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Abstract

In this paper we identify the constraints under which the
generally ill-posed problem of the simultaneous recovery of
surface shape and its photometric invariants can be ren-
dered tractable. We examine the cases where a single or
more images are acquired using different lighting directions
with a known illuminant power spectrum. Given these con-
ditions, we state the constraints upon which the recovery of
the surface geometry and its photometric parameters can
be estimated. With these constraints, we then show how the
recovery process may be formulated as an optimisation one
which aims to fit the reflectance models under study to the
image reflectance. The approach presented here is a gen-
eral one and can be applied to a family of reflectance mod-
els that are based on Fresnel reflection theory. Thus, we
provide the theoretical and computational background for
recovering the shape, the material index of refraction and
microscopic roughness factor from multi-spectral images.

1. Introduction
Photometric invariance has found applications in com-

puter vision and pattern recognition for purposes of recog-
nition and shape recovery. For instance, Nayar and Bolle [9]
have used photometric invariants derived from the BRDF to
recognise objects with different reflectance properties. In a
related development, Dror et al. [3] have shown how sur-
faces may be classified from single images through the use
of reflectance properties.

The intrinsic relation between photometric invariance
and shape recovery is due to the fact that the reflectance
of an object is determined not only by the light source and
viewing directions, but also by the material properties of
the surface under study. This is closely related to the prob-
lem of recovering the shape of an object from its shading
information. The classic approaches to shape from shad-
ing developed by Ikeuchi and Horn [6], and by Horn and
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Brooks [5], hinge on the compliance with the image irra-
diance equation and local surface smoothness. Zheng and
Chellappa [19] proposed a gradient consistency constraint
that penalises differences between the image intensity gra-
dient and the surface gradient for the recovered surface.
Worthington and Hancock [18] impose the Lambertian radi-
ance constraint in a hard manner. Prados and Faugeras [12]
have presented a shape from shading approach applicable to
the case where the light source and viewing directions are
no longer co-incident. Kimmel and Bruckstein have used
the apparatus of level sets methods to recover solutions to
the Eikonal equation [8].

The non-collinearity of the viewing and light directions
on non-Lambertian surfaces using the continuous solutions
to the image irradiance equation suggests a generalisation of
integral shape-from-shading schemes for purposes of pho-
tometric invariance. Along these lines, most of the effort
related to photometric invariance with respect to shape re-
covery is devoted to modeling the effects encountered on
shiny or rough surfaces. For shiny surfaces, there are spec-
ular spikes and lobes which must be modelled. For instance,
Brelstaff and Blake [2] use a thresholding strategy to iden-
tify specularities on moving curved objects. Ragheb and
Hancock [13] have developed a probabilistic framework for
specularity subtraction which uses the Torrance and Spar-
row model to account for the distribution of image bright-
ness.

The methods above often rely on the use of a re-
flectance model to capture the photometric invariance of
non-Lambertian surfaces. Along these lines, it is perhaps
the work of Beckmann on smooth and rough surface re-
flectance that is the best known in the vision and graph-
ics communities [1]. While it is based on physically mean-
ingful surface parameters, the Beckmann theory relies on
the evaluation of the Kirchoff wave scattering integral and
breaks down when the surface roughness or the scattering
angle is large. Vernold and Harvey [15] have overcome this
latter problem by developing a model which accounts for
self shadowing on rough surfaces. Torrance and Sparrow
[14] have developed a physically realistic account of spec-
ular reflectance that models the angular distribution of sur-
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Figure 1. Reflection Geometry.
face microfacets.

2. Motivation
Here, we focus our attention on the constraints for the

simultaneous recovery of the object shape and photomet-
ric parameters from a single view image. This is not only
practically useful, but theoretically relevant since the con-
straints presented here provide a unified setting and under-
standing of photometric invariant and shape recovery meth-
ods based upon variational techniques. Moreover, the dif-
ferential equations presented here, which govern the rela-
tion between shape and reflectance are consistent with prior
literature in the fields of shape from shading, photometric
stereo and regularisation theory.

Thus, the paper is organised as follows, in Section 3, we
provide the background on the relationship between pho-
tometric invariants and shape recovery. In this section,
we provide a general characterisation for a number of re-
flectance models based upon Fresnel theory and provide
a formulation for the cost function which we aim to min-
imise. In Section 4, we examine in more detail a number
of reflectance models for which the general formulation in
Section 3.1 applies. In Section 5, we provide experimental
results on shape and photometric variable recovery.

