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Abstract. In this paper, we present a method for object of interest
detection. This method is statistical in nature and hinges in a model
which combines salient features using a mixture of linear support vec-
tor machines. It exploits a divide-and-conquer strategy by partitioning
the feature space into sub-regions of linearly separable data-points. This
yields a structured learning approach where we learn a linear support
vector machine for each region, the mixture weights, and the combina-
tion parameters for each of the salient features at hand. Thus, the method
learns the combination of salient features such that a mixture of classi-
fiers can be used to recover objects of interest in the image. We illustrate
the utility of the method by applying our algorithm to the MSRA Salient
Object Database.

1 Introduction

Saliency map is an important tool in vision research [1]. Each pixel in this map
is assigned with a measure of “relevance” or “importance” so as to reflect the
degree to which a region in the image is attractive to visual attention. The
research on visual saliency has generated a vast literature in computer vision
and found applications in many areas, such as region of interest extraction [2],
segmentation [3], tracking [4], object detection [5], thumbnailing [6] and image
retrieval and classification [7].

It has been widely accepted that visual saliency computation can be effected
in a bottom-up manner [8–11]. Departing from this strategy, Itti et al. [9] pro-
posed a computational framework for visual saliency which decomposes visual
input into component feature maps. In [12], Alter and Basri used image edges
to construct the saliency map. The work in [12] is in line with the common ap-
proach to model contour or curve saliency, where length and smoothness of the
edge points are often used [13, 14].

The combination of individual features into saliency maps can be greatly
influenced by the behavioral goal of human attention [15]. This can be con-
sidered as a top-down modulation mechanism [16]. Note that, when guided by
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observer preferences, those parts that are less related to the visual targets of vi-
sual attention can be assigned smaller contributions on the saliency map or even
completely ignored. To model this process, Navalpakkam and Itti [17] proposed
a method to maximise the signal-to-noise ratio between the mean salience of the
target and that of the distractor. Berengolts and Lindenbaum [14] also proposed
a method to recover the distribution of the edge lengths and curvature on the
region corresponding to the target of interest making use of labelled objects.
In [18], saliency maps were computed as a linear combination of features whose
weights were recovered through a linear regression model applied to manually
labeled images. Liu et al. [2] formulated the saliency detection problem as a re-
gion of interest segmentation task where learning is performed via a conditional
random field.

Note that, in some of the methods above, the same features at different
scales are added together in a linear fashion [9, 2] or modelled in a scale-space
setting [19]. This suggest that salient objects or regions with different sizes may
generate the same contribution to the final saliency map. Moreover, the intrinsic
relationships between the individual features is often overlooked. This is due to
the fact that, in existing methods, the optimisation step treats the features as
independent primitives, despite the fact that they may actually be interrelated
or highly correlated. This is even more important since, in the case of saliency
features, we often deal with a large sample size with moderate feature dimension.
Thus, for purposes of saliency learning, the features may span a space which is
nonlinear in nature. This is in contrast with other settings in computer vision
where linear classifiers can be applied on high dimensional features.

Hence, in this paper, we present a method which aims at combining salient
features through a structured learning characterisation of the problem so as to
achieve two desirable properties. Firstly, recovering a classifier model with the
efficiency of linear Support Vector Machines. Secondly, reaching the discrimina-
tion power of nonlinear classifiers. To do this, we adopt a divide-and-conquer
strategy that exploits partitioning the feature space into regions that are lin-
early separable. This is effected through a mixture of Support Vector Machines
(SVMs) where the mixture weights and the feature combination coefficients are
optimised using an Expectation-Maximisation (EM) approach. The method pre-
sented here is quite general in nature and can accommodate a number of saliency
features found in the literature. In our work, we make use of the multi-scale fea-
tures in [9] and [2], and present their natural extensions to neighbourhood-based
descriptors.

