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Abstract

Band ratios have many useful applications in hyperspec-
tral image analysis. While optimal ratios have been cho-
sen empirically in previous research, we propose a princi-
pled algorithm for the automatic selection of ratios directly
from data. First, a robust method is used to estimate the
Kullback-Leibler divergence(KLD) between different sam-
ple distributions and evaluate the optimality of individual
ratio features. Then, the boosting framework is adopted to
select multiple ratio features iteratively. Multiclass classifi-
cation is handled by using a pairwise classification frame-
work. The algorithm can also be applied to the selection
of discriminant bands. Experimental results on both simple
material identification and complex land cover classifica-
tion demonstrate the potential of this ratio selection algo-
rithm.

1. Introduction

The development of image sensor technology has made
it possible to capture image data in hundreds of bands cov-
ering a broad spectrum of wavelength range. The rich in-
formation available in hyperspectral imagery has posed sig-
nificant opportunities and challenges for feature extraction
and classification. Many algorithms have been proposed for
this purpose, such as Principle Component Analysis, (Lin-
ear) Discriminant Analysis, Decision Boundary , Projection
Pursuit, and kernel methods[1]. All these algorithms treat
the raw pixel spectra as input vectors in high dimensional
spaces and look for linear or nonlinear mappings to the fea-
ture space (often with reduced dimensionality) by optimiz-
ing certain criterion, leading to statistically optimal solu-
tions to classification.

An alternative way is to use simple features that are phys-
ically meaningful. One such feature that has received much
attention in the remote sensing community is the band ratio
- the ratio of spectral values between two different bands.
The important property of such ratios is that some mate-
rials can be identified by simply observing a single ratio.
For example, green vegetation can be differentiated from
soil and other surface covers by the Normalized Vegetation
Index(NDVI) - the ratio between a near infrared band and a
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visible red band. This has been used extensively for the esti-
mation of vegetation coverage over the surface[2]. Another
advantage of the band ratio is its invariance to shading, as
the geometry factor related to shading is constant for differ-
ent bands. This is an attractive feature for terrestrial hyper-
spectral imaging, where the surface geometry of the object
under study plays a significant role in what is detected by
the camera.

However, there is still a lack of technical justification for
using band ratios. Ratios are typically chosen from empir-
ical observations or from domain knowledge. Further, no
algorithms have been reported that can automatically de-
rive the optimal ratios from spectral data. In this paper,
we exploit ratios for feature selection and classification by
learning the optimal ratio features. Besides selecting a sin-
gle ratio for coarse detection, our algorithm is capable of
combining multiple ratios to achieve more accurate classifi-
cation. To do this, we adopt a boosting framework to select
ratio features iteratively. A robust method is proposed to es-
timate the Kullback-Leibler divergence (KLD) between dif-
ferent sample distributions and the ratio feature with max-
imum KLD is selected at each iteration. Finally, we apply
a Support Vector Machine(SVM) to the selected ratio fea-
tures for training the classifier. The algorithm can be natu-
rally generalized to handle the classification of multi-class
samples by casting it into a pairwise classification frame-
work. Moreover, the above procedures can also be applied
to the selection of optimal bands.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our algorithm for feature selection and clas-
sification. Section 3 presents the experimental results. In
the last section we conclude on the work presented here.

2. Algorithm Description

The following two sections are focused on binary classi-
fication. Generalization to multiclass cases is addressed in
Section 2.3.

2.1. Optimal Criterion for Ratio Features

Instead of directly dividing the value of one band by the
other, we use an alternative definition of the band ratio given
by

r(λi, λj) =
x(λi) − x(λj)

x(λi) + x(λj) + ǫ
(1)



2 4 6 8 10
0

1

2

3

4

5

KLD=71.45

2 4 6 8 10
0

1

2

3

4

5

KLD=71.45

(a)

2 4 6 8 10
0

1

2

3

4

5

KLD=11.59

2 4 6 8 10
0

1

2

3

4

5

KLD=4.14

(b)
Figure 1. (a) Histograms for two sample distributions. (b)
Modified histograms of (a).

whereλi and λj are two arbitrary bands where the ratio
is taken,ǫ is an infinitesimal term to ensure numerical sta-
bility. As x’s are nonnegative values, ratios defined in the
above form are bounded in the closed interval of[−1, 1]
so that the following estimation of ratio distribution willbe
computationally feasible.