3. Photometric Invariants and Shape Recovery
In this section, we provide a unifying formulation that

applies to a family of reflectance models based on the Fres-
nel reflection theory. This family is comprised by those
models which depend on three sets of variables related to
the the reflection geometry, the material’s index of refrac-
tion and the surface structure. More specifically, these re-
flectance models are those which involves, in general, a
wavelength dependent Fresnel term that accounts for the
reflection, transmission and refraction of light through the
boundary between different object media. This term, in
turn, depends on the incident angle and index of refraction.

As a result of the wavelength dependence of the Fres-
nel terms, we cast the problem in a general setting so as

to recover the photometric invariants of materials and sur-
face shape from multispectral imagery. It is worth stressing
that, the theory here is equally applicable to monochromatic
or trichromatic imagery by fixing the discrete wavelength-
indexed terms accordingly. Moreover, we also state the con-
straints upon which the problem is well-defined in terms of
the number of illumination directions needed to fit the re-
flectance model and recover the shape of the object under
study.

In the reflectance models herein, the reflection geometry
is defined with respect to a local coordinate system whose
origin is the surface location and whose z-axis is aligned
to the normalised local surface normal

−→
N . The incident

light direction
−→
L is defined by the zenith and azimuth an-

gles θi and φi, respectively. Accordingly, the zenith and
azimuth angles of the outgoing direction

−→
V are θs and φs.

For the sake of simplicity, we assume that the incident light
is always in the xz-plane, i.e. φi = π. Alternatively, re-
flectance models can be parameterised with another set of
angles, making use of the half-way vector

−→
H =

−→
L +

−→
V ,

which is the sum of the unit-length vectors in the light and
viewing directions. Note that the reflection geometry can
be equivalently represented by the angular difference θd be-
tween

−→
L and

−→
H , the half angle θh between

−→
N and

−→
H and

the incident angle θi. The geometry above is illustrated in
Figure 1.

3.1. General Reflectance Model

As described above, the reflectance equation at a surface
location u and wavelength λ can be, in general, written as a
product of two functions Γ(·) and Λ(·) as follows

f(u, λ) = Γ(Θ(u), n(u, λ))Λ(Θ(u),Ω(u)) (1)

where Θ(u) is the set of reflection-angle variables describ-
ing the incident light, viewing and local surface normal di-
rections, n(u, λ) is the wavelength-dependent index of re-
fraction of the surface material under monochromatic light,
Ω(u) is the set of photogrammetric parameters, such as the
local microfacet slope and its distribution, as well as the
masking and shadowing factors. In the model above, Θ(u)
and Ω(u) are wavelength independent.

In the general formulation above, the function Γ(·) in
Equation 1 involves a Fresnel term, which is directly related
to the incident angle θi and the index of refraction n(u, λ).
The function Λ(·) depends solely on the light source and
viewer direction, the surface orientation and the surface
scattering parameters. In Section 4, we present a number
of reflectance models that comply with the general formula-
tion above by showing their correspondences to the general
reflectance equation 1. For now, we focus on the constraints
governing the optimisation of the cost function correspond-
ing to the reflectance equation above.



3.2. Constrains for Shape and Reflectance Parame-
ter Recovery

Recall that, at input, we have a set of M multispectral
images R(1),R(2), . . . ,R(M), where each of the images
R(l) are taken under a different illuminant direction with
known power spectrum. In addition, all the images are ob-
served from the same view point. Each of these images
is indexed to the wavelength λ ∈ {λ(1), . . . λ(K)}, where
Rl(u, λ) is the measured spectral reflectance at the pixel-
site u on the lth image after being normalised by the re-
spective illumination power spectrum.

From the reflectance images, we aim to recover the
model parameters satisfying Equation 1. To solve this prob-
lem, we commence by noting that the reflection angles de-
pend on the illumination direction

−→
L , the viewing direction

−→
V and the surface orientation

−→
N . While the surface normal

and viewing direction are fixed for all the input images, the
angles Θ(u, l) at every pixel site in the lth image vary with
respect to the illumination direction. On the other hand,
the parameters n(u, λ) and Ω(u) are invariant to illuminant
power and direction.

