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Abstract— In this paper, we propose a biologically inspired
spiking neural network approach to obtaining an opponent
pair which is invariant to illumination variations and can be
employed for colour discrimination. The model is motivated
by the neural mechanisms involved in processing the visual
stimulus starting from the cone photo receptors to the centre-
surround receptive fields present in the retinal ganglion cells
and the striate cortex. For our spiking neural network, we
have employed the excitatory and inhibitory lateral synaptic
connections, the Spike-Timing Dependent Plasticity (STDP) and
long term potentiation and depression (LTP/LTD). Here, we
employ a feed-forward leaky integrate-and-fire spiking neural
network trained using a dataset of Munsell spectra. We have
performed tests on perceptually similar colours under large
illuminant power variations and done experiments on colour-
based object recognition. We have also compared our results to
those yielded by a number of alternatives.

I. INTRODUCTION

The human visual system has the remarkable ability of
perceiving and discriminating object colours largely invariant
to changes in illumination [8]. However, attempts to mimic
the human visual system invariance to the illuminant have not
been yet successful [16], [21]. In this paper, we investigate
the possibility of achieving colour constancy via a biologi-
cally plausible spiking neural network which allows naturally
for visual adaptation. From a bio-inspired perspective, the
first chromatic visual adaptation model was proposed by
von Kries based on the assumption that the sensitivity of
the long, medium and short cone photoreceptors do not
overlap each other [45]. Land and McCann [34] proposed
a computational model known as “Retinex” for explaining
the colour processing in the human visual system. Despite
its success, the Retinex theory does not give a complete
explanation of the human colour constancy [7]. Moreover,
there is no widely accepted model that describes the colour
constancy capability of the human visual system [21], [16].

This is despite the significant research effort in developing
a biological model for human colour perception. Zmura and
Lennie [15] have examined the light adaptation mechanism
of the human visual system so as to achieve illuminant
invariant colours. Ebner [17] proposed an approach based on
the local space average of colour signals. Zickler et al. [46]
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introduced a colour space where the colour of an object can
be represented approximately invariant with respect to the
illuminant. Angeleopoulou [3] proposed a colour constancy
algorithm based on the derivative spectra of the surface
albedo by assuming Lambertian reflection. Buchsbaum [9]
has proposed the Grey World algorithm, which is based on
the assumption that the statistical mean colour of a scene is
achromatic. This is somewhat similar to the work in [44],
where the colour constancy problem is tackled assuming
that the statistical mean of spatial derivative across the
image is independent of the chroma. The colour constancy
algorithms proposed by Finlayson and Drew [19] depart from
the assumption that the illuminant power spectrum can be
modelled using the black body radiators.

Note that the algorithms above employ approaches that do
not, in general, model the neural processing involved in each
layer of the visual path way. Along these lines, Dufort and
Lumsden [14] have proposed a neural network model based
upon the double opponent cells in the visual cortex. Moore et
al. [35] have used neural networks to implement the Retinex
algorithm. Courtney et al. [11] have used a multiple stage
neural network for color constancy. Hérault [27] has used the
logarithmic transduction of photoreceptors to justify the use
of a low-pass filtering neural network for colour constancy.

In this paper, we propose a biologically inspired model for
achieving illuminant invariant colour discrimination. We do
this by modelling the short and long term synaptic plasticity
rules found in the visual pathway. To this end, we model
the double-opponent phenomenon per pixel using a spiking
neural network. The topology of the network is biologi-
cally plausible, capturing the behaviour of excitatory and
inhibitory lateral synaptic connections, short term learning
rules and long term synaptic plasticity.

The paper is organised as follows. In Section II-A, we
commence by ellaborating upon colour opponent signals and
examine their formation inspired upon the centre-surround
receptive fields. This motivates Section II-B, where we
present our spiking neural network. We treat the relevant
learning and synaptic plasticity processes in Section II-C.
In Section III, we address implementation issues, such as
encoding, parameter setup and training and provide some
relevant discussion. Finally, in Sections IV and V, we present
results and conclusions.

