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Abstract. This paper presents a method for automatic exposure time adjustment for multispectral and hyper-
spectral cameras. The method presented here is based upon a spectral power image. Here, we use the photopic
response function due to its widespread usage in photography and psychophysics. Note that, however, the
method presented here is quite general in nature and can employ a number of spectral sensitivity functions
for the computation of the spectral power image. Making use of this spectral power image, the exposure
time is then computed via iterative updates so as to minimize the squared error between a target image and
the current spectral power yielded by the imager. This target image is recovered in a straightforward manner
using histogram equalization and the Commission Internationale de l’Éclairage (CIE) photopic function. This, in
turn, yields an automatic method devoid of calibration targets or additional inputs. We perform a stability and
controllability analysis of our method using a state-space representation. We also show the applicability of the
method for exposure time calculation on staring array and multicharge coupled device architecture cameras on
real-world scenes. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.5.053025]
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1 Introduction
Spectral cameras, unlike trichromatic cameras, provide infor-
mation over a large number of wavelength channels across
the electromagnetic spectrum. This, in effect, delivers an
information-rich representation of the scene which can be
used in areas such as detection,1–3 classification,4,5 and rec-
ognition.6–8 Spectral imaging has also found application in
areas such as color constancy9 and the optimal multiplexing
of bandpass filtered illumination.10,11

This paper proposes a method aimed at automatic expo-
sure control for multispectral and hyperspectral cameras.
Note that due to the complex nature of these imagers, expo-
sure control techniques that pertain to trichromatic cameras
are not applicable in a straightforward manner to imaging
spectroscopy.12 Further, automatic exposure control is a
desirable feature in settings where the image acquisition is
done in environments when the illumination is prone to
change, delivering images with a consistent, reproducible
distribution of brightness values. It is also desired since
the dynamic range (the ratio between the maximum and
minimum intensity values) of many real-world scenes far
exceeds that of many cameras. As a result, an incorrect
exposure setting yields dark or overexposed imagery with
a reduced contrast.

A significant amount of research has been undertaken for
trichromatic camera exposure control. However, very little
work has been done in the domain of multispectral and
hyperspectral cameras. Work done for trichromatic cameras
is mostly in the form of commercial patents (US patent clas-
sification class number 354 and subclass 410 to 455). Early
techniques often rely upon external hardware for light meter-
ing.13 Later on, through-the-lens (TTL) brought the metering

setup inside the digital camera.14 Nonetheless, TTL metering
techniques were widely employed in camcorders, but
their main drawback stemmed from their computational
complexity.

Subsequently, photometric sensors have steadily replaced
TTL systems for exposure control.15 These employ the
brightness information to estimate the exposure control
parameters. For instance, Kuno et al.15 use the brightness
value of a charge coupled device (CCD) sensor and an
iterative lookup-table-method to decrease the amount of
time taken to compute the exposure value as compared to a
TTL system. Liang et al.16 have improved Kuno’s technique
by introducing iterative updates based on predefined lookup
tables. Similarly, Bell et al.17 use an initial image histogram
and compare its mean against a predefined value. Shimizu
et al.18 have used a different criterion named HIST, which
employs the brightness ratio for the pixels in the image to
adjust the exposure time.

Most modern automatic exposure algorithms use scene
analysis techniques such as spot, matrix, evaluative, and
center-weighted metering to analyze the brightness of a
scene or an object of interest and to adjust the exposure
setting accordingly. To compensate for back lit scenes,
Lee et al.19 propose a division of the image into several
areas assuming that the main object of interest tends to be
in the center of the scene. Nourani-Vatani and Roberts20

present a method where various masks are applied so as
to obtain the exposure adjustment using the settings for
the lens, environment, and the area of interest. Similarly,
Rogers and Cope21 use human flesh regions in the scene
to control the exposure of the camera. His work is particu-
larly well suited to improve the appearance of the human
subjects in portraits and snapshots acquired by hand-held
devices.
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For exposure control of spectral cameras, calibration
targets are often used to adjust the exposure. A model for
such calibration is presented in the work of Brelstaff et al.22

Unfortunately, photometric exposure calibration with a white
reference target is infeasible or impractical in many real-
world settings. In Ref. 23, the authors develop an automatic
exposure approach which does not require a calibration
target.