Let us consider a global coordinate system where the ori-
gin is located at the view point, the positive z–axis is in the
opposite direction to the line of sight and the positive x–axis
points towards the right-hand side of the field of view. In
this coordinate system, the function z(x, y) is, in effect, the
height map at the surface location (x, y) that corresponds
to the pixel location u. The surface normal at (x, y) is,
by definition,

−→
N = [−p(u),−q(u), 1]T , where p(u) and

q(u) are the surface gradients, i.e p(u) = ∂z(x,y)
∂x = zx and

q(u) = ∂z(x,y)
∂y = zy .

Therefore, with known illuminant directions, we can re-
parameterise the general reflectance equation 1 with respect
to the surface gradients p(u), q(u) and index it with respect
to the image number as follows

fl(u, λ) = Φl(p(u), q(u), n(u, λ))Ψl(p(u), q(u),Ω(u))

This representation offers the advantage of replacing the
reflection angle-variables with the surface gradients. These
are invariant with respect to the illuminant direction. More
importantly, this formulation implies that the number of ge-
ometric variables is two per pixel-site u, which, in turn con-
straints the number of image reflectance equations needed
to recover the surface shape. With the new parameterisa-
tion, the image reflectance equations are rewritten as

Rl(u, λ) = Φl(p(u), q(u), n(u, λ))Ψl(p(u), q(u),Ω(u))

Assuming that the number of image pixels in the image
is N , the system above consists of M × N ×K equations
with (|Ω| + K + 2) × N independent variables. These in-
clude K-wavelength dependent refractive indexes at each

pixel and the number of micro-surface scattering variables
|Ω|. Without further constraints, this system is only well-
defined if and only if the number of equations is at least the
same as the number of equations. In other words, the prob-
lem is only solvable with at least M ≥ (|Ω| + K + 2)/K
images. For all reflectance models in Section 4, this num-
ber is lower-bounded at 2. In summary, this is the theoret-
ical lower bound on the number of illuminants needed in
order to recover the surface shapes and photometric invari-
ants when the illuminant directions are known.

Note that this lower bound is consistent with the liter-
ature of photometric stereo methods for grayscale images
with Lambertian models, where K = 1 and |Ω| = 0. In
fact, the formulation above can be viewed as a generali-
sation of Woodham’s photometric stereo problem [17] for
arbitrary reflectance models.

3.3. Optimisation Approach

When only a single image is at hand, the shape and
photometric parameter recovery becomes ill-posed. In this
case, we resort to constraints based on implicit assumptions
on the spectral and local surface variations. Specifically,
when the surface under study is smooth, we can enforce the
surface integrability constraint, which has been utilised in
the field of Shape-From-Shading by several authors [4, 5].
This constraint states that the cross-partial derivatives of
p(u) and q(u) must be equal, i.e. p(u)y = q(u)x. Fur-
thermore, one can assume smoothness on the spectral vari-
ation of the refractive index. This assumption implies that
the surface scattering characteristics should vary smoothly
across the spatial domain. As we will show later in this
section, these assumptions permit the recovery of the shape
and photometric parameters making use of a line-search ap-
proach.

To take our analysis further, we commence by noting that
the parameters satisfying the reflectance equations are the
minimisers of the following cost function

C =
M∑
l=1

∫
I

∫
W

(Rl(u, λ(k))− fl(u, λ(k)))2
dudλ

+α
∫
I

(
∂p(u)
∂y

− ∂q(u)
∂x

)2

du

+β
∫
I

∫
W

(
∂n(u, λ)
∂λ

)2

dudλ

+γ
∫
I

[(
∂Ω(u)
∂x

)2

+
(
∂Ω(u)
∂y

)2
]
du (2)

where I is the image spatial domain and W is the wave-
length range.

The arguments of the cost functionC are the surface gra-
dients p(u) and q(u), the index of refraction n(u, λ) and



∑M
l=1

∫
W
(
Rl(u, λ)− fl(u, λ)

)∂fl(u,λ)
∂p(u) dλ+ α(p(u)yy − q(u)xy) = 0∑M

l=1

∫
W
(
Rl(u, λ)− fl(u, λ)

)∂fl(u,λ)
∂q(u) dλ+ α(q(u)xx − p(u)yx) = 0∑M

l=1

∫
I
(
Rl(u, λ)− fl(u, λ)

)∂fl(u,λ)
∂n(λ) du+ β ∂

2n(λ)
dλ2 = 0∑M

l=1

∫
W
(
Rl(u, λ)− fl(u, λ)

)∂fl(u,λ)
∂Ω(u) dλ+ γ (Ω(u)xx + Ω(u)yy) = 0

Figure 2. Euler-Lagrange equations for the cost function C.

