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Abstract

In this paper, we develop a new method for recover-
ing and smoothing fields of surface normals in shape-from-
shading. We show how transform the problem of recover-
ing surface normals that satisfy Lmbeert’s law into that of
solving the steady state heat equation for a scalar potential.
According to this picture, the smoothed field of surface nor-
mals is found by taking the gradient of the scalar field. The
heat equation for the scalar field can be solved using sim-
ple finite difference methods, and leads to an iterative pro-
cedure for vector estimation. We illustrate the utility of the
new method on real world imagery and compare our results
with those delivered by an alternative.

1. Introduction

The recovery of a consistent field of surface normals is
one that arises in a number of areas in computer vision.
Examples include shape-from-shading, shape-from-texture,
optical flow and stereopsis. One of the problems that is of
pivotal importance in the processing of vector fields recov-
ered from noisy image data is that of smoothing, and practi-
cal smoothing or regularisation methods have been reported
in the contexts of optical flow computation [4], curvature-
based surface shape representation [6] and the smoothing of
stereo disparity fields [3].

An important issue underpinning the smoothing process
is that of preserving the differential structure of the un-
derlying vector-field, while satisfying constraints on data-
closeness. In fact, the data-closeness constraints can some-
times be re-cast as constraints on the individual components
of the vectors. For instance, in shape-from-shading, when
Lambertian reflectance is assumed, the component of the
surface normal in the light source direction is constrained
to be equal to the inverse cosine of the normalised image
brightness [7]. For the purposes of optical flow computa-
tion, brightness constraints are frequently used [1].

The analysis of the literature on the topic of vector field
smoothing is not a straightforward task. The reason for this
is that smoothing is frequently viewed as an integral part
of the relevant vision module, rather than one of generic
utilty. However, in shape-from-shading simple regularisa-
tion methods have been shown to oversmooth the field of
surface normals, and this problem can to be overcome using
either statistically motivated robust regularisation methods
or gradient consistency constraints [8]. In optical flow es-
timation, existing algorithms have been greatly influenced
by the anisotropic diffusion approach to image regularisa-
tion developed by Perona and Malik [5]. There have also
been a number of attempts to extend the variational opti-
cal flow estimation algorithm of Horn and Schunk [2].

In this paper, we focus in detail on the problem of shape-
from-shading. We pose the problem of smoothing a vector
field as that of solving the heat equation subject to the con-
straints imosed by Lambert’s law. We recast the problem
of estimating the field of surface normals as that of recover-
ing a a scalar potential field. The z-component of the field of
surface normals is constrained by Lambert’s law to be equal
to the inverse cosine of the normalised image brighteness.
The remaining components of the vector are given by the
gradient of the scalar potential. A simple variational analy-
sis using the divergence theorem shows that the time deriva-
tive of the scalar potential is given by the average of the im-
age intensity. As a result, a simple finite element method
can be used to compute the components of the field of vec-
tors.

2. Heat Flow

The problem studied in shape-from-shading is that of es-
timating the direction of the surface normal vector ������	��
�� ����������
�������������
�������������
 �"!

at a point
���

on a surface #%$&('
from a measurement of the brightness ) �+*,��


at the cor-
responding image point

*,�
. The surface normal satisfies

Lambert’s law, i.e. ) �-*,��
.� �/10����2���	��

, where �/ is light

source direction. Unfortunately, Lambert’s law allows only
the recovery of the zenith angle between the light source



Figure 1. Ground truth for our synthetic data

vector and the surface normal. The recvoery of the az-
imuth angle remains undetermined, and requires the use of
smoothness constraints. Here we use a heat-flow analogy to
perform the smoothing process.

The analogy is as follows. We assume that there is a time-
dependant planar scalar field � � �� ��� 


, where �� are the x,y
and z-coordinates of the point �* �

and
�

is the time epoch.
As a result of the contraint imposed by the scalar field,
the z-component of the vector ���������


is equal to the mea-
sured intensity ) �-* ��


at the point
* �

. The component on
the vector ������	��


on the plane is found by taking the gra-
dient of the scalar field � � �� ��� 


. As a result, we can write
�� ��� � 
 � ���	��
���� ���� � ���	��
���� ���� � � ) �-* � 
 
 !

. Our aim is to find the
scalar field � � �* � ��� 


that is the steady state solution of the
heat equation��� � � �� ��� 
 ��� � � � �� ��� 
� � � � � � � � �� ��� 
��� � ��� � � �� ��� 
� � (1)

subject to the constraint
� � ��� � 
� ) �+* � 


. This involves the
analysis of the heat flow on the plane �� . Once the steady
state solution to the heat equation is found, then the vec-
tor may be computed by taking its gradient. However, here
we are only interested in the azimuth angle of the vector�� ������


, and this can be computed by taking the arc-tangent
of the ratio of the first-differences of � � �� ��� 


in the x and y
directions.