Here, we compute the exposure time based upon a formal
stability analysis which assures controllability conditions are
satisfied. This, in turn, yields a method which can be applied
to a broad range of cameras with varying architectures and
acquisition schemes. Moreover, in order to improve the sta-
bility of the method presented here, an error image is used
for the exposure time estimation. This error image is, hence,
the difference between the target image and the spectral
power image of the current scene, as yielded by the
Commission Internationale de l'Éclairage (CIE) 1931
photopic function. Thus, the method presented here has a
number of advantages with respect to that in Ref. 23. First,
its controllability is assured. Second, the error image used
here is an additional constraint as compared to the target
image employed in Ref. 23. Finally, the use of control theory
and the error image allows for the introduction of a regulari-
zation term in our cost function. This, in effect, implies that
the optimization problem solved here is different from that
in Ref. 23.

The paper is organized as follows. In Sec. 2, we com-
mence by presenting the theoretical background used
throughout the paper. In Sec. 3, we develop our method
for automatically estimating the exposure time. In Sec. 4,
we present our stability analysis for the state-space represen-
tation of the method and elaborate on its controllability con-
ditions. In Sec. 5, we show the applicability of our method
for setting the exposure of a multiple-CCD multispectral
camera and a staring arrays hyperspectral camera. In our
experiments, we used a Macbeth ColorChecker to validate
the quality of the results. Finally, in Sec. 6, we conclude
on the research presented throughout.

2 Background
A CCD is a device that converts the photons from a scene
into a digital count. The ratio of the incoming photons to
the number of photoelectrons produced is called the “quan-
tum efficiency.” In CCDs, these photoelectrons are converted
into a numerical value, usually referred to as “data number”
or simply “count.” The “gain” of the CCD is defined as
the conversion factor between the produced electrons and
the count. Note that if we allow more photons to reach the
CCD by gradually increasing the exposure, the mean
count of the CCD will increase accordingly. Hence, there
is a strong correlation between exposure value and image
quality.

Theoretically, if the shutter is closed and we capture an
image with a short exposure time, there should not be any
photons arriving at the CCD. However, in practice, the
count is not null. This is due to the presence of dark current
and CCD bias. Dark current is the small electric current flow-
ing through the CCD when theoretically no photons are
entering the camera. Dark current is dependent on the tem-
perature of the CCD, where a high CCD temperature will
result in higher dark current values. Bias often appears

as a regular pattern on the image which arises from the
pixel-to-pixel variations of the offset level on the CCD
count. The dark current and bias should be subtracted from
the image in order to properly estimate the photons and their
conversion. Using the quantum efficiency, dark current, and
bias, we can express the data number as

EQ-TARGET;temp:intralink-;e001;326;668ODN ¼ 1

g
ðFQT þ ψT þ βÞ ; (1)

where ODN is the observed data number, g is the gain, F is
the photon flux impinging on the CCD, Q is the quantum
efficiency, T is the exposure time, ψ is the dark current,
and β is the bias.

Note that due to the broader dynamic range of spectral
imagers as compared to traditional trichromatic cameras,
here we assume that the CCD response is linear. To remove
the effect of dark current and bias, the common practice is to
take an image with a closed shutter, such that the photon flux
becomes zero, i.e., FQT → 0. The new equation becomes

EQ-TARGET;temp:intralink-;e002;326;515O 0 ¼ 1

g
ðψT þ βÞ: (2)

If we subtract O 0 from ODN our observed data number
will be

EQ-TARGET;temp:intralink-;e003;326;450O ¼ 1

g
ðFQTÞ: (3)

The importance of the expression above resides in the fact
that it implies that the effects of dark current and bias can be
safely ignored and removed automatically at start-up or with
a periodic dark current acquisition routine.