p(t+1)(u) = p(t)(u)− 1
2 q̂

(t)(u) + ε2s
2α×

∑M
l=1

∑K
k=1(Rl(u, λ(k))− f (t)

l (u, λ(k)))∂f
(t)
l (u,λ(k))

∂p(t)(u)

q(t+1)(u) = q(t)(u)− 1
2 p̂

(t)(u) + ε2s
2α×

∑M
l=1

∑K
k=1(Rl(u, λ(k))− f (t)

l (u, λ(k)))∂f
(t)
l (u,λ(k))

∂q(t)(u)

n(t+1)(λ(k)) = n(t+1)(λ(k)) + ε2w
2β×

∑M
l=1

∑
u∈I(Rl(u, λ(k))− f (t)

l (u, λ(k)))∂f
(t)
l (u,λ(k))

∂n(t)(λ(k))

Ω(t+1)(u) = Ω
(t)

(u) + ε2s
4γ×

∑M
l=1

∑K
k=1(Rl(u, λ(k))− f (t)

l (u, λ(k)))∂f
(t)
l (u,λ(k))

∂Ω(t)(u)

Figure 3. Line-search update equations for the optimisation with respect to the shape and photometric parameters.

the photogrammetric parameter-set Ω(u). The weights α,
β and γ control the contribution to the cost function of the
integrability constraint, the spectral smoothness constraint
on the refractive index and spatial smoothness constraint on
the surface scattering variables, respectively.

With the cost function C at hand, we derive an itera-
tive scheme based upon the Euler-Lagrange equations so
as to minimise the functional above. The resulting Euler-
Lagrange equations with respect to the argument functions
are shown in Figure 2. In the equations, the x, y subscripts
imply partial derivatives with respect to the corresponding
axis-variable.

Moreover, we can employ the discrete approximation
of the higher order derivatives in the equations shown in
Figure 2. To this end, let the spatial domain be discre-
tised into a lattice with a spacing of εs between adjacent
pixel-sites and the wavelength domain in steps of εw. We
index p(u), q(u) and Ω(u) according to the pixel coordi-
nates (i, j) and n(u, λ) according to the wavelength in-
dex k. With these ingredients, the partial derivatives can
be approximated using finite differences. By substitut-
ing the finite-differences into the Euler-Lagrange equations,
we obtain a set of update equations for the model param-
eters with respect to the iteration number t. In Figure
3, we show the set of resulting update equations, where
we have used the shorthands p(u)|u=(i,j) , 1

2 (pi,j−1 +
pi,j+1), q(u)|u=(i,j) , 1

2 (qi−1,j + qi+1,j), p̂(u)|u=(i,j) ,
1
4 (pi+1,j+1 + pi−1,j−1 − pi−1,j+1 − pi+1,j−1) and
q̂(u)|u=(i,j) , 1

4 (qi+1,j+1+qi−1,j−1−qi−1,j+1−qi+1,j−1)
are the approximated cross-derivatives of p(u) and q(u)
(times ε2s), n(λ(k)) , 1

2 (n(λ(k − 1)) + n(λ(k + 1))), and
Ω(u)|u=(i,j) , 1

4 (Ωi,j−1 + Ωi,j+1 + Ωi−1,j + Ωi+1,j). In
Figure 3, the superscripts denote the iteration numbers.

Note that the second right-hand terms of the update equa-
tions correspond the negative partial derivatives of the data

closeness term with respect to each model parameter. These
formulae are in fact instances of line-search optimisation
where the search from the current iterate is performed in
the steepest gradient descent direction. Here, it is revealed
that the Euler-Lagrange equation in the function space is
equivalent to gradient descent optimisation in the parameter
space.

To enforce numerical stability on the update of parame-
ter values over iterations, we introduce a step length along
the steepest descent direction. To this end, we employ the
Wolfe condition [10] to ensure that the step length delivers
a sufficient decrease in the target function. For each update
of the model parameters, we perform a backtracking line
search approach by starting with an initial long step length
and contracting it upon insufficient decrease of the target
function.

4. Reflectance Models Based Upon Fresnel
Theory

Note that, so far, we have formulated the constraints in
the previous sections in such a manner that the reflectance
model under consideration is general in nature. In this sec-
tion, we show how the general reflectance model presented
in Equation 1 captures a family of existing reflectance mod-
els in the literature. We do this by establishing a corre-
spondence between the generic parameter sets in the gen-
eral model and those specific to some of the models used
by the computer vision and graphics communities. This is
important since it provides a proof of concept that the pro-
cess of model parameter recovery presented above can be
performed on each of these reflectance models at hand. It
also provides an explicit link between the equations above
and the reflectance models in the literature.