2 Structured Learning

As mentioned earlier, our object of interest detection method makes use of
saliency features and structured learning. The structured learning approach
hinges in the notion that non-linear classification can be effected in a piecewise-
linear manner across the feature space. This provides a means to efficiency
through the use of linear classifiers while preserving the flexibility of non-linear
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methods. Our probabilistic formulation employs two ingredients. The first one
is the prior probability of the mixture given a feature-set at a pixel-site on the
image. The second ingredient is the posterior probability corresponding to the
outputs for each of the linear SVMs.

2.1 Mixture of SVMs

In this section, we cast the recovery of the saliency map into a structured learning
setting. The aim is to combine the saliency features so as to perform classifica-
tion, i.e. separate salient objects from the background in the image, based upon
objects of interest provided as training data. Here, we formulate the problem
in terms of a generative model over the training data. This joint distribution
model enables us to explicitly incorporate mixture coefficients into the likeli-
hood function. Consequently, we can perform parameter learning and model
selection simultaneously by imposing a proper prior on the mixture co-efficients
based on the minimum message length (MML) criterion [20]. Parameter update
is then achieved making use of the EM algorithm [21]. For model selection, we
start with an overcomplete model and automatically prune vanishing SVM mix-
ture co-efficients. Hence structured learning is implicitly incorporated into the
optimisation process and performed in a top-down manner.

To commence, consider a set ofM tuples (X,Y ) = {(xi,l, yi)|i = 1, . . . ,M, yi ∈
{−1, 1}}, where (xi,l, yi) are the ith data-label pair in the training data corre-
sponding to the lth saliency feature, where the total number of salient feature
is N . In practice, Y accounts for the corresponding object of interest regions
provided at input. The linear SVM classifier solves the following optimisation
problem

min
w

||w||2

2
+ C

∑
i

ε(w;xi,l, yi) (1)

where ε(w;xi,l, yi) = max (1− yiwTxi,l, 0) is the Hinge loss function which spec-
ifies an upper bound on the classification error. The first term on the right hand
side is regularisation term on classifier weights. Without loss of generality, we
have subsumed the bias term b in the above formulation by appending each data
instance with an additional dimension xTi,l = [xTi,l, 1] and wT = [wT , b].

We can extend the SVM model above to a two-layer mixture model formu-
lated using the joint probability distribution over the salient regions provided
by the user and the SVM binary classifier. The model, hence, consists of two
parts. The hidden layer, which is composed of the gating network that produces
a soft-partition of the input space by generating a data-dependent weight distri-
bution. Each node in the hidden layer is connected to a linear SVM classifier in
the input layer, which is responsible for the salient object recovery.

We establish the link between the proposed mixture model and the associated
generative model using the joint probabilistic distribution over the data in X
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and the labels in Y given by

P (Y |X,Θ) =
∏
i

P (yi|xi,l, Θ) =
∏
i

∑
zi

P (yi|zi,xi,l, Θ)P (xi,l|zi, Θ)P (zi | Θ)

(2)
where i indexes data samples as before, Θ = {α, β, τ, γ} are the parameters
of the underlying model and zi is the hidden variable introduced for the ith
sample for each of the N salient features under study. In the equation above,
α and β are the multinomial parameters that generate the hidden variables
zi’s whereas τ and γ are parameters for the gating nodes and classifiers, whose
specific parametric forms will be explained later. The probability P (xi,l|zi, τ)
represents the posterior for the mixture component with hyperparameters τ , and
P (yi|zi,xi,l, γ) is the posterior probability of corresponding linear SVM output
for the ith sample.