Suppose each raw spectrum containsD bands, and,
hence, there areD × (D − 1)/2 possible combinations of
two-band ratios. For each candidate ratio, we can com-
pute the distributions of ratio values for positive and neg-
ative samples. We then assume that the optimal ratio should
maximize the distance between the distributions for both,
the positive and negative classes. There are a number of cri-
teria that can be used to measure the distance between two
distributions, like the Bhattacharya distance, various types
of correlation coefficients and the Kullback-Leibler Diver-
gence (KLD). The first two measures are based on the as-
sumption of Gaussian distributions, while the KLD can be
applied to any type of distribution. As ratio distributionsare
usually too complex to be modelled by a single Gaussian,
we use the KLD as the criterion for measuring the distance
between two sample classes:

KL(p+(r), p−(r))=

∫

r

p+(r) log
p+(r)

p−(r)
dr (2)

wherep+(r) and p−(r) are the Probabilistic Distribution
Functions (PDF) for positive and negative samples, respec-
tively.

Since Equation (2) does not have a closed form solution
for arbitary PDFs, we use histograms to approximatep+(r)
and p−(r) - a conventional solution for low-dimensional
PDFs-. However, we note that the histogram representa-
tion causes problems with sparse data where many bins are
occupied by only a few samples. In this case, some terms in
Eq. 2 could be zero at some intervals. Adding an infinites-
imal value to the zero term overcomes this problem numer-
ically but adds to the inaccuracy of estimation. This can
be illustrated by the toy example in Figure 1(a). Here, we
show two different sample distributions where grey bins are
occupied by positive samples and black bins are occupied
by negative samples. The two situations only differ by the
distance between positive bins and negative bins. The one

with closer distance between the two classes should have
greater KLD, nonetheless, the divergences computed from
histogram approximation are the same for both cases. This
is due to the quantization effect related to the binning in-
volved in computing the histogram. We can think of the
histogram as an approximation of the true PDF in the form
of gate functions. The tails of the distribution are cut off
outside the current bin. If we approximate each occupied
histogram bin with a Gaussian function, the tail distribution
will be maintained without affecting the estimation accu-
racy due to the exponential decay of the function. This is
equivalent to running Kernel Density Estimation on the his-
togram bins using a Gaussian kernel. In this case, KLD can
be still be derived in closed form as follows,

KL(h+(r), h−(r)) =

m
∑

i=1

h+(ri) log
h+(ri)

h−(ri)
(3)

h+(r) =

m
∑

i=1

n+
i exp

(

−

(r−ri)
2

2σ2

)

/Z+(r)

h−(r) =

m
∑

i=1

n−

i exp

(

−

(r−ri)
2

2σ2

)

/Z−(r)

wherem is the number of bins,ri is the center of theith bin,
n+

i (n−

i ) is the number of positive(negative) samples falling
into theith bin,σ is set to half bin width,Z+(r) andZ−(r)
are normalization terms. As a result, the KLD computed
from the modified histogram representation corresponding
to the above two cases correctly reflect the divergence of
positive and negative sample distributions by taking into ac-
count the margins between them. See Figure 1(b).

The above computations can be naturally extended
to handle weighted samples by replacing the bin count
n+

i (n−

i ) with the cumulant of the sample weights falling
into theith bin, i.e.

∑

xj∈bin(i) & yj=+1(−1) wj .