The Fresnel theory has been used extensively in the op-
tics, computer vision and graphics literature to derive re-



flectance models. Among the physics-based models, the
Beckmann-Kirchoff model [1] originated from Kirchoff’s
theory on the scattering of electromagnetic waves. Torrance
and Sparrow [14] employed the Fresnel reflection coeffi-
cient to model specular reflection. Wolff [16] derived a dif-
fuse reflectance model for layered dielectrics by analysing
the reflection, transmission and refraction of light at the sur-
face boundary.

The models above all have parameters corresponding to
surface scattering, reflection geometry and Fresnel reflec-
tion coefficients. The parameter equivalence between the
general model presented earlier and the following specific
models is summarised in Table 1. In the following subsec-
tions, we elaborate further on the parameters in Table 1.

4.1. Beckmann-Kirchoff Model

With the reflection angles as described in Figure 1, the
Beckmann-Kirchoff model [1] predicts the mean scattered
power from a surface point u at wavelength λ as a summa-
tion of two terms. The first of these represents the scattering
component in the specular direction. The second term cor-
responds to the diffuse scattering component.

Here we focus our attention on the diffuse scattering
component for very rough surfaces. Under normalised il-
luminant power, the surface reflectance is the same as the
diffused scattered power. By far, the two most popular ap-
proximations of the diffuse reflectance are formulated in the
cases of Gaussian and exponential surface correlation func-
tions [1]. When the surface is very rough and the correla-
tion function is Gaussian, the diffuse reflectance at a given
wavelength λ of incident light from a surface patch of area
A is approximated by

fBK(u, λ) = F (θi, n(λ))
πT 2G2

BK

Aσ2v2
z

exp

(
−
T 2v2

xy

4σ2v2
z

)
(3)

where, as before, the Fresnel reflection coefficient
F (θi, n(u, λ)) is wavelength dependent via the index of re-
fraction n(u, λ) and we have vx = k(sin θi−sin θs cosφs),
vy = −k sin θs sinφs, vz = −k(cos θi + cos θs), v2

xy =
v2
x+v2

y , g = σ2v2
z . Here, k is the propagation rate of the in-

cident light, related to its wavelength λ through the equation
k = 2π

λ .
In Equation 3, σ is the standard deviation of the height

variation with respect to the mean surface level and the sur-
face correlation length T gives the relative horizontal spac-
ing between the micro-surface extrema. Note that, the sur-
face slope parameter σT controls the scattering behaviour for
various degrees of roughness. Therefore, it is sufficient to
estimate σ

T from reflectance data rather than each parame-
ter σ and T separately. In other words, this is equivalent to
estimating the parameter m =

(
T
σ

)2
, which is the square

inverse of the surface slope.

In Equations 3 the geometric factor GBK explains the
attenuation of emitted light by the surface orientation with
respect to illuminant and viewing directions. The geometric
factor is defined as

GBK(θi, θs, φs) =
1 + cos θi cos θs − sin θi sin θs cosφs

cos θi(cos θi + cos θs)
(4)

To obtain the set of parameters as per Equation 1, we
reparameterise the reflection geometry with respect to the
incident angle θi, the difference angle θd and the half angle
θh, as follows

fBK(u, λ) =
λ2F (θi, n(λ))m

16πA cos2 θi cos4 θh
exp

(
−m

4
tan2 θh

)
(5)

4.2. Vernold-Harvey Model

It has been noted that the Beckmann-Kirchoff model
commonly breaks down at large incident and scattering an-
gles [11, 15]. This is since the geometric factor GBK tends
to infinity near the grazing angle. Vernold and Harvey [15]
have proposed a variant of the Beckmann-Kirchoff model
which can cope well with a wide range of angles. In their
work, Vernold and Harvey presented a modified geometric
factor G2

V H = cos θi instead of G2
BK .

