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Abstract

In this paper, we present a method to recover the parameters governing the reflection of

light from a surface making use of a single hyperspectral image. To do this, we view the

image radiance as a combination of specular and diffuse reflection components and present a

cost functional which can be used for purposes of iterative least squares optimisation. This

optimisation process is quite general in nature and can be applied to a number of reflectance

models widely used in the computer vision and graphics communities. We elaborate on the use

of these models in our optimisation process and provide a variant of the Beckmann-Kirchhoff

model which incorporates the Fresnel reflection term. We show results on synthetic images

and illustrate how the recovered photometric parameters can be employed for skin recognition

in real world imagery, where our estimated albedo yields a classification rate of 95.09±4.26%

as compared to an alternative, whose classification rate is of 90.94 ± 6.12%. We also show

quantitative results on the estimation of the index of refraction, where our method delivers

an average per-pixel angular error of 0.15 degrees. This is a considerable improvement with

respect to an alternative, which yields an error of 9.9 degrees.
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1 Introduction

In this paper, we focus on the recovery of the parameters governing the reflection of light from

objects in the scene as captured by imaging spectroscopy sensors. The modeling of surface re-

flectance is a topic that is of pivotal importance, and has hence attracted considerable effort in both

computer vision and computer graphics.

In graphics, the problem is of interest since it allows physically realistic images of synthetic

surfaces to be generated. In computer vision, the modeling of surface reflectance has attracted

considerable attention due to its relevance to scene analysis and image understanding. For instance,

Nayar and Bolle [33] have used photometric invariants derived from the BRDF to recognise objects

with different reflectance properties. This work builds on that reported in [32], where a background

to foreground reflectance ratio is introduced. In a related development, Dror et al. [9] have shown

how surfaces may be classified from single images through the use of reflectance properties.

Estimation of reflectance parameters is also closely related to the problem of recovering the

shape of an object from its shading information. The classic approaches to shape from shading

developed by Ikeuchi and Horn [21], and by Horn and Brooks [15], hinge on the compliance with

the image irradiance equation and local surface smoothness. Zheng and Chellappa [55] proposed a

gradient consistency constraint that penalises differences between the image intensity gradient and

the surface gradient for the recovered surface. Moreover, although shape-from-shading [15] usu-

ally relies on the assumption of Lambertian reflectance [25], photometric correction or specularity

subtraction may be applied as a preprocessing step to improve the results obtained. For instance

Brelstaff and Blake [6] used a simple thresholding strategy to identify specularities on moving

curved objects. Other lines of research remove specularities by either using additional hardware

[33], imposing constrains on the input images [28], requiring color segmentation [24] as post-

processing steps, or using reflectance models to account for the distribution of image brightness

[39].

Alternatively, the BRDF can be used to compute a reflectance map, to which a number of shape-

from-shading methods may be applied [16, 14]. The methods used to model or approximate

the BRDF can be divided into those that are physics-based, semi-empirical [37, 53] or empiri-

cal [25, 38, 45] in nature. Although the literature from physics is vast, it is perhaps the work of

Beckmann on smooth and rough surface reflectance that is better known in the vision and graphics

communities [2]. While it is based on physically meaningful surface parameters, the Beckmann
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theory relies on the evaluation of the Kirchoff wave scattering integral and breaks down when the

surface roughness or the scattering angle are large. To overcome this problem, Vernold and Har-

vey [51] have developed a model which accounts for self shadowing on rough surfaces. Ragheb

and Hancock [40] have exploited this modification of the Beckman-Kirchoff theory to develop a

means of measuring surface roughness parameters using reflectance. Another widely used physics-

based model that accounts for specular reflectance by modeling the angular distribution of surface

microfacets is that in [49]. A survey of reflectance and shading models can be found in [43].

For purposes of estimating the reflectance properties and light source direction of a scene,

Ikeuchi et al. [22] have proposed an iterative least square optimisation based based on a sim-

plified Torrance-Sparrow reflectance model. The algorithm in [22] recovers the surface reflectance

properties and light source direction from a range and a brightness image. With known geometry

of the scene, Sato et al. [41] have utilised brightness values within shadows to solve a system of

equations to simultaneously recover reflectance parameters and illumination distribution. Tomi-

naga et al. [48] have proposed a method for estimating various reflection parameters of the Phong

reflectance model [38] along with shape, illumination direction and color from a single image.