Consider the multispectral image I whose pixels are
indexed to the row and column coordinates and the wave-
length index λ. In some cameras, every wavelength channel
has an associated exposure time. This is often the case with
staring array systems such as the opto-knowledge systems,
incorporation (OKSI) hyperspectral cameras. Other systems
use a single exposure time for multiple wavelength-indexed
bands. This is the case for multiple-CCD systems such as the
FluxData multispectral cameras. In the case of the FluxData
camera, seven wavelength channels are acquired from three
CCDs. Each CCD has its own exposure setting. For the sake
of generality, we assume that m wavelength channels are di-
vided into c sets, where each wavelength set Λj has its own
exposure time Tj for j ¼ 1;2; : : : ; c. For cameras where
every wavelength has its own exposure time (e.g., the
OKSI systems), c is equal to m. Let us assume that the
pixel values we get from a camera are actual “data numbers.”
We can then rewrite Eq. (3) as

EQ-TARGET;temp:intralink-;e004;326;165Iðv; λÞ ¼ Fðv; λÞQðλÞTj; (4)

where j ¼ 1; : : : ; c, which relates to the wavelength sets.
Iðv; λÞ is the pixel value at location v and channel λ.
Fðv; λÞ is the photon flux impinging on pixel v, QðλÞ is
the quantum efficiency for the channel corresponding to
the wavelength λ, and Tj is the exposure time for the wave-
length set Λj. It is also worth noting in passing that the
gain g is a constant that has been absorbed into the equation
above.
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Further, we can write

EQ-TARGET;temp:intralink-;e005;63;723Fðv; λÞQðλÞ ¼ Vðv; λÞ; (5)

where λ ∈ Λj. Note that Vðv; λÞ is referred to as the irradi-
ance on the sensor at pixel location v, which can be calcu-
lated using Eq. (4).

3 Exposure Time Recovery
Following the equation above, we can estimate the exposure
time by comparing the image yielded by the current exposure
time setting with respect to an “ideal” target image. Also,
recall that the luminous flux of light sources is based
upon the CIE photopic function.24 This function is a smooth
one across the spectral domain, hence here we also adopt the
notion that the exposure times should not change steeply
across adjacent wavelength-indexed bands. At the same
time, we also require the method to be stable, assuring con-
vergence. In the following section, we present our method to
estimate the exposure time. We also present a controllability
analysis.

3.1 Optimization
Considering Eqs. (4) and (5), the initial image acquired from
the spectral camera can be written as

EQ-TARGET;temp:intralink-;e006;63;458Iðv; λÞ ¼ Vðv; λÞTj: (6)

Note that spectral images can be viewed as “cubes,”
where the x- and y-axes represent the spatial coordinates,
and the z-axis represents the spectral domain. Having the ini-
tial image cube in hand, we can generate a target image from
which subsequent updates can be computed via an optimi-
zation approach. To this end, we employ a spectral power
image, which is computed making use of the CIE photopic
function24 so as to weight the contribution of each spectral
band to the power at each pixel. This yields

EQ-TARGET;temp:intralink-;e007;63;330ÎðvÞ ¼
Xc
j¼1

X
λ∈Λj

Vðv; λÞWðλÞTj; (7)

where WðλÞ represents the photopic function at channel λ.
Note that our method is quite general in nature, allowing
for other spectral sensitivity functions to be applied instead.
Here, we have used the photopic function due to both its
widespread use in photography and its relation to the
response of the human eye in well-lit environments.25

Similarly, in low-light conditions, a scotopic function can
be used. Other choice of functions can be made based on
the application domain.

It can be observed that the spectral power image ÎðvÞ is
obtained by adding the weighted response for each channel.
For simplicity, we can write

EQ-TARGET;temp:intralink-;e008;63;151Yðv; λÞ ¼ Vðv; λÞWðλÞ; (8)

such that ÎðvÞ becomes

EQ-TARGET;temp:intralink-;e009;63;109ÎðvÞ ¼
Xc
j¼1

X
λ∈Λj

Yðv; λÞTj: (9)

Assuming N pixels in a single channel, Eq. (9) can be
rewritten in matrix form as follows:

EQ-TARGET;temp:intralink-;e010;326;734Î ¼ XT; (10)

where Î ¼ ½Îð1Þ; Îð2Þ; : : : ; ÎðNÞ�T and T ¼ ½T1; T2; : : : ; Tc�T
are the vectors and X is a matrix defined as