The modified Beckmann-Kirchoff model proposed by
Vernold and Harvey can also be parameterised with respect
to the half-vector angles as

fV H(u, λ) =
λ2F (θi, n(λ))m cos θi
16πA cos2 θd cos2 θh

exp
(
−m

4
tan2 θh

)
(6)

4.3. Torrance-Sparrow Model

Torrance and Sparrow’s model [14] provides an analyt-
ical equation of the reflected radiance from mirror-like mi-
crofacets whose slope is randomly distributed. Accoring to
the model, the total reflectance from a differential area dA
is given by

fTS(u, λ) = wd cos θi+
Af
4
F (θi, n(λ))

GTS(θip, θsp)
cos θs

P (ϑ)

(7)
In Equation 7, the first term is the diffuse reflectance

component that obeys Lambert’s cosine law and is assigned
a weightwd. The latter term is the specular reflectance com-
ponent. Firstly, Af is the microfacet’s area. In addition,
GTS(θip, θsp) is the geometric attenuation factor which de-
pends on the projections θip and θsp of the angular variables
θi and θs onto the plane spanned by the facet normal and
the mean surface normal

−→
N . Lastly, ϑ denotes the angle

between the facet normal and the mean surface normal.
For isotropic surfaces, this distribution may assume a

Gaussian distribution that is rotationally symmetric about



General model Θ Ω Γ(Θ, n) Λ(Θ,Ω)
Beckmann-Kirchoff θi, θh m λ2F (θi, n(λ)) m

cos2 θi cos4 θh
e−

m
4 tan2 θh

Vernold-Harvey θi, θd, θh m λ2F (θi, n(λ)) m cos θi

cos2 θd cos2 θh
e−

m
4 tan2 θh

Torrance-Sparrow θi, θs, φs Af , ϑ, πϑ, σϑ F (θi, n(λ)) Af

4
GT S(θip,θsp)

cos θs
P (ϑ)

Wolff θi, θs ρW F (θi, n(λ)) × [1 −
F (θ

′

s, 1/n(λ))]
ρW cos θi

Table 1. Parameter equivalence between specific reflectance models and the general model in Section 3.1.

p(t+1)(u) = p(t)(u)− 1
2 q̂

(t)(u) + ε2s
2α×

∑M
l=1

∑K
k=1(logRl(u, λ(k))− h(t)

l (u, λ(k)))×[(
1

F (θ
(t)
i (u),n(t)(λ(k)))

∂F (θ
(t)
i (u),n(t)(λ(k)))

∂ cos θ
(t)
i (u)

+ 1

cos θ
(t)
i (u)

)
∂ cos θ

(t)
i (u)

∂p(t)(u)
+
(

m(t)(u)

2 cos3 θ
(t)
h (u)

− 2

cos θ
(t)
h (u)

)
∂ cos θ

(t)
h (u)

∂p(t)(u)

]
q(t+1)(u) = q(t)(u)− 1

2 p̂
(t)(u) + ε2s

2α×
∑M
l=1

∑K
k=1(logRl(u, λ(k))− h(t)

l (u, λ(k)))×[(
1

F (θ
(t)
i (u),n(t)(λ(k)))

∂F (θ
(t)
i (u),n(t)(λ(k)))

∂ cos θ
(t)
i (u)

+ 1

cos θ
(t)
i (u)

)
∂ cos θ

(t)
i (u)

∂q(t)(u)
+
(

m(t)(u)

2 cos3 θ
(t)
h (u)

− 2

cos θ
(t)
h (u)

)
∂ cos θ

(t)
h (u)

∂q(t)(u)

]
n(t+1)(λ(k)) = n(t)(λ(k)) + ε2w

2β×
∑M
l=1

∑
u∈I(logRl(u, λ(k))− h(t)

l (u, λ(k))) 1

F (θ
(t)
i (u),n(t)(λ(k)))

∂F (θ
(t)
i (u),n(t)(λ(k)))

∂n(t)(λ(k))

m(t+1)(u) = m(t)(u) + ε2s
4γ×

∑M
l=1

∑K
k=1(logRl(u, λ(k))− h(t)

l (u, λ(k)))
(

1
m(t)(u)

− 1
4 tan2 θ

(t)
h (u)

)
Figure 4. Line-search update equations for the Vernold-Harvey model.

the mean surface normal, P (ϑ) ∼ πϑN (0, σ2
ϑ), where

N (0, σ2
ϑ) is a Gaussian distribution with zero mean and a

standard deviation σϑ.