It is worth noting that our mixture of SVMs model can also be viewed from
the perspective of graphical model due to its generative nature. From this view-
point, xi,l and yi are the target random variables whose joint distributions are to
be modeled, and zi is the hidden variable generated from a multinominal distri-
bution with parameters α = {α1, . . . , αK} and β = {β1, . . . , βN} for K-mixtures
and N features. Thus, xi,l is generated from an isotropic Gaussian distribution
with parameter τ conditional on zi, where τ = {(µ1,1, Σ1,1), . . . , (µK,N , ΣK,N )}
and µj,l and Σj,l are the mean vector and the variance for the jth mixture com-
ponent performing inference upon the saliency feature-set indexed l. The target
random variable yi is generated from a probabilistic classifier model with param-
eter γ conditional on xi,l and zi, where γ = {w1,1, . . . ,wK,N}, and wj,l is the
classifier weight-vector for the jth linear SVM corresponding to the lth saliency
feature-set. This yields

P (Y |X,Θ) =
∏
i

∑
zi

P (yi|xi,l, γ)P (xi,l|zi, τ)P (zi | α, β) (3)

The proposed model bears some resemblance with the mixture of experts
(HME) model proposed by Jacobs and Jordan [22]. Nonetheless, they are in-
herently different in nature in the sense of the probabilistic distributions they
capture. Our model captures the joint distribution of data and labels, whereas
the HME model is associated with the conditional probability distribution of
labels given the data. In the HME model, the hidden variable zi is generated
from a conditional probability distribution while in our method it arises from
a multinominal distribution with parameter α. This enables us to control the
complexity of the model implicitly by enforcing proper sparseness priors on α.

Equation 2 suggests parameter estimation can be effected via Maximum Like-
lihood Estimation (MLE) by maximising the following log-likelihood function

L(Θ) =
∑
i

logP (yi|xi,l, Θ) +
∑
j

Ω(wj,l) (4)

=
∑
i

log
{∑

l

βl
∑
j

αjP (yi|xi,l,wj,l)P (xi,l|zi, τ)
}

+
∑
j

Ω(wj,l)
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where Ω(wj,l) = log{P (wj,l)} is a log-prior term for regularisation purposes.
The last line follows from Equation 3, the definition of γ = {w1,1, . . . ,wK,N}
and the use of the shorthand P (zi | α, β) = αjβl for the jth mixture and the lth

salient feature-set. This responds to the fact that here, we view P (zi | α, β) as a
data-independent term which specifies the prior probability of the mixture and
salient feature pair at a given pixel-site on the image.

In order to incorporate the linear SVM into the log-likelihood above, we view
the associated constrained quadratic optimisation problem corresponding to the
negative log-likelihood from a probabilistic veiwpoint. Note that the second term
on the right hand side is related to the prior Ω(w), whereas the first term
corresponds to the conditional probability P (y|x,w) related to classification
errors. These are given by

Ω(wj,l) = −ζ||wj,l||2 (5)

P (yi|xi,l,wj,l) = e−ε(wj,l;xi,l,yi) (6)

Here we have omitted the normalisation factor for the conditional probability
P (yi|xi,l,wj,l), which leads to an approximation of the probability measure. This
is mainly due to the consideration regarding the use of numerical optimisation
which enables us to employ existing fast linear SVM solvers [23] for parameter
estimation. This simplification is still valid in the large margin case where the
probability of the negative class is usually very small. More importantly, the like-
lihood function in Equation 4 is guaranteed to increase using the EM algorithm,
as we discuss in the next section, regardless of whether or not P (yi|xi,l,wj,l) is
a proper probability measure over yi.

2.2 The EM Algorithm

In this section, we describe an EM algorithm for solving the mixture of lin-
ear SVMs presented in the previous section. The E-step updates the posterior
probability of assigning each sample to the component classifiers. Let Θ(t) =