To analyse the behaviour of this system, we turn to the
divergence theorem. Consider an area  on the plane ��
which is enclosed by a volumetric region ! . The flux as-
sociated with the field of vectors is given by"#"�$

�� ������
 0 �/&%  � "'"#"�( � 0 �� ������
�% ! (2)

Since, ������ � 

is the divergence of � � �� ��� 


, we have that)*)�+ �, 
.-/ �	0 �132 $54 )6)*)�798 �	:;��
����<���� � : = �	:���
����<���� � : = �	>�
@?�/ �� �BA 2 (
(3)

Noting that
�	>�
@? / �� � �DC

, i.e. the z-component of the vector

�� ��� � 

is constrained to be ) �+* � 


, and substituting for the

heat equation, we find that"#"�$
�� ��� � 
 0 �/E%  � "'"#"�( � � � �� ��� 
� � % ! (4)

Finally, we use the dot product and note that ) �-* ��
 �
������ � 
 0 �/ � � � ��� � 


, and hence the divergence equation
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Figure 2. Smoothing results. Top row: input im-
ages; Second and third rows: smoothed field of
surface normals after one and eight iterations of
our algorithm; Bottom rows: field of surface nor-
mals delivered by the algorithm of Worthington
and Hancock after 10 and 100 iterations.



becomes "'"�$
) �+* � 
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� � % ! (5)

In other words, the average rate of change of � � �� ��� 

with

time is equal to the total potential enclosed within the sur-
face patch  .

We can solve this equation using a simple finite element
approach. We commence by setting � � �* � ��� � C2
 � �

. At
time step � , the update equation is

� � �* ��� � 
�� ����	�?�/ ��
?�������� / � ��� ) �+* � 
 
 �� �+*�� � � ��� 

(6)

where
� �? / is the set of points adjacent to �*,�

. The quan-
tity �� is the averaged and normalised scalar potential, com-
puted using the formula

�� � �* � � � 
� �� � �� / ��� ?�������� / � �-* � � � 
� � � �� �� ���� / � � ?��������� / � �-* � � � 
 (7)

This process is repeated until the scalar field � � �* � � � 

sta-

bilises. On convergence, the azimuth angle of the vector�� ��� � 

at the location indexed  is given by�"! - / � �$#### %�&('*)(%�+

,�- � � �* � � � 
 �- � � �* � � � 
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In the above equation
- � � �* � � � 
 �

and
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 �

are the
first difference approximations to the � and � components
of the gradient of � , and are given by- � � �* � � � 
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(9)

Since the computation of
�7! - / �

constrains the azimuth
of the vector to the first quadrant, we make use of the sign
of the flow on the x and y-directions to determine the sign
of the vector components on the plane �� . Thus, the rotated
vector �� ��� � 


is computed making use of the following rule
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.

3. Experiments

In this section, we illustrate the utility of our new method
for purposes of smoothing fields of surface normals esti-
mated from shading images which exhibit large amounts of

noise and corruption. To this end, we have added controlled
levels of Gaussian noise to synthetic and real-world imagery
of objects that exhibit Lambertian reflectance. In all our ex-
periments, we follow Worthington and Hancock [7] and use
the gray-scale gradient as an initial estimate of the surface
normal field directions

In Figure 1b, we show a parabolic dome with two ellip-
tic domes superimposed. We have used this object to inves-
tigate the effect of adding noise to the raw image data. In
the top row of Figure 2, we show two images obtained by
rendering the surface in Figure 1b with a Lambertian re-
flectance model and adding controlled levels of Gaussian
noise with E � C�F G ��CHFJI

to the resultant image. The sec-
ond and third rows show the field of surface normals at the
first and last iterations of our smoothing algorithm. For both
images, the algorithm converged in eight iterations. In the
fourth and fifth rows, we show the fields of normals deliv-
ered by the algorithm of Worthington and Hancock [7] af-
ter 10 and 100 iterations. In contrast with the algorithm of
Worthington and Hancock, our method preserves the shape-
edges while being able to cope with large amounts of added
noise.

Next, we present results on real-world imagery of statu-
ary. These are a detail of the Michelangelo’s “Moses” and a
fragment of the “Three Graces” relief. In the left-hand col-
umn of Figure 3, we show the noise-free images for both
objects. In the second column, we show the resultant im-
ages after having added Gaussian noise whose variance is
of
C�F K

. The third and fourth columns show the field of sur-
face normals at the first and last iterations of the algorithm.
In the case of the Michelangelo’s “Moses”, the field of sur-
face normals stabilised at the sixth iteration. For the “Three
Graces”, the algorithm took five iterations to converge. In
Figure 4, we show the field of surface normals smoothed
making use of the Worthington and Hancock’s algorithm
for the input images in Figure 3. The top row shows the
fields of surface normals after 10 iterations. The fields of
normals after 100 iterations are shown in the bottom row.
From Figure 3, we can note that the fields of surface nor-
mals smoothed making use of our method all have quite
complex detail, with a mix of concave and convex struc-
ture. Furthermore, the topology of the surface has been pre-
served, specially near the edges. Hence, our results lack the
oversmoothing exhibited by the fields of normals delivered
by the algorithm of Worthington and Hancock [7].

4. Conclusions

In this paper, we have shown how a vectorial field can
be smoothed by making use of a heat flow process. This ap-
proach leads to a parameter-free model which constraints
the field of vectors to satisfy a scalar potential field as a hard
contraint. Furthermore, the differential equations that char-
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Figure 3. Smoothing results for real-world imagery. Left-hand column: noise-free images; Second column: im-
ages with added Gaussian noise; Third and fourth columns: smoothed field of surface normals at the first and
last iterations of our algorithm.

acterise the heat flow process may be solved making use of
a computationally efficient finite element method. We have
performed experiments on synthetic and real-world imagery
which suggest the algorithm can remove large amounts of
added noise.
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Figure 4. Field of surface normals delivered by
the algorithm of Worthington and Hancock after 10
and 100 iterations for the input images in Fig. 3.