However, all of these methods assume that the light source and viewing positions are located at

infinity. Therefore these methods do not offer a solution for real scenes under light and viewing

positions at finite distances which do not follow parallel illumination and orthogonal projection.

Later, based on the simplified Torrance-Sparrow reflectance model, Hara et al. [13] have developed

a method without the distant illumination and orthogonal projection assumption that estimates re-

flectance property and light source position from a single image. However, their method still

requires prior knowledge of the 3D shape of the scene that narrows down the applicability of this

approach. Following a similar approach, the method by Boivin et al. [4] recovers reflectance prop-

erties of different surfaces from a single image. With known illumination, camera properties, and

3D geometric model, this method iteratively fits multiple reflection models from the simplest to

the most complex one until the error between original and estimated image becomes less than a

predefined threshold.

We note that a number of models in the literature employ object shape, index of refraction, re-

flectance, and a measure of surface roughness to embody the surface reflectance. These models

[2, 49, 7, 53] also incorporate a Fresnel term [5]. Moreover, the reflectance and index of refraction

are, in general, wavelength dependant. This leads to the natural extension of these techniques to

multispectral and hyperspectral image understanding. However, the recovery of reflection parame-
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ters from a single hyperspectral image is relatively under researched. The method in [19], based on

Dichromatic reflectance model, recovers the illuminant power spectrum and Dichromatic parame-

ters in a structural optimisation setting. However, this method does not consider the wave-length

dependency of the specular reflection. In [18], an iterative optimisation approach is presented.

The method is applicable to a number of reflectance models [2, 49, 53] and able to recover shape

and reflectance parameters from a single image with known illumination direction. Both of these

approaches are based on a distant light source assumption and, hence, can break down when ap-

plied to real scenes under light and viewing positions at finite distances. Furthermore, in [18], the

wave-length dependency of diffuse albedo is ignored and the surface reflectance is not modelled as

a composition of both specular and diffuse components but rather the focus is in the optimisation

of the model under consideration using Euler-Lagrange equations.

Here, we present a method to recover the reflectance model parameters as a function of wave-

length. We do not require prior knowledge on the geometry of the scene nor assume a point light

source at infinity. Given a known illumination direction and a single image at input, we depart from

a general formulation that hinges in the notion that the light reflected from an object can be deemed

to be either specular or diffuse. This permits the recovery of the reflection parameters through an

optimisation approach, whose target function is a linear combination of both, the specular and the

diffuse reflection components. This, together with the use of Cauchy’s and Sellmeier’s expansions

[5] permits the recovery of the index of refraction governing the Fresnel term of models such as

Cook and Torrance’s [7], Torrance and Sparrow’s [49], Beckmann-Kirchoff’s [2] and Wolff et al.’s

[53].

The paper is organised as follows. We commence by expressing the object reflection as a linear

combination of a diffuse and a specular component. With this linear combination at hand, we

proceed to formulate the problem in an optimisation setting in Section 3. Further discussion is

provided in Section 4, where we show how the linear combination presented in Section 2 can be

expressed in terms of models elsewhere in the literature. Here, we focus on the use of those models

in [7, 49, 2] and [53]. We describe implementation issues in Section 5 and present results for our

method on synthetic data and real-world imagery in Section 6, where we also compare against a

number of alternatives. Finally, in Section 7, we conclude on the developments presented here.
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2 Recovering Reflectance Model Parameters

As mentioned earlier, our aim is to recover the reflectance model parameters. Nonetheless, there

are a wide variety of reflectance models, we can depart from a generalist view of the reflection

process based upon a physical interpretation, where the geometry of the scene, photogrammetric

variables and wavelength dependent Fresnel term are used to describe the image formation process.

From this general viewpoint, we can then cast the recovery of the reflection parameters in an

optimisation setting.

2.1 General Reflectance Model

Here, we adopt a quite general approach applicable to a number of reflectance models in the ex-

isting literature [53, 49, 2, 7]. We formulate the general reflectance model as a linear combination

of two reflection components, namely diffuse and specular. This concept of modelling the scene

radiance as a linear combination of two components was formally proposed by Shafer through the

Dichromatic reflectance model [45]. Furthermore, this is consistent with a number of references

elsewhere in the literature [53, 18, 7].