II. COLOUR PROCESSING IN THE VISUAL SYSTEM

In the human visual system, perception of different colours
arises from three cone responses, namely long (L), medium
(M) and short (S) in the retina. The first step in the visual



Fig. 1. Neural circuit showing how the two opponents (red-green and blue-
yellow) may be obtained using inputs from the long, medium and short (red,
green and blue) cone responses.

processing is the light stimulation of photo receptors (cones
and rods), which convert the photons into electrical poten-
tials. These are converted into neural spikes in the centre-
surround receptive field of the retinal ganglion cells (RGN).

A. Double Opponency

The visual information conveyed by these neurons can
be functionally classified into three categories, which are
the red-green, blue-yellow opponent colour signals and an
achromatic stimulus [12]. Furthermore, for a given value of
the image radiance Ib(u), b = {L,M,S}, at pixel u for either
of the short (S), medium (M) or long (L) cone responses, the
colour visual perception can be mathematically characterised
by dρb = ν dIb(u)Ib(u)

, where ν is a constant which re-balances
the colour response of the eye as the spectral composition
of the scene changes, i.e. the adaptation condition [40]. This
relation yields

ρb = ν ln(Ib(u)) + Υ (1)

where Υ is the so-called dark adaptation given by −ν ln(ρo)
and ρo is the stimulus threshold of the photopic response.

Recall that the photoreceptors connect to the retinal hor-
izontal cells, which, in turn, connect to the bipolar cells.
Note that the bipolar cells can be viewed as neurons that,
in a computational sense, encode the visual stimulus ρ in
such a manner that can be fed to the pre-synaptic potential
of the corresponding retinal ganglion cells (RGC). This is
an important observation since the RGCs exhibit properties
which account for an opponent process over the blue-yellow
(B+Y −) and red-green (R+G−) colour signals.

This opponent behaviour corresponds to the neural circuit
in Figure 1. In the figure, the receptor stimulus is “encoded”
by the B neurons, which deliver a post-synaptic potential that
can be then fed into the two opponent neurons, i.e. A and

C. The neurons A and C deliver a train of spikes, which are
“decoded” by the neurons D into two opponent “features”
for colour discrimination.

In Section III, we discuss further the encoding and de-
coding neurons. For now, in the reminder of this section,
we focus on the opponent cells. The pre-synaptic potentials
of these two neurons are given by the weighted excitatory
(〈) and inhibitory (|) inputs for the short, medium and long
signals which result in membrane potentials of the form

GR+G−(t) = γLQL(t)− γMQM (t) (2)
GB+Y −(t) = βSQS (t)−

(
βLQL(t) + βMQM (t)

)
(3)

where γa and βb with a = {M,S}, b = {L,M,S} are
constants that control the contribution of the long, medium
and short colour stimuli.

B. The Spiking Neural Network

Note that, in the section above, we have treated the
colour opponent signals in relation to the neural path way.
In this section, we examine the formation of these two
colour opponent signals inspired upon the centre-surround
receptive fields. Recall that retinal ganglion cells fire action
potentials in response to certain types of retinal stimulation.
There are a number of neuron models that model these
interactions. These include the Hodgkin-Huxley model [28],
the Izhikevich model [29], the spike response model (SRM)
[24] and leaky integrate-and-fire model (LIF) [26]. Amongst
these, the LIF neuron provides a reasonably accurate neural
behaviour which, from the computational viewpoint, does
not require significant processing power and memory. In
addition, training a leaky integrate-and-fire neuron is less
complex than those corresponding to the Hodgkin-Huxley
or Izhikevich models.

The proposed neural network is a feed forward one which
consist of three layers. The number of neurons in each layer
scales linearly with respect to the size of the input image.
Each neuron in the network is modelled by LIF model, where
the neuron “fires” a spike when the membrane potential
crosses a threshold θ. After firing, the neuron goes into a
“refractory” period. During the refractory period the neuron
does not fire any spikes. The integrate-and-fire neuron is,
in effect, a resistor-capacitor (RC) circuit where the driving
current I(t) at a time t is given by

I(t) =
u(t)

R
+ C

du(t)

dt
(4)

where u(t) is the membrane potential, R is the resistor value
and C is the capacitance.