{α(t)
j , β

(t)
l , µ

(t)
j,l , Σ

(t)
j,l , w

(t)
j,l |j = 1, . . . ,K; l = 1, . . . , N} be the parameters at the

current iteration, the probability of the ith sample given the jth classifier and
the lth saliency feature is given by

q
(t+1)
i,j,l =

α
(t)
j β

(t)
l P (xi,l|µ(t)

j,l , Σ
(t)
j,l )P (yi|xi,l,w(t)

j,l )∑
s

∑
u

∑
v α

(t)
u β

(t)
v P (xs,v|µ(t)

u,v, Σ
(t)
u,v)P (ys|xs,v,w(t)

u )
(7)

where s ∈ {1, . . . ,M}, u ∈ {1, . . . ,K}, v ∈ {1, . . . , N}. P (yi|xi,l,w(t)
j,l ) is given

by Equation 6, and P (xi,l|µ(t)
j,l , Σ

(t)
j,l ) is given by the following multivariate, d-

dimensional Gaussian distribution,

P (xi,l|µ(t)
j,l , Σ

(t)
j,l ) =

1√
(2π)d | Σ(t)

j,l |
exp

(
−1

2
(xi,l − µ(t)

j,l )
T
(
Σ

(t)
j,l

)−1
(xi,l − µ(t)

j,l )

)
(8)
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The M-step involves simultaneously updating the parameters for the gating
nodes and SVM classifiers so as to solve two independent optimisation prob-
lems. Parameter estimation for the gating nodes is similar to the estimation of
parameters for the Gaussian mixture model. Specifically, for the jth mixture
component and lth saliency feature we have

α
(t+1)
j =

∑
s

∑
v q

(t+1)
s,j,v∑

s

∑
u

∑
v q

(t+1)
s,u,v

(9)

β
(t+1)
l =

∑
s

∑
u q

(t+1)
s,u,l∑

s

∑
u

∑
v q

(t+1)
s,u,v

(10)

µ
(t+1)
j,l =

∑
s q

(t+1)
s,j,l xs,l∑
s q

(t+1)
s,j,l

(11)

Σ
(t+1)
j,l =

∑
s q

(t+1)
s,j,l (xs,l − µ(t+1)

j,l )T (xs,l − µ(t+1)
j,l )∑

s q
(t+1)
s,j,l

(12)

As a result, parameter estimation for the linear SVMs reduces itself to up-
dating the classifiers for reweighted samples where the weights are specified by
the posterior probabilities computed in the E-step. Specifically, for the jth linear
classifier working on the lth saliency feature we solve the following classification
problem

max
∑
i

∑
l

q
(t)
i,j,l logP (yi|xi,l, θj,l) + logP (θj,l) (13)

= max

{
−
∑
i

∑
l

q
(t)
i,j,lε(wj,l;xi,l, yi)− ζ||wj,l||2

}

where θj,l = {αj , βl, µj,l, Σj,l,wj,l} and C =
1

2ζ
. This is exactly the same prob-

lem as training linear SVMs in Equation 1 whose sample weights are given by

q
(t)
i,j,l.

2.3 Convergence

As mentioned in the sections above, the method proceeds in an iterative fashion.
At each iteration t, the method comprises the following steps

– Train the SVMs using the sample weights qti,j,l so as to recover the prob-

abilities P (yi | xi,l,w(t)
j,l ). In practice, this is equivalent to obtaining the

probabilistic output of the SVM classifiers as shown in [24].

– With P (yi | xi,l,w(t)
j,l ) at hand, compute the updated weights qt+1

i,j,l in Equa-
tion 7. These can be computed making use of the probabilities P (xi,l |
µ
(t)
j,l , Σ

(t)
j,l ) given in Equation 8 and the probabilities P (yi | xi,l,w(t)

j,l ) re-
covered in the previous step.
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– Recover the remaining parameters making use of Equations 9-12.