It is worth noting in passing that optimisation approaches have been used in computer vision to

recover the illuminant [10] and the surface normals [15]. As per the recovery of the reflectance,

Fresnel reflection and other parameters, Weyrich et al. [52] have fit a BRDF model to the acquired

data. In [18], the authors use Euler-Lagrange equations to recover the reflectance parameters cor-

responding to a number of reflectance models. These approaches follow the assumption that, given

enough data, the reflectance parameters may be recovered accordingly. Note that, in our case, hy-

perspectral imaging does provide an information-rich representation of the scene which delivers a

large amount of data and allows the wavelength dependence to be introduced into the optimisation

process. This is similar rationale to that used in Weyrich et al’s [52] work, where large amounts of

trichromatic data is acquired using parallel hardware for purposes of fitting.

Here, we further express the diffuse term and specular term as a function of reflection angle

variables, photogrammetric variables and wavelength dependent index of refraction. Note that, a

number of reflectance models follow a local coordinate system which corresponds to the reflection

geometry given in the left-hand panel of Figure 1. This geometry is defined with respect to a

local coordinate system whose origin is the surface location and where the z′-axis is aligned to the

normalised local surface normal ~N . In the figure, we have denoted the unit incident light direction
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Figure 1: Left-hand panel: Geometry of reflection showing the angular variables in a local coordi-

nate system as used in Equation 1; Right-hand panel: Global coordinate system corresponding to

the reparameterisation in Equation 2.

vector ~L, with slant θi and tilt φi. Also, following the costume in the literature, we denote the unit

view vector as ~V , whose slant is θs and tilt is φs. The unit half-way vector is denoted by ~H and is

given by the angular bisector of ~L and ~V , i.e. ~H =
~L+~V

|~L+ ~V |
. We denote the angle between ~N and ~H

as θh.

Making use of the reflection geometry in Figure 1, the illuminant power spectrum L(λl), the

image radiance at pixel u and wavelength λl is given by,

f(u, λl) = Wdiff (u)fdiff (L(λl),Θ(u), ρ(u, λl), η(u, λl))

+Wspec(u)fspec (L(λl),Θ(u), σm(u), η(u, λl))
(1)

In the equation above, the first term on the right-hand-side corresponds to the diffuse reflection

component where fdiff (·) stands for the diffuse image radiance and Wdiff denotes the weight

of the diffuse term. The second term on the right-hand-side describes the specular component

where fspec(·) denotes specular image radiance and Wspec denotes the weight of the specular term.

In Equation 1, fdiff (·) is expressed as a function of the reflection angular variable-set Θ(u) =

{θi, φi, θs, φs, θh}, wavelength dependent diffuse albedo ρ(u, λl), and index of refraction η(u, λl).

On the other hand, fspec(·) is expressed as a function of the reflection angular variable-set Θ(u),

microfacet slope σm(u), and wavelength-dependent refracted index η(u, λl).

Further, if the illumination direction is known, we can replace the reflection angle variables by

6



surface gradients and reparameterise the general reflectance model with respect to surface gra-

dients. The benefit of doing this is that such a reparameterisation implies that the number of

geometric variables is two per pixel, i.e. p(u) and q(u). This reduces the number of reflectance

equations needed to estimate the surface normal ~N at pixel u. This reparameterisation is effected

by making use of the viewer-centered coordinate system shown in the right-hand panel of Figure 1.

As a result, the (x, y)-axes correspond to the image row and column directions. This implies that,

by definition, the surface normal ~N at u is [−p(u),−q(u), 1]T . This yields the reparameterised

image radiance given by

f(u, λl) = Wdiff (u)fdiff (L(λl), p(u), q(u), ρ(u, λl), η(u, λl))

+Wspec(u)fspec (L(λl), p(u), q(u), σm(u), η(u, λl))
(2)

In such a coordinate system, the z-axis is lined-up with the optical axis and the positive x–axis

points toward the right-hand side of the field of view. It is worth noting that this reparameterisation

can be viewed as a rotation of the local coordinate system which aligns the viewer direction with

the z-axis making use of the rotation matrix R as follows

z = Rz
′

(3)

Reflecting the notion that, in the local coordinate system, the surface normal is lined up with

the z′-axis, whereas in the global coordinate system, the viewer is aligned with the z-axis we can

rewrite Equation 3 as follows

[0, 0, 1]T =
1√

p2 + q2 + 1
R[−p(u),−q(u), 1]T (4)

where we have assumed a normalised surface normal and used the fact that, in our global coordinate

system, the viewer direction becomes [0, 0, 1]T .