Rearranging the above equation results in

τ
du(t)

dt
= −u(t) +RI(t) (5)

where τ = RC is the time constant of the circuit, i.e.
the membrane time constant of the neuron. Moreover, by
definition, if the neuron fires at time ti, then the membrane



potential is reset to its “resting potential” ur. This yields a
membrane potential at time t ≥ ti given by [26]

u(t) = urexp

(
− t− ti

τ

)
+

1

C

∫ t−ti

0

exp

(
− s

τ

)
Gh(s)ds

(6)

where Gh(t), h = {R+G−, B+Y −} are the pre-synaptic
potentials of the neurons at time t ≥ ti as given in Equations
2 and 3.

With these membrane potentials, the post-synaptic spikes
are, hence, given by

FR+G−(t) = δ
(
GR+G−(t) ≥ ξR+G−(ti)

)
(7)

FB+Y −(t) = δ
(
GB+Y −(t) ≥ ξB+Y −(ti)

)
(8)

where δ(·) is the delta function and ξR+G−(ti) and
ξB+Y −(ti) are the firing thresholds for the opponent neurons.

C. Learning and Synaptic Plasticity

In the learning phase of a neural circuit, the synaptic
plasticity between neurons and the neuronal excitability and
dendritic integration are adapted so as to achieve a particular
task, i.e. colour constancy, recognition, etc. For synaptic
plasticity, Spike Timing Dependent Plasticity (STDP) [6]
has been widely supported by recent biological experiments.
STDP describes the post and pre-synaptic firing of the
neurons in asymmetric form based upon the well known
Hebbian rule [13], i.e. synapses increase their efficiency if
they persistently excite the post-synaptic neuron.

In STDP, repeated pre-synaptic firing just before a post-
synaptic action potential leads to long term potentiation
(LTP) between the two neurons. This is as the repeated
firing of the pre-synaptic spikes leads to long-term depression
(LTD) of the synapse between the neurons. It is worth noting
that, in the literature, there are a number of implementations
of STDP. However, the nearest neighbour approach of the
STDP has been supported by recent biological measurements
[6], [38]. The nearest neighbour STDP (NN-STDP) takes into
account only the nearest neighbour neuron pairs for adapting
the synaptic plasticity. This contrasts with other classical
STDP approaches, where all the pairs (pre and post-synaptic
potentials) weigh equally in the adaptation of the synaptic
plasticity. Moreover, this nearest neighbour implementation
of the STDP is also compatible with the Bienenstock-Cooper-
Munro (BCM) theory of learning found in the visual cortex
[39].

The rationale underpinning NN-STDP hinges in the notion
that, when the post-synaptic neuron fires a spike, it resets the
membrane potential of the pre-synaptic neuron. Therefore,
the most recent spike generated by the post-synaptic neuron
overrides any effects of the earlier spikes. This is consistent
with Equation 6, where we have defined the membrane
potential as a function of the integration time, taken from
the last spike time ti.

For the long term adaptation in synaptic plasticity, we have
used the weights γa and βb in Equations 2 and 3. We follow

[25] and adapt these following the rule

ω(ti) = ω(ti−1) +4ω (9)

where we have used ω(ti) and ω(ti−1) to denote the weight
under consideration at the time of the current and previous
spike and 4ω is the corresponding adaptation value.

Note that, once the post synaptic neuron has fired, subse-
quent spikes just after the current one are inhibited [38], [29].
This yields a Poisson process with respect to the threshold
ξh, h = {R+G−, B+Y −}, where the post-synaptic spike
density becomes exponential with respect to the time t, i.e.
θexpθh(ti)t, θh(ti) ∝ ξh(ti)

−1. If the threshold ξh(ti) is low,
the firing rate is large and the timing interval between spikes
is also small. This leads to potentiation whereas a low firing
rate θh(ti) leads to depression [37], [29].