It should be noted that each EM iteration increases the log-likelihood given
by Equation 4. This argument can be easily established by making use of the
auxiliary function parameterised with respect to Θ(t) given by

Q(Θ;Θ(t)) =
∑
i,j,l

q
(t)
i,j,l logαj log βiP (xi,l|µj,l, Σj,l)P (yi|xi,l,wj,l)

−
∑
i

∑
j

∑
l q

(t)
i,j,l log q

(t)
i,j,l +

∑
j Ω(wj,l) (14)

which is the lower bound of L(Θ) since

L(Θ)−Q(Θ,Θ(t)) = q
(t)
i,j,l log

q
(t)
i,j,l

qi,j,l
(15)

The gap is non-negative and varnishes if and only if Θ = Θ(t). Hence, the log-
likelihood increases with the following relation

L(Θ(t+1)) ≥ Q(Θ(t+1), Θ(t)) ≥ Q(Θ(t), Θ(t)) = L(Θ(t))

The second inequality is true due to the maximisation step. Therefore, by repeat-
ing the EM steps we can obtain a convergent solution of the original maximum
likelihood estimation problem. Moreover, we can stop the iteration presented ear-
lier when the quantity ||Θ(t+1) −Θ(t)|| is less or equal to a predefined threshold
ρ.

3 Feature Extraction

So far, we have assumed the saliency features are at hand as input to our mixture
of linear SVMs. Here, we elaborate further on the saliency features used in
our experiments. It is worth noting that the developments above are general
in nature and can be applied to a large variety of saliency features. Here, we
depart from the feature map extraction methods by Itti et al. [9] and Liu et al.
[2]. We extend these two methods by considering the pixel neighbourhood, which
permits capturing the image structure during the feature extraction process. The
individual features are then used as the input to our structured learning method.

In the Salient Map (SM) method of Itti et al. [9], an input image is first
smoothed using Gaussian filters so as to generate a scale pyramid. Simple fea-
tures are then extracted at each scale to generate three types of visual cues. The
first of these is the intensity feature obtained by averaging the red, green and
blue channel-values at each pixel in the input image. By computing the differ-
ences between seven scales, 6 intensity channels are recovered. The second set of
features is based upon color and simulate the function of the cortex, which is rep-
resented by a set of color opponency between red, green and blue channel values
against the yellow basis. For each set of colour features, differences are recovered
over three scales and, hence, yield 12 channels. The third set is comprised by
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orientation features, which are given by the responses of a set of even-symmetric
Gabor filters [25]. In practice, these are treated as a Gaussian envelope mod-
ulated by a complex sinusoidal carrier. Here, we compute the responses at six
scales and four orientations, and thus, recover 24 orientation channels.

The method from Liu et al. [2], which we denote LRG, recovers saliency
making use of local, regional and global features. The first of these consists of
the local feature extracted from multi-scale contrast. For a given pixel, the image
contrast is computed as the sum of the 2-norm grayscale differences between
a pixel and its neighborhood. Then, contrast at different scales is combined
linearly. To extract the regional salient feature-set, two bounding boxes are used.
These cover the proposed salient object and its surrounding area. The differences
between the RGB color histograms for the bounding boxes are computed so as
to find the optimal center-surround aspect ratio of the object. Finally, the global
saliency features are computed from spatial color distributions. This feature can
be viewed as that represented by spatial color clusters, where colors with small
spatial variance are assigned higher salience.

Despite effective, the features above may be prone to corruption due to noise
and cluttered background. Furthermore, small objects may generate scattered
salient regions during the feature extraction process. These greatly influence
the final object of interest detection step. To solve these problems, we extend
the above mentioned features to a neighbourhood-based descriptor setting by
considering the interaction of image pixels with the neighboring pixels. Here, we
adopt a second-order Markov setting, that is, including the saliency features of
the pixels in a 3 × 3 neighborhood. In this way, we can generate a descriptor
at each pixel that contains saliency features from both the pixel itself and its
neighborhood. It can be seem in the later experiments that such extension helps
maintain the local consistency in the object of interest detection.