2.2 Target Function

Given the illumination direction and a single hyperspectral image at input, we aim at recovering

the reflectance parameters, i.e. index of refraction, albedo, microfacet slope, and surface normals.

In our formulation, we depart from Equation 2 in order to express the diffuse and specular term of

the image radiance as a function of the surface gradients, photogrammetric variables (microfacet

slope and wavelength dependent diffuse albedo) and wavelength dependent index of refraction.

We also recover the weights Wdiff (u) and Wspec(u).
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Our method is an iterative one which employs a cost function C(I) defined over the hyper-

spectral image I. Here, we have expressed our cost function as the summation of two other cost

functionals Cdiff (I) and Cspec(I), where Cdiff is couched as the squared difference between the

image diffuse spectral radiance Idiff and the first term on the right-hand-side of Equation 2. The

other cost functional, denoted by Cspec, corresponds to the squared difference between the image

specular radiance Ispec and the last term on the right-hand-side of Equation 2.

Thus, our cost function is given by

C(I) , Cdiff (I) + Cspec(I) (5)

where

Cdiff (I) ,
∑
u∈I

∑
λl∈W

[
Idiff (u, λl)−Wdiff (u)fdiff

(
L(λl), p(u), q(u), ρ(u, λl), η(u, λl)

)]2

(6)

can be viewed as a data term corresponding to the diffuse image radiance and

Cspec(I) ,
∑
u∈I

∑
λl∈W

[
Ispec(u, λl)−Wspec(u)fspec

(
L(λl), p(u), q(u), σm(u), η(u, λl)

)]2

(7)

is the converse for the specular component of I. In the equations above, W is the wavelength

range for the imagery under consideration.

Note that, by making use of the linear combination in Equation 5, we can separate the image

radiance into its diffuse and specular components using a specularity removal method such as

those in [47] or [28]. This separation responds to the observation that, in Equation 2, the albedo

ρ(·) and Wdiff contribute only to the diffuse component, whereas σm and Wspec contribute only to

the specular component. Moreover, the index of refraction η(·) and surface gradients p(u), q(u)

influence both the specular and diffuse terms.

Therefore, we can adopt an optimisation approach where our aim of computation is the recovery

of ρ(·) and Wdiff by maximising Cdiff such that

(ρ∗(u, λl),W
∗
diff (u))← argminρ(u,λl),Wdiff (u)Cdiff (I) (8)

In a similar manner, we note that the microfacet slope σm(u) and weight Wspec(u) can be recov-

ered by optimising Cspec(I) as follows

(σ∗m(u),W ∗
spec(u))← argminσm(u),Wspec(u)Cspec(I) (9)
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Finally, if the weights W ∗
spec(u) and W ∗

diff (u), albedo and microfacet slope are available, the

index of refraction η(·) and surface gradients p(u), q(u) can be computed by optimising the com-

bined cost function C. This can be expressed as

(η∗(u, λl), p
∗(u), q∗(u))← argminη(u,λl),p(u),q(u)C(I) (10)

Thus, by expressing Equation 5 in terms of Cspec(·) and Cdiff (·), we obtain twice as many

data terms for the estimation of the index of refraction and the surface shape. Furthermore, we

can estimate the albedo ρ(·) and the weight Wdiff by extremising the cost function in Equation 6

alone. Analogously, the microfacet slope σm and the weight Wspec can be estimated making use of

Equation 7. Since these two sets of parameters can be estimated independently, this treatment also

opens-up the possibility of effecting these two optimisation steps in parallel and, once the optimal

values of σm,Wspec, ρ(·), andWdiff are in hand, the index of refraction η(·) and the surface normal

~N = [−p(u),−q(u), 1]T at pixel u can be estimated.