This can be linked to the synaptic plasticity using the
adaptation value 4ω. We do this by using the potentiation
φp and depression φd in [6], [37], [18]. This yields

φp =

∫ ∞
0

ϑ+exp
− t
τ+ θh(ti)exp

−θh(ti)tdt (10)

φd =

∫ 0

−∞
ϑ−exp

t
τ− θh(ti)exp

θh(ti)tdt (11)

where τ− and τ+ are time constants of the model at
different phases and generally these values are taken to be
10ms [37]. The parameters ϑ+ and ϑ− depend on the current
value of the synaptic plasticity, the adaptation value is given
by the rule

∆ω =

{
φp if θh(ti) > ζ

φd if θh(ti) ≤ ζ
(12)

We also note that the effective magnitude of the synaptic
plasticity can be set following [18]. This is

φp,d(θ) = θh(ti)

(
ϑ+τ+

1 + θh(ti)τ+
+

ϑ−τ−
1 + θh(ti)τ−

)
(13)

Note that as high neural activity leads to synaptic potenti-
ation, low neural activity leads to depression the value of
threshold ζ that determines the transition between poten-
tiation and depression. In [18], the authors show that this
threshold can be expressed as

ζ = − ϑ+τ+ + ϑ−τ−
τ+τ−(ϑ+ + ϑ−)

(14)

Moreover, lateral inhibition and excitation between neu-
rons is often modelled by adapting the synaptic strength.
However, here we consider the biological plausibility of the
model and implement the lateral inhibition and excitation by
adapting the spiking threshold ξh, h = {R+G−, B+Y −}.
This is both, consistent with the equations above, where
the synaptic plasticity is a function of θh ∝ ξ−1h and
experimental evidence showing that, in the cortical regions,
neurons modify the firing threshold during the learning phase
[10], [5]. As a result, we adapt the firing threshold according
to the expression

θh(ti) = θh(ti−1) + ∆θh (15)



where we have used ti and ti−1 to denote the times of the
current and previous spike, respectively.

To determine the adaptation value ∆θh for the firing
threshold, consider the two neurons A and B as given in
Figure 1. If A and B fire at time ti, both send an inhibition
signal to each other. Similarly, if A fires and B does not then
A inhibits neuron B while B excites A. This can be captured
using the Poisson process mentioned earlier so as to define
the adaptation at inhibition as

∆θh = −exp|θref−θh(ti−1)| (16)

and at excitation as

∆θh = exp|θref−θh(ti−1)| (17)

where θref is the reference resting threshold.

III. IMPLEMENTATION AND DISCUSSION

A. Encoding and Colour Descriptor Computation

Note that, in the previous section we have not described
in detail the structure of the encoding neurons B in Figure
1. Moreover, our aim of computation is two descriptors for
colour discrimination which are approximately invariant to
illuminant changes. To this end, we add two additional “de-
coders” at the output of neurons A and C. This is consistent
with the notion that the stimuli ρb has to be encoded and,
at output, the spike train delivered by the neurons has to be
decoded accordingly.

Moreover, note that, in Section II-A, we used the time t
as a variable which determines the behaviour of the network.
As a result, encoding and decoding is a function of the time
t over a period T . Here, in order to reduce the computational
complexity, we have used an encoding based upon a contin-
uous pre-synaptic potentiation whose duration is determined
by the normalised logarithmic stimulus corresponding to the
image radiance. This is given by the rule

Qb(t) =

{
1 if t ≤ T ρb

ψ

0 Otherwise
(18)

where ψ is a constant that corresponds to the maximum
possible stimulus ρb as given the dynamic range of the image.

For the decoders, we employ the sum of time differences
for the N spikes delivered over the corresponding period T .
This yields

Sh =

N∑
i=1

ti (19)

where, as before, h = {R+G−, B+Y −} and, ti is the relative
time for the ith spike.

B. Parameter Setup

Note that, in general, the behaviour of the spiking neurons
is determined by a number of variables. These span from the
time constants τ− and τ+ to the threshold ξh. Moreover, the
encoders also depend on the period T .

In Table I, we list the parameters used in the network and
their settings. Note that these parameters are used to adapt

the weights γa and βb, a = {M,S} and b = {L,M,S}, in
Equations 2 and 3. These parameters are also used to adapt
the spiking threshold and transition between potentiation and
depression states for synaptic plasticity.

Here, we have set the dark adaptation to zero following
the fact that this can be viewed as an offset in the colour
stimulus. Similarly, we have set the rebalancing ν to unity
without any loss of generality since this can be viewed as a
constant that can be absorbed by the pre-synaptic weights.
The encoding period T and the potentiation and depression
parameter ϑ+ and ϑ− have been trained, whereas the other
parameter values have been set based upon biological evi-
dence [43], [37].