4 Experiments

We perform experiments on the Microsoft Research Asia (MSRA) Salient Object
Database B, which contains 5,000 images. Details on this database can be found
in [2]. Our motivation in using this dataset stems in providing results consistent
to those reported in [2] and, thus, presenting a fair comparison with the alter-
natives reported in the literature. We have randomly divided the images in the
database into two groups of 2,500 images each. One of these is used for training
and the other one for testing. At training, we set the number of SVMs for our
mixture to five, i.e. K = 5. The SVM parameters have been recovered by ten-fold
cross-validation. For our experiments, we have used four sets of features. The
first set is the colour, contrast and center-surround features in [2] (LRG), thus,
N = 3. The second set comprises the 42 channels generated from orientation,
intensity and colour features in [9](SM). In this case, N = 42. We have also used
the extensions of the features in [9] and [2] with a 3×3 neighbourhood N about
each pixel in the imagery, which we denote SM-N with N = 42 and LRG-N
with N = 3, respectively.
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To compare the learning performance of our mixture of linear SVMs (MLSVM)
with alternatives elsewhere in the literature, we also provide results yielded by
the Conditional Random Field (CRF) inference algorithm in [2] and the boost-
ing algorithm ADABOOSTREG in [26]. For the CRF algorithm, we have used
the parameters in [2], whereas for the ADABOOSTREG we have used 10 weak
learners with ten-fold cross validation so as to obtain the best set of parameters.
For our method, we have set the stoping threshold ρ for the EM iteration to

0.001 and initialised the parameters in Θ as follows. The weights α
(0)
j are set to

1
K , i.e. α

(0)
j = 1

5 . Similarly, we have set the feature weights to 1
N , which yields the

value for β
(0)
j . The means µ

(0)
j,l and covariances Σ

(0)
j,l have been computed via k-

means clustering [27]. To do this, we set k = 5 and apply k-means to each of the
feature-sets under study. With the cluster members at hand, the corresponding
means and covariances are computed.

For purposes of testing, we used the trained model to generate saliency val-
ues for each pixel. For the three methods, i.e. our approach, the CRF and the
ADABOOSTREG, the testing output is a saliency map which indicates the prob-
ability of a testing pixel being the salient object. To detect a salient object re-
gion, we apply the optimal threshold recovery method in [28] on the saliency
map. Following [2], we assume that there is only one salient object per image.
Here, we extract the region whose size is largest amongst those yielded after the
method in [28] is applied. Note that such setting is for the sake of providing an
equal comparison with results reported elsewhere rather than a limitation on
our method. More than one objects may be obtained by sequentially extracting
regions in order of their sizes.

To commence, we show sample results for the results yielded by the 12
classifier-feature pairs used in our experiments (three learning methods against
four feature sets). Figure 1 shows some examples of saliency maps recovered
by our method and the alternatives for the images on the top-most row. The
recovered objects of interest for the images shown in Figure 1 are shown in Fig-
ure 2. In the panels, the bounding boxes show the recovered regions after the
application of the method in [28] to the saliency maps. Note that, despite the
LRG-N features with the CRF inference produces results comparable to our
approach, our method provides bounding boxes more in accordance with the
ground truth. This is particularly evident for the coloured wine glasses and the
tulip images. Moreover, for other images, such as the log-cabin and the CPU
images, the LRG-N features with the CRF has slightly cropped the objects of
interest by delivering smaller bounding boxes.

We now provide a quantitative analysis using a number of performance mea-
sures. The first of these is the precision-recall measure in [2]. The precision-recall
formulation in [2] takes into account the structure of the database in our experi-
ments by using the binary masks provided as ground truth and the ones delivered
by our method and the alternatives. The second of the quantitative measures

used here is the F-score [29]. The F-score is defined as Fη = (1+η)precision×recall
η×precision+recall .