2.2. Feature Boosting

We adopt the boosting framework for the selection of
multiple ratio features. Boosting is the generalized term
for a class of algorithms that combine weak learners into
a strong classifier by iteratively selecting the optimal weak
learner and updating sample weights. In many cases, a sin-
gle ratio feature is insufficient to discriminate between two
classes of complex spectra. In our problem, each individual
ratio feature is regarded as a weak learner. Hence boost-
ing should be able to select a set of ratio features and sat-
isfactory classification can be achieved by combining the
selected ratio features.

Here, we use the Realboost algorithm proposed in [4]
for feature selection. Compared to the classical Adaboost
algorithm[3], Realboost uses real valued output for the
weak learners rather than hard classification decisions, and
is better suited to the framework in which histograms are



viewed as weak learners[5]. When tested on our data, we
also found that Realboost converges much faster than Ad-
aboost.

The procedure for feature selection using Realboost and
the histogram-based classifier as a weak learner are listed in
Figure 2.2. Details of weight and coefficient updating rules
is beyond the scope of this paper and can be found in [4].

Given(x1, y1), . . . , (xN , yN ), whereyi ∈ {−1, 1}
Initialize sample weightsW1(xi) = 1/N , T .
For t=1 . . . T:

• For any ratio featurer(λi, λj),

– Build ratio histogramsh+(r) andh−(r) for positive
and negative samples weighted byWt

– Compute KLD via Eq. 3

• Select the ratio featurer(t) with maximum KLD

• Construct the weak learnerht(r) = 1
2 log

h+(r)

h−(r)
• Chooseαt by minimizing

Zt =
PN

i=1 Dt(xi) exp(−αtyiht(r
(t)
i ))

• Build the strong classifier fromαr andhr.(r = 1...t)
H(x) = sign

�Pt

r=1 αrhr(x)
�

Stop if training error reaches zero
• Update the sample weights:

Wt+1(xi) =
Wt(xi) exp (−αtyiht(i))

Zt

Output features:r(1),r(2),. . . ,r(t)(r(T ))

Figure 2. Boosted ratio feature selection

Realboost was originally proposed as a classification al-
gorithm. Here, we only use it for feature selection since
boosting algorithms are much likely to overfit the training
data and, as a result, they do not generalize well. Further-
more, the use of a soft margin classifier still cannot guar-
antee good generalization performance. This led us to a
different, yet simple and effective approach, by only using
Realboost for feature selection and then using a SVM to
classify the selected ratio features. It is also worth noting
that the generalization behavior of the SVM is better under-
stood in theory and tested in practice.

2.3. Pairwise Classification Framework

The above procedure is only applicable to two-class
cases. However, any multiclass categorization problem can
be converted to a number of binary classification problems.
In this paper, we adopt a pairwise classification framework
for the conversion, which is also called ’one-against-one’
classification. A binary classifier is built for any two classes
and the final classification result is obtained by voting on
the results of all binary classifiers. The procedure is:

Given(x1, y1), . . . , (xN , yN ), whereyi ∈ {1, . . . , K}

• For i,j = 1 . . . K, i 6= j

– Obtain positive samples from class i and negative sam-
ples from class j

– Run boosted ratio feature selection algorithm

– Train a SVM on the selected ratio features for training
samples

– Predict labels forxi, i=1. . . N

• Combine the pairwise classification results by majority vot-
ing

3. Experimental Results

In this section, we illustrate the utility of our method for
purposes of ratio feature selection.

The first of our experiments is a binary classification ex-
ample based on a single optimal ratio. An image of dis-
eased apple was captured against a black background us-
ing an OKSI hyperspectral camera. The image contains 28
bands sampled at 10nm steps over the visible range (430nm-
700nm). We manually selected one diseased area and one
healthy region of the apple for training. The pseudocolor
image is shown in Figure 3(a), superimposed by regions
where pixels were selected for training. To increase the
difficulty, some specular pixels were also included in the
training region. The large variation of healthy apple spec-
tra in the training region is shown in Figure 3(b). Fig-
ure 3(c) shows the surface map inferred by our algorithm,
where healthy and diseased areas are mapped onto the apple
surface, with brighter pixels indicating healthy regions and
darker pixels the diseased tissue. A single band ratio has
been automatically chosen here, which is between 670nm,
the absorption band, and 700nm, the peak value. It is quite
impressive that the selected ratio feature is quite insensi-
tive to changes in incident radiance due to the variation of
surface normal. For comparison, we also applied the linear
SVM classification directly on the training spectra and ob-
tained the surface map shown in Figure 3(d). From the fig-
ure, we can conclude that the mapping result is extremely
sensitive to the shading effects.