EQ-TARGET;temp:intralink-;e011;326;688X ¼ ½y1; y2; : : : ym�½1Λ1
; 1Λ2

; : : : 1Λc
�; (11)

where yi ¼ ½Yð1; λiÞ; Yð2; λiÞ; : : : ; YðN; λiÞ�T for i ¼
1;2; : : : ; m. 1Λj

is an indicator function which results in a
binary column vector of length m such that Λj is a subset
of ½λ1; λ2; : : : ; λm�T and 1Λj

ðλiÞ ¼ 1 if λi ∈ Λj, and 0 other-
wise. Thus, X captures the combined effect of the irradiance
by making use of the photopic response per exposure time
for each wavelength set Λj.

In order to obtain a target image for our optimization strat-
egy, we use histogram equalization as applied to the spectral
power image Î. Our choice of histogram equalization stems
from the fact that this effectively “stretches” the input image
intensities across the dynamic range uniformly resulting in a
better contrasted image. It should also be noted, however,
that histogram equalization produces unrealistic results for
the cases when the dynamic range of the scene is signifi-
cantly low. It is also worth noting in passing that the histo-
gram-equalized image serves as a reference for our method,
hence other approaches can be used as dictated by the appli-
cation or lighting conditions.

Our histogram-equalized image hence becomes

EQ-TARGET;temp:intralink-;e012;326;439I ¼ histeqðÎÞ; (12)

where histeqð·Þ is the image equalization operator of choice.
To estimate the update in the exposure time, we employ the

difference between the input and the target image given by

EQ-TARGET;temp:intralink-;e013;326;375ϵ½k� ¼ I − Î½k�; (13)

where ϵ½k� and Î½k� are the error and spectral power images at
iteration k, respectively. Note that, in the equation above and
throughout the paper, we opt to use the notation commonly
found in time series analysis for the iteration indexing of
the variables. We have done this for the sake of consistency
with respect to the common treatment of state-space analysis
in the control literature.

Note that, since the input images are all of the same scene,
we can consider the target equalized images to be invariant.
In practice, these may also be indexed to iteration number in
a straightforward manner. For the sake of simplicity, we con-
sider the ideal case and treat I as being devoid of k. Also,
it is worth noting in passing that in many modern cameras,
metering methods like centered, spot, or matrix metering are
used. These methods apply various weighting techniques to
different parts of the scenes, which can be incorporated
effortlessly by the introduction of a per-pixel prior on the
difference equation above.

From Eq. (10), it can be observed that the image values
are related to their exposure time as set in the matrix X.
As a result, we can use Eq. (13) to relate the change in
the exposure time to the error at iteration k as follows:

EQ-TARGET;temp:intralink-;e014;326;104ϵ½k� ¼ XΔ½k�; (14)

where Δ½k� is the update in the exposure time. Thus, the
updated exposure time can be calculated using the rule
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EQ-TARGET;temp:intralink-;e015;63;734T½kþ 1� ¼ T½k� þ αΔ½k�; (15)

where α is the update step size, which suggests the magni-
tude of change. Note that the larger the value of α, the steeper
will be the change in the exposure time.

Note that the exposure times are related to the camera
architecture through the wavelength sets in each Λj. This
is because these wavelengths correspond to each of the expo-
sure times Tj, which, in turn, depend on the imager. Thus,
here, we employ a cost function which aims at both, mini-
mizing the error ϵ½k�, but also penalizing exposure times
which are far removed from the average across the imager,
i.e., we regularize Tj across all the wavelength sets. Our cost
function is thus defined as

EQ-TARGET;temp:intralink-;e016;63;580JðT Þ ¼ ϵ2½k� þ η
Xc
j¼1

½γ − T j�2; (16)

where T j is the balanced exposure time for wavelength set
Λj which needs to be estimated, γ is the average of exposure
times such that γ ¼ 1∕c

P
c
j¼1 Tj, where ½T1; T2; : : : ; Tc�T ¼

T½kþ 1� which is estimated in Eq. (15). η is a scalar that
controls the contribution of the second term of the minimi-
zation in hand. Using Eqs. (10) and (13), the cost function
can be represented in matrix form as follows:

EQ-TARGET;temp:intralink-;e017;63;454JðT Þ ¼ ðI − XT ÞTðI − XT Þ
þ ½ ffiffiffi

η
p ðΓ − T ÞT�½ ffiffiffi

η
p ðΓ − T Þ�. (17)

Here, each column of X represents a wavelength-indexed
channel multiplied by its photopic function value and Γ is
a column vector whose entries are given by γ. As a result,
Eq. (17) can be simplified and rewritten as

EQ-TARGET;temp:intralink-;e018;63;359 JðTÞ ¼
�

I − XTffiffiffi
η

p Γ − ffiffiffi
η

p
T

�
T
�

I − XTffiffiffi
η

p Γ − ffiffiffi
η

p
T

�
; (18)

which yields the minimization

EQ-TARGET;temp:intralink-;e019;63;303

min
T

����
�

Iffiffiffi
η

p Γ

�
−
�
X ffiffiffi
η

p
I

�
T
����
2

s:t: T ≥ 0

; (19)

where I represents the identity matrix and, since the exposure
times cannot be negative, we have explicitly imposed a non-
negativity constraint.

The stopping criterion for our iterative updates is gov-
erned by the normalized error given by

EQ-TARGET;temp:intralink-;e020;63;198ϵ̂½k� ¼ jϵ½k�j
jI j : (20)

Thus, if ϵ̂½k� is smaller than a predefined threshold, we can
conclude that convergence has been reached. This is in
accordance with the notion that if the exposure times are
optimum, the difference between the spectral power image
and the histogram-equalized scene is expected to be nil.

4 Stability Analysis
Our objective as presented above is to update the exposure
time such that the spectral power image is in good accor-
dance with the histogram-equalized reference. In order to

ensure that the presented method is, indeed, stable, i.e.,
that our approach will yield exposure time updates to con-
vergence, here we present a stability analysis based upon
state space. This also allows for the determination of the con-
ditions upon which our approach is to remain controllable,
i.e., will not diverge. Thus, in this section, we commence
by transforming the equations above into their state space
form26 and then apply the stability and controllability criteria
using concepts from control theory.

4.1 State-Space Representation
State-space representations are widely used in control theory
in order to analyze systems with multiple inputs and outputs
by making use of state variables. Recall that the general form
of a state-space representation is given by the equations:

EQ-TARGET;temp:intralink-;e021;326;565x½kþ 1� ¼ Ax½k� þ Bu½k�; (21)

EQ-TARGET;temp:intralink-;e022;326;535y½k� ¼ Cx½k� þ Du½k�: (22)

Equation (21) is often called the state equation whereas
Eq. (22) is referred to as the output equation. In the
above expressions, x is a vector containing the state varia-
bles, u is the input vector, A is the transition matrix between
state variables, the matrix B captures the relationship
between input and state variables, the matrix C relates to
the state variables with the outputs, and D is the transfer
matrix between the input variables and the output.

For our approach, Eqs. (13) and (15) are those required
for the state-space representation. To this end, we can write

EQ-TARGET;temp:intralink-;e023;326;399

�
Î½kþ 1�
T½kþ 1�

�
¼

�
0 0
0 I

��
Î½k�
T½k�

�
þ
�
I I
0 R

��
I
ϵ½k�

�
; (23)

where 0 is a matrix whose entries are all zero, I is the identity
matrix, and R ¼ ðXTXÞ−1XT.

The output equation is given by

EQ-TARGET;temp:intralink-;e024;326;321 y½k� ¼ ½ 0 I �
�
Î½k�
T½k�

�
: (24)

We assume we have r inputs, s states, and q outputs. From
the above equations, it can be observed that r ¼ jI j þ jϵ½k�j,
s ¼ jÎj þ c, and q ¼ c, where j:j yields the number of ele-
ments in the array or vector under consideration. Note that if
p number of pixels are used instead of a complete image then
r ¼ pþ p. For the reference of the reader, in Table 1, we
summarize the variables in the state space and output equa-
tions with their respective value and dimensionality.