C. Training

To obtain the encoding period T and the potentiation
and depression parameters ϑ+ and ϑ−, we have used a
training phase based upon 202 Munsell reflectance spectra 1

when illuminated by 6 CIE standard illuminants representing
common light sources.

Here, we take a learning approach based upon the Ma-
halanobis distance between nearest neighbours in the space
spanned by SR+G− and SB+Y − . This is so as to find the
parameters which best correspond to the illuminant invari-
ance of the colour opponents. Thus, we recover the encoding
period T and the potentiation and depression parameter ϑ+
and ϑ− such that the difference in Mahalonobis distance
between adjacent Munsell pairs is constant with respect to the
standard light sources under consideration at unit illuminant
power. We do this making use of a three-dimensional linear
search over the space spanned by T , ϑ+ and ϑ−.

Figure 2 shows the normalised space spanned by SR+G−

and SB+Y − . In the panel, each point shows the pseudo colour
of the Munsell reflectance under a D65 illuminant rendered
with the CIE standard colour matching functions [41]. Each
cluster shows the features obtained when illuminated with the
six standard illuminants. From Figure 2, it can be seen that

1Accessible at http://www.mmnt.net/db/0/0/cs.joensuu.fi/pub/
color/spectra/mspec

Parameter Symbol Value
Dark adaptation Υ 0
Colour response rebalancing ν 1
Capacitance C 1.0 µ F
Resistance R 10 MΩ
Time constant τ 10 ms
Resting potential ur -65 mV
Potentiation parameter ϑ+ 0.0001
Depression parameter ϑ− 0.0001
Reference spiking threshold θ−1ref -55 mV
Encoding period T 700 ms

TABLE I
LIST OF PARAMETERS WITH THEIR CORRESPONDING SYMBOLS AND

SETTINGS.



Fig. 2. Illuminant invariant colour opponent space formed by our proposed
spiking neural network model. In this space illuminant invariant chromatic
features obtained from some Munsell reflectance samples used in the 6 units
test data set when illuminated by 6 spectra of the CIE standard illuminants.
Each Munsell sample forms a small cluster when illuminated by different
illuminants.

the colour varies smoothly across the space, with relatively
compact clusters. This is an important observation since
using either one of the decoded opponents can cause confu-
sion between perceptually very different colours. However,
using the two opponents together provides a good separation
between Munsell pairs.

Moreover, our spiking neural network delivers a colour
variation in this two-dimensional space which is similar to
that of the CIE 1931 standard xy chromaticity space. This
suggests that the output of our network exhibits a similar
behaivour to that of the human visual system. In figure 3, the
variation of perceptual distance in our chromaticity space is
plotted against the CIELab distance. From these results it can
be seen that the proposed chromaticity space is perceptually
uniform.

IV. EXPERIMENTS

In this section, we illustrate the ability of our network to
recognise perceptually similar colours and perform colour-
based object recognition. To do this, we have used three
datasets. The first of these is the standard Munsell reflectance
samples employed earlier. The second dataset used here
comprises 2211 spectral reflectances taken from the Floral
Reflectance Database [4] 2. Finally, we have used the Simon
Fraser University data set [23].

A. Recognition of Perceptually Similar Colours

We commence by recognising perceptually similar colours.
Note that, in Figure 2, each of the Munsell samples form a

2The database is accessible at http://reflectance.co.uk/index.php

Fig. 3. The perceptual distance yielded by our opponents as a function of
the CIELab colour distance.

Fig. 4. Some of the Munsell reflectance samples used in the 6 units test
data set. In each row two adjacent patches show the colour of the Munsell
reflectance pairs in the data set when illuminated by D65 illuminant. The
reflectances were normalised in such a way that the CIELab ’L’ component
is 50 units.

cluster when illuminated with the CIE standard illuminants
under consideration. We commence by quantitatively assess-
ing the degree of illuminant invariance and the ability of
our network to recognise perceptually similar colours. To do
this, we employ the standard Munsell reflectance samples,
the Floral reflectance database [4] and a set of 20 light
source spectra obtained from the CIE standard spectra 3

with a temperature range of [4000oK, 23000oK] in 1000oK
intervals.