A more complex multiclass example is shown in
the second of our experiments. An image captured
by the AVIRIS sensor with 220 bands over the visible
and near infrared range was used.The image, available
at http://dynamo.ecn.purdue.edu/ biehl/MultiSpec/, main-
tained by Prof. Landgrebe and his group, covers an agri-
cultural area at NW Indiana. A total number of 10366
pixels were labeled over 16 different terrain types. The
ground truth map was shown in Figure 4(b), where each
terrain is depicted in a distinct color and the unlabelled pix-
els were left blank. We performed classification on all 16
classes using 191 bands for each pixel spectrum with wa-
ter absorption and noisy bands removed. For each class,
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Figure 3. (a) Image of apple superimposed with training
regions. (b) Spectra of training samples. (c) Mapping result
of our method. (d) Mapping result of SVM.

25% of the labelled pixels were randomly selected for train-
ing and the remaining75% pixels for testing. Four al-
gorithms were compared, including Linear Discriminant
Analysis (LDA), our ratio feature selection algorithm fol-
lowed by SVM (RS+SVM), the same algorithm applied to
the spectral bands (BS+SVM) and SVM running directly
on raw spectra. To ensure a fair comparison, all the algo-
rithms were properly regularized with parameters chosen
by cross validation. Also, the same pairwise classification
framework, as described in Section 2.3, was used. We em-
ployed the LIBSVM package for training SVMs, which can
be found at [6]. The test was repeated five times using dif-
ferent random training samples. The comparison results are
listed in Table 3. Here, we have included the mean test error
and variance for the five runs, average number of features
used in each binary classification and average time spent
for prediction on an Pentium 4, 2GHz PC with 512MB of
RAM.

From Table 3, its clear that running the SVM directly on
all bands achieved best accuracy. Our ratio selection algo-
rithm finished second best. This is a quite surprising result,
as the band ratio is generally believed to be a naive mea-
sure that can only be used for coarse detection. However,
here we show that the correct combination of ratios can
perform much more complicated classification than other-
wise expected. The overall performance of the RS+SVM
framework is quite promising. This is even more impor-
tant since it achieves a comparable result to that obtained by
running the SVM directly, nonetheless it uses much fewer
features. It is also less computationally intensive. Thus,it

Table 1. Performance evaluation of competing algorithms
on land cover classification

Method Avg Error Var #FeaturesAvg Time
LDA 19.70% 0.68% 191 2.87s

BS+SVM 14.82% 0.28% 4.35 9.16s
RS+SVM 10.97% 0.22% 3.64 9.31s

SVM 8.47% 0.22% 191 55.90s

(a) (b)

(c) (d)
Figure 4. (a) Pseudo-color image of the scene. (b)
Ground truth map. (c) Map of land cover inferred by SVM.
(d) Map of land cover inferred by our ratio selection algo-
rithm.

offers an ideal trade-off between accuracy and efficiency.
Moreover, considering the ratios are much more invariant
to reflectance factors, they can be very useful when photo-
metric and geometric effects are dominant.

4. Conclusions
Band ratios have been used for many years in the remote

sensing community to identify terrain cover types. In this
paper, we have shown the potential of spectral band ratio
features for accurate pixel classification and noted its pho-
tometric invariant properties. We proposed a principled al-
gorithm for the automatic selection of ratio features. Most
importantly, these band ratios are easily linked to domain
knowledge. Our future work will focus on terrestrial imag-
ing spectroscopy and investigate the use of the band ratio in-
variance properties under different photometric conditions.
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