4.2 Stability Analysis of the Method
In control theory, a system can be either stable or not based
upon its output. In state-space representations, the stability of
a system is determined by analyzing the eigenvalues of the
matrix A. As mentioned earlier, the matrix A determines the
relationship between the current state variables and those at
the next iteration. A discrete time system will be unstable if
any of the eigenvalues of matrix A has a magnitude greater
than unity. On the other hand, a discrete time system will be
stable if all the eigenvalues of matrix A have magnitudes less
than 1. For a marginally stable system, the eigenvalue mag-
nitudes are equal to 1. Those eigenvalues, whose magnitudes
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are unity, must also be simple roots of the characteristic pol-
ynomial of A. In other words, the Jordan blocks of matrix A
must be of first order.26

From Table 1, it becomes evident that the eigenvalues of
matrix A are either 0 or 1. It can also be observed that unity
eigenvalues correspond to the simple root of the character-
istic polynomial of A. Furthermore, it can be shown that the
number of nil eigenvalues relates to the number of pixels in Î,
whereas the number of unity eigenvalues is determined by
the number of exposure times used by the system.

Thus, if, for instance, the system is a multiple-CCD one,
the number of unity eigenvalues is equal to the number of
CCDs. If the system exposure time is channel-based, i.e.,
one exposure time per wavelength-indexed band, then the
number of unity eigenvalues equals the number of bands
in the image. Further, these unity eigenvalues suggest that
our method is marginally stable (the state of the system will
converge with “oscillations” to the optimal exposure time
when the iteration number tends to infinity). Note that this
is not a problem in practice due to the use of the stopping
criterion presented earlier. This is because the threshold
allows for the method to stop even when these oscillations
may be present in its asymptotic behavior.

4.3 Controllability of the Method
Another important aspect of the systemwhich is worth explor-
ing is the controllability of the method. Controllability helps to
determine the effect of the inputs on the system. A state is
controllable at iteration k if there exists an input that delivers
the desired output as k → ∞.

In order to determine the controllability of the system,
a controllability matrix P is usually constructed using the
matrix A and the input matrix B. The matrix P is given by

EQ-TARGET;temp:intralink-;e025;63;86P ¼ ½B AB A2B : : : As−1B �; (25)

where the dimension of P ¼ s × rs.

For all the states to be controllable, matrix P is required to
be full row rank. This refers to the case whereby all the states
will converge to the desired state asymptotically. If the
matrix P is found to be rank deficient, then such states need
to be separated from the rest and analyzed in order to deter-
mine those inputs which render them uncontrollable.

The matrix P can be found by first estimating the state-
space matrix products, AB, A2B, . . . , As−1B. For our
method, these are given by

EQ-TARGET;temp:intralink-;sec4.3;326;635

AB ¼
�
0 0
0 I

��
I I
0 R

�
¼

�
0 0
0 R

�

A2B ¼ AðABÞ
¼

�
0 0
0 I

��
0 0
0 R

�
¼

�
0 0
0 R

�

..

.

..

.

As−1B ¼ AðAs−2BÞ
¼

�
0 0
0 I

��
0 0
0 R

�
¼

�
0 0
0 R

�
:

Using the matrices above, the controllability matrix P
becomes

Table 1 Equivalence between the variables in the state-space equa-
tions and those used in Sec. 3.1. Here, we have r ¼ jIj þ jε½k �j,
s ¼ jÎj þ c, and q ¼ c, where j:j yields the number of elements in
the array or vector under consideration.

Equation
variables Description Dimensionality Values

x Vector of state variables s × 1
�
Î½k �
T ½k �

�

u Vector of input values r × 1
�

I
ϵ½k �

�

A Transition matrix between
state variables

s × s
�
0 0
0 I

�

B Relationship matrix
between input and state
variables

s × r
�
I I
0 R

�

C Relationship matrix
between state variables
and output

q × s ½0 I �

D Transfer matrix between
input and output

q × r ½0 0 �

Algorithm 1 Estimate exposure time.