For both datasets, we have chosen two sets of test re-
flectance samples with 100 pairs in each set. The first of
these sets is such that the pairs exhibit a pairwise distance of
6 units. The second set corresponds to pairs with a pairwise
distance of 10 CIELab units. The reason for choosing these
two (6 and 10) CIELab unit distances is based on the
perceptual interpretation of the CIELab colour space. That
is as 3 to 6 CIELab units are described as a good match
and 6 to 10 CIELab units are an acceptable match of colour
reproduction with respect to human colour perception [2].
Here we should also note that 3 to 5 units are often taken
to be the just noticeable difference (JND) in technical and
industrial applications [30]. Typical Munsell samples in the
6 unit Munsell reflectance test set are shown in Figure 4. In
the figure, we show 8 pairs, where two adjacent patches on
each row represent the reflectance pairs when illuminated by

3Accessible at http://mcsl.rit.edu/



CIELab
distance

Our
method

Finlayson and
Hordley[20]

Gray
edge[31]

Gray
world[9]

White
patch[34]

Munsell, 6 56.6 32.7 40.6 40.8 40.5
CIE light 10 68.8 57.2 70.9 71.4 70.6
Floral, 6 70.3 25.9 30.5 30.3 30.7
CIE light 10 87.0 49.6 48.0 47.9 47.6

TABLE II
RECOGNITION RATES (%) FOR OUR METHOD, THE ALGORITHM OF FINLAYSON AND HORDLEY[20], GRAY EDGE[31], GRAY WORLD[9] AND WHITE

PATCH[34] ALGORITHMS WHEN TESTED WITH THE MUNSELL AND MEASURED FLORAL REFLECTANCES ILLUMINATED BY THE CIE STANDARD

ILLUMINANTS IN [32].

CIEDE2000
distance

Our method
(%)

Munsell, 6 62.7
CIE light 10 73.0
Floral, 6 82.8
CIE light 10 88.1

TABLE III
TEST RESULTS FOR THE MUNSELL AND MEASURED FLORAL

REFLECTANCE SETS WHEN ILLUMINATED WITH THE TWENTY CIE
STANDARD ILLUMINANTS AS GENERATED USING THE CIEDE2000

COLOUR DIFFERENCE MODEL.

a D65 illuminant.
To assess the separability of the colours in our opponent

space, we have used a nearest neighbour classifier based
upon the Mahalanobis distance. In Table II, we compare
the classification rates yielded by the classifier using our
opponents SR+G− and SB+Y − against those delivered by
the methods of Finlayson and Hordley [20] white patch
algorithm [33], gray world algorithm [9] and gray edge
algorithm [31]. From the table, note that our algorithm gives
significantly better performance compared to the alternative.
The reason is that our algorithm extracts two opponents
whereas the Finlayson and Hordley [20] algorithm uses a
single feature in which some perceptually different colours
tend to “overlap”. As the other three algorithms (white patch,
gray world and gray edge) estimate a single illuminant for
the entire scene and their non-realistic assumptions lead
to degradation in performance in the real world scenes.
Moreover, note that our network gives better performance
on the Floral data set than on the Munsell samples. This is
consistent with the observation that the human visual system
is best suited to natural objects as compared to artificial
colours [36].

We have also assessed the perceptual adaptation of our
method by using the CIE standard colour difference model
CIEDE2000 [1]. This model was developed so as to re-
flect the visual adaptation of the human visual system. In
particular, it incorporates corrections for hue, lightness and
chroma. We use this colour difference model to generate two
sets of 100 pairs of reflectance spectra from the Munsell
and the measured floral data sets. These reflectances were

CIELab dis-
tance

Lowest
luminance

Highest
luminance

Munsell 6 56.6 55.5
CIE light 10 68.8 69.0
Floral 6 70.3 70.3
CIE light 10 87.1 86.9

TABLE IV
RECOGNITION RATES (%) FOR THE MUNSELL AND FLORAL

REFLECTANCE SPECTRA CORRESPONDING TO THE LOWEST AND

HIGHEST LUMINANCE OVER A 6-DECADE VARIATION.

illuminated by the 20 CIE standard illuminants and employed
for recognition of perceptually similar colours as described
before. The recognition rates are shown in Table III. By
comparing Tables II and III, we can conclude that our method
performs better when applied to perceptually meaningful
data. This suggests that our approach exhibits a behaviour
akin to that of the human visual system in terms of perceptual
adaptation and recognition of perceptually similar colours
under different illuminants.