3 Optimisation Procedure

Here, we opt for a coordinate descent [12] optimisation scheme. This approach is shared with

other methods elsewhere in the literature [19, 13, 41], where the complexity of the multivarible

optimisation problem is tackled by optimising comparatively simple scalar subproblems.

The idea is to minimise the multivariable cost function C(I) in Equation 5 by minimising it

along one coordinate direction at a time while keeping all other coordinates fixed. Thus, the multi-

variable problem is actually solved by computing a sequence of scalar minimisation subproblems,

where each of these is either a linear or a non-linear least square optimisation depending on whether

or not the cost function is linear in the coordinate space, i.e. the variable under consideration. This

provides the additional advantage that, for the linear least square subproblems, the cost function

is variable-wise convex and, thus, a globally optimal solution is guaranteed. For the non-linear

least squares, the measure of non-linearity and the ability to chose an initial estimate close to the

optimal value effectively determines whether the method will converge to a global minimum.

The algorithm thus proceeds as follows. At each iteration it recovers ρ(u, λl), Wdiff (u), σm(u),

Wspec(u), η(u, λl) and {p(u), q(u)} in interleaved separate minimisation steps. Once it estimates

one parameter, the current estimate is used to obtain the remaining parameters. This is, in effect, an

update process where the iterations proceed until convergence is reached. The algorithm terminates
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when none of the parameters change between two successive iterations by an amount greater or

equal to a predefined threshold and/or when maximum number of iteration is completed.

For the least square optimisation involved we have selected the Levenberg–Marquardt method

[27, 29]. This method is actually a combination of the gradient descent and the Gauss–Newton

method and efficiently utilises the complimentary advantages of these two methods. Being con-

trolled by the value of a damping parameter, the method acts more like a gradient descent method

when the parameters are far from their optimal value, whereas, it acts more like the Gauss-Newton

method when the parameters are close to their optimal values. The method adaptively controls its

own damping and this feature makes it applicable to a wide variety of problems. It increases the

damping if a step fails to reduce the error; otherwise it decreases the damping. Thus it defensively

navigates a region of parameter space in which the model is highly nonlinear [26]. For updating the

damping parameter, we adopt the strategy proposed in [36]. This is as it assures faster convergence

than that originally proposed by Marquardt [29]. More importantly, it offers protection against a

rank-deficient Jacobian and, therefore, it prevents the errors caused by singular Hessian matrices

often found when the parameter space is highly nonlinear.

In the following subsections, we elaborate further on the step sequence of our algorithm, which,

for the reader’s reference, we have summarised in the pseudo code shown in Algorithm 1. At input,

our algorithm takes a hyperspectral image I whose pixel values correspond to the spectral radiance

I(u, λl) for each of the wavelength-indexed bands
{
λ1, ...., λ|W|

}
.

At this point, it is worth noting in passing that, following [15], we can write the image radiance

as the product of the light power spectrum and the reflectance R(u, λl), i.e.

I(u, λl) = L(λl)R(u, λl) (11)

The expression above has been used widely in the literature [23] and is consistent with reflectance

models elsewhere, such as that in [10]. Indeed, this treatment allows for the estimation of the

illuminant power spectrum L(λl) a priori, which we estimated using the method in [19], so as to

recover the image reflectance R(u, λl). With the image reflectance in hand, we separate R(u, λl)

into the diffuse and specular reflectance Rdiff (u, λl) and Rspec(u, λl) using the method presented

in [47]. This can be done without any loss of generality due to the manner in which we have

expressed the image radiance in Equation 2, which is consistent with the relation R(u, λl) =

Rdiff (u, λl) +Rspec(u, λl). These two steps are listed under the preprocessing tag in Algorithm 1.

Here, we would like to stress that we use one of existing specularity removal methods as a
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preprocessing tool. This is not exclusive to our method but rather common across other reflectance

parameter estimation approaches [13, 31]. Specularity removal is often used to decompose the

image radiance into specular and diffuse reflection. Thus, there has been a considerable amount

of research on separating reflectance components. This literature is not the focus of the work

presented here and, therefore, we refer the interested reader to the survey in [1].