1: Procedure Exposure(T i )

2: Initialize the exposure time when k ¼ 1, T ½k �←T i

3: for k ¼ 1,. . . ,maxIterations do

4: Acquire cube image Iðv; λÞ

5: Generate spectral power image using photopic function in
Eq. (7) ÎðvÞ←Iðv; λÞ

6: Generate target image using histogram equalization in
Eq. (12): I←Î

7: Compute Δ½k � using Eq. (14)

8: Find T ½k þ 1� using Δ½k � using Eq. (15)

9: Balance T ½k þ 1� using cost function in Eq. (19):
T ½k þ 1�←T

10: Find normalized error ϵ̂ using Eq. (20)

11: if ϵ̂ ≤ threshold then

12: break for

13: end if

14: end for

15: Return T final←T ½k þ 1�

16: end procedure
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EQ-TARGET;temp:intralink-;e026;63;734 P ¼
�
I I j0 0j : : : j0 0
0 R j0 Rj : : : j0 R

�
: (26)

Note that the matrix P depends on the matrixR in terms of
its row rank. Since R ¼ ðXTXÞ−1XT, it can be observed that
R is derived from X, which contains the irradiance weighted
by the photopic response for each exposure time. Moreover,
for p pixels and c channels, X has dimensions p × c and
R has a dimensionality of c × p. Thus, in order for our
method to remain controllable, the matrix R should be full
row rank. As a result, our method requires at least c linearly

independent pixels over the whole range of wavelength-
indexed bands for Eqs. (13) and (15) to remain controllable.
This is due to the fact that using at least c linearly indepen-
dent pixels across the c channels under consideration
implies the matrix R has c linearly independent rows. This
also assures the column rank of P is at least cþ p, which, in
turn, satisfies the controllability condition for our method.

Hence, typical uncontrollable cases would be those in
which, for instance, a single pixel is used. Recall that, for
a single pixel,X becomes a vector and, as a result, P becomes
row rank deficient. Other cases are those where the matrix P

Fig. 1 FluxData multispectral camera scenes. (a) Spectral power image and (b) color chart gray-tile
intensity plots (the x -axis corresponds to the index of the tile and the y -axis to the photopic response).
In this figure, the top row shows the initial images, whereas the second row corresponds to the images
produced by the exposure times at the iteration corresponding to the middle point over the convergence
of our method. The third row shows the image acquired using the exposure time yielded by our method
after convergence has been reached. Finally, the bottom row shows the normalized error plots as
a function of iteration number.
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is row rank deficient due to linear dependency between the
pixels. This is the case, for instance, when every channel or
CCD captures a completely dark image, which corresponds
to X ≡ 0, and thus every row of R is also nil.

5 Results and Discussion
In Algorithm 1, we show the step sequence for our algorithm.
Note that the algorithm departs from an initial exposure time
and iterates until convergence is reached (the normalized
error is below a predefined threshold). Moreover, it is worth

noting in passing that, in practice, these iterations are not
overly computationally intensive. This is because the prob-
lem is essentially a constrained least squares optimization
one, which has been thoroughly studied in the numerical
methods literature.27 For step 6, we have applied the histo-
gram equalization method of Bassiou and Kotropoulos28

with a uniform target histogram. We would like to stress
that the choice of method to compute the reference image in
step 6 or the equalization technique is not prohibitive and
other methods elsewhere in the literature may also be used
without any loss of generality.

Fig. 2 Opto-knowledge systems, incorporation (OKSI) hyperspectral camera scenes. (a) Spectral power
image and (b) color chart gray-tile intensities (the x -axis corresponds to the index of the tile and the y -axis
to the photopic response). In this figure, the top row shows the initial images, whereas the second row
corresponds to the images produced by the exposure times at the iteration corresponding to the middle
point over the convergence of our method. The third row shows the image acquired using the exposure
time yielded by our method after convergence has been reached. Finally, the bottom row shows the
normalized error plots as a function of iteration number.
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We have tested our method using two different imagers.
The first of these is a FluxData 3CCD multispectral camera.
The second imager is based upon a liquid crystal tunable fil-
ter and a QImaging Retiga camera. This system acquires 33
bands in the range between 380 and 700 nm in the intervals
of 10 nm. Note that these cameras vary significantly in their
architecture. This is so because the former is a multispectral
imager where multiple channels share the same exposure
time, which is determined by each of the three CCDs com-
prising the camera. The latter is a staring array system where
every wavelength channel can be assigned an individual
exposure time. For our experiments, we have placed a