4.4. Wolff Model

The model proposed by Wolff [16] is derived from the
theory of radiative transfer through layered dielectric sur-
face boundaries. To predict the departure in behaviour from
the Lambertian model at large angles between the illumi-
nant and viewing directions, Wolff viewed the energy flux
emerging through subsurface as a result of refractive and re-
flective phenomena inside the dielectric body. This model is
hence explained through the use of Snell’s law of refraction
and the Fresnel attenuation factor. The diffuse subsurface
scattering, as defined by the Wolff model, is given by

fW (u, λ) = ρW cos θiF (θi, n(λ)) [1− F (θ
′

s, 1/n(λ))]
(8)

In Equation 8, θ
′

s is the zenith angle of light incident
on dielectric-air surface boundary before it is refracted and
re-emerges from the surface. This angle is related to the re-
flection one through Snell’s law making use of the expres-
sion θ

′

s = arcsin(sin(θs)/n(λ)). In the equation above, ρW
is the total diffuse albedo after multiple diffuse subsurface
scattering.

5. Experiments

In the following experiments, we fit the Vernold Harvey
model described in Section 4.2 to the above image database.
It is analytically more tractable to deal with the Vernold-

Harvey model in its log form, i.e we deal with the log ver-
sion of the original Vernold-Harvey equation.

hV H(u, λ) = log
(

λ2

16πA

)
+ logF (θi, n(λ)) + logm

+ log(cos θi) − 2 log(cos θd)− 2 log(cos θh)− m

4
tan2 θh

The log reflectance equation above yields the update equa-
tions in Figure 4 when being substituted into the general
form in Figure 3.

5.1. Shape Recovery

In this experiment, we present results on shape recovery
from images of synthetically generated surfaces. To obtain
the synthetic data, we render images of synthetic shapes
using the spectra of refractive index of real-world materi-
als reported in [7]. The images were synthesised using the
Vernold-Harvey model with various values of the surface
roughness m between 2.5 and 4. Furthermore, we com-
pare our recovered surface normals with those obtained by
Worthington and Hancock’s method [18]. This is a regular-
isation method which takes grayscale Lambertian images at
input and delivers surface normals at output.

Table 2 reports the overall accuracy of the needle maps
recovered by our method and that of Worthington and Han-
cock (W&H), across all the materials and surface rough-
ness under study. The error is expressed as the deviation
angle per-pixel from the ground-truth needle map, in de-
grees. Here, our algorithm is comparable to the alternative
method in recovering the shape of the Ridge and the Vol-
cano. Note that our algorithm is performed on multispectral



Figure 5. Needle maps of a Ridge (top) and a Volcano (bottom).
First column: Ground truth. Second column: those recovered by
our method using a single illuminant. Third column: those recov-
ered by our method using two illuminants. Fourth column: those
recovered by Worthington and Hancock.

Figure 6. Skin segmentation map of a human face using the in-
dex of refraction recovered from single image (left-most column),
two images (middle column) and the raw spectral data (right-most
column).

images synthesised using Vernold Harvey model, which is
more complex than the Lambertian images input to Wor-
thington and Hancock’s algorithm. Also note that the needle
map accuracy is consistent in both the single illuminant and
two illuminant cases. This demonstrates the robustness of
the algorithm in cases where shadows appear under a light
source direction, but not the other.

Figure 5 illustrates the needle maps recovered from the
synthetic images. Here, we present the results in the sin-
gle and two illuminant cases. Qualitatively, our algorithm
is able to recover a similar curvature to the ground truth. In
addition, surface smoothness as well as surface extrema and
discontinuities are also visible in our needle map. Mean-
while, Worthington and Hancock’s algorithm seems to dis-
tort the overall shape of the Ridge and creates undesirable
curvature near the boundary of the Volcano image.

5.2. Photometric Parameter Recovery

In this experiment, we first report the error on the refrac-
tive indices recovered from the synthetic images mentioned
earlier. Columns 5− 6 of Table 2 show the mean and stan-
dard deviation of the error on the value of the estimated
refractive indices, as compared to their ground truth. These
figures imply that the relative error of this estimation is in
the order of less than 2% for all the materials under study,
which have refractive indices above 1. This result suggests
that our algorithm is a potential passive method for refrac-
tive index acquisition.

Next, we verify the accuracy of the recovered model pa-
rameters through skin segmentation on real-world multi-
spectral images. To achieve this, we recover the refractive
index of materials from multi-spectral images and utilise it
as a descriptor for recognition purposes. In addition, we
also compare the results of performing our recovery algo-
rithm on single images and pairs of images of the same
scene taken under two different light directions. The de-
gree of similarity in the performance in both cases show
that the additional constraint imposed in the single-image
case is valid. This experiement is performed on an image
database of 50 human subjects, each captured under one of
10 light sources with varying directions and spectral power.

