28, 20021
[2] K. Fukunage, Introduction to Statistical Pattern Recognition, 2nd

Ed., Academic Press, NY, 19901, 4
[3] L. Jimenez, D. Landgrebe, “Hyperspectral Data Analysis and Fea-

ture Reduction via Projection Pursuit,”IEEE Trans. on Geoscience
and Remote Sensing, 37(6):2653-2667, 19991

[4] M. Dundar, David Landgrebe, “Toward an Optimal Supervised Clas-
sifier for the Analysis of Hyperspectral Data,”IEEE Trans. on Geo-
science and Remote Sensing, 42(1), 271-277, 20041

[5] T. M. Lillesand, R. W. Kiefer, “Remote Sensing and Image Interpre-
tation,” John Wiley and Sons, 19992

[6] R. Clark, G. Swayze, K. Livo, R. Kokaly, S. Sutley, J. Dalton, R.
McDougal, C. Gent, “Imaging Spectroscopy: Earth and Planetary
Remote Sensing with the USGS Tetracorder and Expert System,”
Journal of Geophysical Research, 108(5):1-44, 20031, 4



[7] T. Hastie, R. Tibshirani “Classification by Pairwise Coupling,”Proc.
of Neural Information Processing Systems, 19972

[8] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vec-
tor Machines,” Cambridge University Press, 2000.5

[9] M. Piech, K. Piech, “Symbolic Representation of Hyperspectral
Data,” Applied Optics, 26:4018-4026, 19872, 3

[10] P. Hsu, “Spectral Feature Extraction of Hyperspectral Images us-
ing Wavelet Transform,” Ph.D. thesis, Dept. of Survey Engineering,
National Cheng Kung Univ., Taiwan, China, July 20032, 4

[11] R. Clark, T. Roush, “Reflectance Spectroscopy: Quantitative Anal-
ysis Techniques for Remote Sensing Applications,”Journal of Geo-
physical Research, 89:6329-6340, 19842

[12] Q. F. Stout, “Optimal algorithms for unimodal regression,”Comput-
ing Science and Statistics, 32, 20023

[13] S. Shafer, “Using Color to Separate Reflection Components,”Color
Research and Applications, 10:210-218, 19855

[14] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. “Maximum mar-
gin clustering,” InAdvances in Neural Information Processing Sys-
tems 17, pages 1537–1544. MIT Press, 2004.5

[15] N. Gat “Imaging Spectroscopy Using Tunable Filters: A Review,”
SPIE Conf. Algorithms for Multispectral and Hyperspectral Imagery
VI, 4056:50-64, 20006

[16] “LIBSVM: a library for support vector machines,”
http://www.csie.ntu.edu.tw/c̃jlin/libsvm, 20016