As the human visual system can recognise colours in
scenes with large light variations, We now test our network
by varying the dynamic range of the illuminants. To this
end, we vary the illuminance of the 20 illuminants above
in the order of 6-decades and rendered the spectra for both,
the Munsell pairs used previously and the Floral Reflectance
Database [4]. With the resultant colour pairs and floral
reflectance spectra in hand, we have used a nearest neighbour
classifier on the colours with the lowest and the highest
luminance over this 6-decade range. The recognition rates are
shown in Table IV. From these results we can conclude that
our network can recognise perceptually similar colours under
6-decade luminance variation without a significant variation
in performance.

B. Colour Based Object Recognition

We now test our opponents when used for illuminant
invariant object recognition based upon colour. For this, we
have used the bench marked Simon Fraser University data
set [23]. This data set has been widely used by researchers
for testing colour constancy algorithms. The data set is
classified into four groups based on the light reflection



Fig. 5. Typical objects used in the experiment and spectral power
distribution of the illuminants to illuminate the scenes

scenario. These are non-negligible dielectric specularities,
metallic specularities, minimal specularities and at least one
fluorescent surface. These images were captured by Sony
DXC 930 camera when illuminated the scene with 11 dif-
ferent illuminants. These illuminants represent the common
illuminants, daylight and fluorescent light sources. Typical
images used in the experiment and the power spectra of the
iluminants used to illuminate the objects are shown in Figure
5.

We have used the 429 images in the dataset and performed
recognition based upon histogram intersection. Histogram
intersection has been widely used for assessing the perfor-
mance of colour constancy algorithms [42], [23], [22]. In
the first step, illuminant invariant features are obtained for
each image in the data set. These features are then used to
construct a per-image histogram. Here, following on Funt
et al. [23], we have used a two-dimensional histogram of
100× 100 bins histogram for each image. The image of the
query object is hence used to obtain a histogram and then
intersected with those corresponding to the imagery in the
data set. The image that yields the highest correlation with
the histogram corresponding to the query object is declared

as the best match.
For comparison, we have tested, alongside with our op-

ponents, the colour constancy algorithms of Finlayson and
Hordley [20], gray world [9], grey edge [31] and white patch
[33]. Since histogram intersection can be viewed as a one-
versus-all comparison method, we have effected experiments
on two sets of imagery. The first of these corresponds to the
full dataset, whereas the other one corresponds to a subset
for each of the light reflection scenarios (we have excluded
the fluorescent surfaces from this treatment as there are very
few of these in the dataset). These subsets are randomly
selected and experiments effected over 5 trials. We have
done this in order to illustrate the effects of dataset size in
performance. We have listed the recognition rates yielded
by our opponents and the alternatives in Table V. From
these results, we can conclude that our method gives better
performance compared to all the other algorithms. Further,
our network delivers opponents which give better results for
both, matte and specular reflection.

V. CONCLUSIONS

In this paper we have proposed a spiking neural network
whose layers represent various neurons in the visual path-
way. Here, we have used a leaky integrate-and-fire neuron
model and implemented the excitatory and inhibitory lateral
connections, Spike-Timing Dependent Plasticity (STDP) and
long term potentiation and depression (LTP/LTD) processes
found in the visual pathway. We tested our model in terms of
perceptual uniformity, discrimination of perceptually similar
colours and colour-based object recognition under varying
illumination conditions. We have also compared our results
to those yielded by other methods.

Test results for colour and object recognition show that the
proposed model outperforms the alternative methods. In par-
ticular, the performance of the model is comparable to that of
the human visual system in recognising perceptually similar
colours under varying illumination conditions. Therefore, this
model could be used to understand the colour processing of
the human visual system. In particular, it can provide a better
understanding of how the human visual system perceives
illuminant invariant colour of an object in the early stages of
visual path way. It may also be of utility to understand visual
processing in the cortical regions. In the future, we plan to
improve the model by accommodating the neural processing
involved in the extrastriate visual cortical areas.
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