Macbeth ColorChecker in all the scenes under study. These
color checkers are widely used in professional photography
to perform white balancing or color calibration.29 For pur-
poses of exposure time setting, we use the gray-scale tiles
at the bottom row of the chart, which contain six gray-scale
colors. These vary from white to black in regular intensity
intervals. Awell contrasted image can be acquired by setting
the exposure such that the photopic response with respect to
these gray-scale tiles is linear while maximizing the dynamic
range of the camera. In all our experiments, we have set the
initial exposure times to 50 ms, threshold to 0.3, and the
update step size α ¼ 0.1.

Fig. 3 Baseline images acquired by setting exposure timesmanually with their photopic response of gray
tiles, and per pixel error map of our method at different iterations. From top-to-bottom: baseline image,
plot of photopic response of gray tiles in the baseline image, per pixel error map of images at initial,
middle, and end iterations of our method. Left-hand columns: scenes acquired by the FluxData multi-
spectral camera; right-hand columns: scenes captured using the OKSI hyperspectral camera. All the
error maps are normalized such that blue corresponds to zero and red to unity.
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In Fig. 1, we show the results yielded by our method when
acquiring two scenes using the FluxData camera. For each
scene, we show the spectral power image Î ¼ XT of the
scene at the initial, middle, and final iterations of our method.
Next to each spectral power image, we show its photopic
response plot for the gray-scale tiles of the Macbeth
ColorChecker. In the plot, the x-axis represents the index
of gray-scale tiles, i.e., from black to white, indexed 1 to 6.
The y-axis represents the photopic response. At the bottom
of each scene, we show the normalized error as a function of
iteration number.

From the figure, we can note that the initial spectral power
images are noticeably underexposed and, as our method con-
verges, they gradually improve. This is also captured by their
photopic response function values as plotted in the figure.
Further, as our method iterates to convergence and the con-
trast of the spectral power image improves with a photopic
response over the gray tiles on the color chart approximating
a linear response over the whole dynamic range of the
camera. Also, from the error plots, we can observe that
the method starts with a high error value which gradually
decreases toward the threshold.

In Fig. 2, we repeat this sequence for two real-world
scenes acquired using the LCTF-based imager. Consistent
with our results shown in Fig. 1, our method steadily con-
verges toward the threshold error departing from a typically
high value. Also, note that the images delivered at the output
depict a much improved contrast as compared to those taken
with the initial exposure times. Moreover, the exposure times
delivered by our method are almost linear over the dynamic
range of the CCDs in the camera.

In Fig. 3, we show in the first column the baseline images
acquired by manually setting the exposure times such that
the photopic response over the gray tiles (shown in second
column) approximates a linear function over the whole
dynamic range of the camera. Note that in some cases,
the scene lighting conditions in conjunction with the camera
setup do not permit the plots to be completely linear. As
a result, our baseline images were manually exposed so
as to obtain the best linear relationship between the gray
tile brightness and the CCD dynamic range. In Fig. 3, we
show the absolute error pixel map of our method at the begin-
ning, middle, and end of the iterative process in Algorithm 1.
The first two columns correspond to the scenes acquired by
the FluxData multispectral camera as shown in Fig. 1. The
last two columns correspond to the two scenes acquired by
the OKSI hyperspectral camera shown in Fig. 2. From the
figure, it can be observed that the error per pixel also reduces
as the method iterates.

6 Conclusion
In this paper, we have presented a method for the automatic
computation of the exposure times for hyperspectral and
multispectral cameras. Here, we have shown how the expo-
sure time can be recovered by using a regularized non-
negative least squares optimization. We have also presented
a controllability and stability analysis using the state-space
representation of our method and illustrated the applicabil-
ity of our approach for purposes of automatic exposure con-
trol of staring array and multi-CCD imaging spectroscopy
cameras.
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