We focus our attention to the photometric invariance of
the index of refraction recovered by our algorithm and its
applications to recognition tasks. Specifically, we treat the
index of refraction as a feature vector for skin segmentation.
The segmentation task is viewed as a classification problem
where the skin and non skin spectra comprise positive and
negative classes. Here we also compare the segmentation
accuracy when using the index of refraction with the raw
reflectance spectra which has been normalised by the illu-
minant power.

To obtain the training examples, we select skin and non-
skin rectangular regions, of sizes 25×17 and 24×16 respec-
tively, from 10% of the images in the database, from which
the index of refraction and raw reflectance are extracted and
used as training features. Subsequently, we train a Support
Vector Machine (SVM) classifier with a second order poly-
nomial kernel on the training set. The resulting SVM model
is applied for classifying skin versus non skin pixels in the
remaining images of the subjects.

In Figure 6, we show the original image of a human face
captured at the wavelength of 670nm in the first column.
The skin segmentation maps making use of the index re-
fraction recovered under one and two light source directions
are shown in the middle columns. The right most column
shows the skin map recovered using the raw reflectance.
The brightness of the pixel corresponds to the likelihood
of being skin. Note that the former two segmentation maps
are similar for the subjects. This confirms the effectiveness
of our regularisers in enforcing additional constraints in the
case of single light direction. These constraints, as can
be seen, achieve a performance close to that for two light
source directions. On the other hand, the raw reflectance
spectra result in more false positives and negatives than the
index of refraction, which proves that the refractive index is
a better photometric invariant for recognition purposes.

To support our qualitative results, in Table 3, we quan-
tify the skin segmentation performance with the recovered
index of refraction and raw spectral reflectance as descrip-
tors in terms of the classification rate (CR), the correct de-
tection rate (CDR) and false detection rate (FDR). The



Shape error Refractive index error
One illuminant Two iluminants W&H One illuminant Two iluminants

Ridge 12.0± 12.3 12.8± 13.9 11.9± 9.4 0.0178± 0.0095 0.0181± 0.0096
Volcano 18.0± 12.44 18.0± 12.4 18.17± 14.6

Table 2. The accuracy of the recovered parameters. Columns 2 − 4 show the error of the recovered needle map (in degrees) compared to
the ground truth and Worthington and Hancock’s method [18]. Columns 5− 6 show the error of the estimated refractive indices compared
to their ground truth. Note that Worthington and Hancock’s method does not recover photometric variables.

CR(%) CDR(%) FDR(%)
Refractive index (1 Illuminant) 86.23± 4.27 87.06± 10.63 14.05± 3.87
Refractive index (2 Illuminants) 87.35± 1.59 88.11± 4.75 12.72± 2.98

Raw reflectance 74.43± 0.9 70.67± 2.24 21.21± 0.44

Table 3. The classification rate (CR), correct detection rate (CDR) and false detection rate (FDR) on facial images using the index of
refraction in the one and two-illuminant setting and raw reflectance spectra as descriptors for skin recognition.

correct detection rate is the percentage of skin pixels cor-
rectly classified. The false detection rate is the percentage
of nonskin pixels incorrectly classified. The classification
rate is the overall percentage of skin and nonskin pixels cor-
rectly classified. To obtain the result, we randomly select
10% of the image database as training data and compute the
average performance over 20 random tests. The results are
consistent with the skin maps shown in Figure 6 in the sense
that the average segmentation accuracy using the refractive
index in the one-illuminant and two-illuminant settings are
similar. Furthermore, the overall performance in the two-
illuminant setting is more stable due to the additional re-
flectance equations introduced by the second illuminant di-
rection. On the other hand, the raw reflectance spectra, as
before, yields lower performance in both the overall classi-
fication rate and correct detection rate. It also suffers from
a high number of false positives.

6. Conclusions
In this paper, we have provided a principled link between

shape recovery and photometric invariance. We have done
this by providing the constraints governing the recovery of
the reflectance and object shape parameters. The setting
presented here applies to a number of reflectance models
used by the computer vision and graphics communities and
is consistent with results in shape-from-shading, photomet-
ric stereo and regularisation theory. We have shown the
utility of this general set of optimisation constraints for pur-
poses of material recognition and shape recovery.
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