Following [30], we have set η = 0.5, which corresponds to the weighted harmonic
mean of precision-recall. Finally, we have used the boundary displacement error
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Fig. 1. Saliency map samples computed using different features and learning methods.
From top-to-bottom: Ground truth, SM+ADABOOSTREG, SM+CRF, SM+MLSVM,
SM-N+ADABOOSTREG, SM-N+CRF, SM-N+MLSVM, LRG+ADABOOSTREG,
LRG+CRF, LRG+MLSVM, LRG-N+ADABOOSTREG, LRG-N+CRF, LRG-
N+MLSVM

(BDE) [31]. In our experiments, we have followed [2] and used the fixation area
so as to compute our F-score and BDE plots. The fixation area is the small-
est rectangle containing a fixed percentage of salient pixels as delivered by our
method and the alternatives. As in [2], and so as to provide consistent results to
those reported elsewhere, the fixation area has been recovered through exhaus-
tive search.

In Figure 3 we show the overall dataset-average precision-recall plots for
the 12 combinations of saliency feature-sets and inference methods used in our
experiments. In the figure, for the sake of clarity, we have divided the plots into
two panels. On the left-hand-side, we show those plots corresponding to the SM
and SM-N features, whereas the other panels shows the results for the LRG and
LRG-N features. Note that our method (MLSVM) performs best with both, the
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Fig. 2. Sample object of interest detection results. From top-to-bottom: Ground
truth, SM+ADABOOSTREG, SM+CRF, SM+MLSVM, SM-N+ADABOOSTREG,
SM-N+CRF, SM-N+MLSVM, LRG+ADABOOSTREG, LRG+CRF, LRG+MLSVM,
LRG-N+ADABOOSTREG, LRG-N+CRF, LRG-N+MLSVM

SM-N and the LRG-N features followed by the CRF with LRG-N features and
the ADABOOSTREG taking LRG-N features as input. Note that the varying
length of the traces in the plot corresponds to the dependence of the precision-
recall measurements upon the fixation area. In our plots, each of the markers
corresponds to fixation area variations from 50% to 100% in increments of 5%.
As a result, the “flatter” and higher the precision-recall traces in the plot the
more stable the classifier-feature pair is to variations of fixation area.

Following the observation that our measures are dependent on fixation area
percentages, in Figures 4 and 5 we show the F-scores and BDE as a function of
fixation area percentage. As in Figure 3, we have plotted, on the left-hand panels,
the traces for the SM and SM-N features, while the right-hand plots correspond
to the LRG and LRG-N feature-sets. On both figures, the neighbourhood-based
saliency descriptors are always the best performers, regardless of the inference
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Fig. 3. Average precision-recall.

Fig. 4. Average F-score as a function of the fixation area percentage.

method used. In both accounts, the MLSVM with LRG-N features outperforms
the alternatives, with lower BDEs and higher F-scores across the fixation area
percentages, with ADABOOSTREG consistently delivering the worst results. It
is also worth nothing that the LRG based features shows better F-score and
BDE results than SM based features. This is consistent with Figures 1, where
the topmost six rows, corresponding to the results yielded using the SM and
SM-N features, show regions which are less well defined than the panels in the
bottom rows. The notion that the LRG and LRG-N features provide better per-
formance is confirmed by the F-score results. Nonetheless, for all the quantitative
measures in our experiments, the MLSVM provided a margin of advantage over
the alternative learning methods.

5 Conclusions

In this paper, we have presented a mixture of Linear SVMs for purposes of
learning how to detect a salient object. The method presented here employs a
mixture of linear SVMs so as to partition the feature space into sub-regions which
are linearly separable. This is a divide-and-conquer approach which allows the
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Fig. 5. Boundary Displacement Error as a function of the fixation area percentage.

recovery of the mixture weights and the feature combination coefficients making
use of the EM algorithm. We have illustrated the utility of the method for
purposes of recovering objects of interest in the MSRA Salient Object Database
and compared our results to a number of alternatives. We have also provided
neighbourhood-based descriptor extensions to the features presented in [2] and
[9]. Note that the proposed method is quite general and can be applied to many
other types of features which, in contrast with those used here, may not be local
in nature.
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