Note that, here, we employ different reflectance models in order to recover the relevant param-

eters. These are summarised in Table 1. The accuracy of these is expected to dependent on the

diffuse-specular separation. Nonetheless, our method is not overly affected by errors on the specu-

larity removal. This is as the only parameter which is exclusive to the specular pixels is the micro-

facet slope σm(u), which is shared by both, the Torrance-Sparrow [49] and Beckmann-Kirchhoff

[2] models. This, de facto, constrains the estimation further. This is an important observation since

diffuse pixels tend to be more abundant in images as compared to specular ones. Furthermore, in

our experience, the errors in the specularity removal tend to be more evident at grazing angles,

which does not overly affect the estimation of the albedo and index or refraction.

Broadly speaking, the reflectance component separation methods can be categorised into two

classes, i.e. color-based and polarization-based methods. Color-based methods can not estimate

the diffuse component when the object is white whereas polarization-based methods are only appli-

cable to materials whose molecules are isotropically arranged, e.g. plastics, paints, papers, metals,

woods, clothes, glasses, or liquids. Moreover, in practice, polarizers often fail to remove strong

specularities in objects made of materials such as metals, glasses, or liquids [30]. As a result,

here we adopt the color-based component separation technique in [47]. Although this method is

based on trichromatic image, it is quite straightforward to apply this to a hyperspectral image. This

method requires illumination spectrum normalisation, so the spectra of illumination, L(λl) need to

be known beforehand. For us, it is not a problem as we are estimating L(λl) at the preprocessing

step of our algorithm. We then normalise image radiance by dividing it by illuminant spectrum for

all λl ∈ W and provide the method the normalised image intensity value as input. Note that other

specularity removal methods elsewhere in the literature may also be used.

To initialise the surface normal parameters p(u) and q(u), we follow Worthington and Hancock

[54] and make use of the image gradients. Recall that, in [54], the parameters p(u) and q(u)

are initialised making use of a gray-scale image. This is in contrast with our imagery, which is

wavelength indexed. To tackle this problem, we note that, from robust statistics [17], it can be

shown that, if the estimation errors are normally distributed with zero-mean, the expected value
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can be used as an unbiased estimator. Thus, we have

p(u) =
1

| W |

|W|∑
l=1

∂Rdiff (u, λl)

∂x
and q(u) =

1

| W |

|W|∑
l=1

∂Rdiff (u, λl)

∂y
(12)

The rest of the variables are initialised with random values in the interval [0, 1].

3.1 Recovery of Diffuse Reflectance Parameters

As mentioned earlier, the structure of the cost function in Equation 5, permits the recovery of

albedo ρ(u, λl) and diffuse weightWdiff , making use of the diffuse radiance devoid of the specular

reflection. As a result, in this subsection, we focus on these two parameters, whereas in Subsections

3.2 and 3.3, we turn our attention to other photometric variables and object’s shape.

3.1.1 Recovery of Diffuse Albedo

To commence, we recover ρ(u, λl) at each pixel u ∈ I and wavelength λl ∈ W given the current

estimate of index of refraction η(u, λl), diffuse weight Wdiff (u), and surface gradients p(u), q(u)

as recovered at the previous iteration. This corresponds to Lines 3-7 of Algorithm 1. As the albedo

only contributes to the diffuse component of reflectance, we estimate it making use of the diffuse

term in cost function in Equation 6. Moreover, to recover ρ(u, λl) at each pixel u and wavelength

λl, we optimise over the neighborhood Ωu of u, this yields

ρ∗(u, λl) = argminρ(u,λl)

∑
vεΩu

[
Rdiff (v, λl)−

Wdiff (v)

L(λl)
fdiff

(
L(λl), p(v), q(v), ρ(v, λl), η(v, λl)

)]2

(13)

where we have introduced the illuminant power spectrum L(λl) so as to express the squared differ-

ence above in terms of diffuse reflectance as an alternative to the diffuse image radiance. Hereafter,

we will employ this formalism for the sake of consistency.

Furthermore, note that, for each material in the image under consideration, the diffuse albedo is

uniform across the scene. Thus, after recovering ρ∗(u, λl) for all the pixels in the image, we cluster

the corresponding diffuse albedo into {r1, ......, rc} regions. This implies that each region r repre-

sents a unique material with unique diffuse albedo. By assuming normally distributed estimation

errors with zero-mean, we can further improve our estimate of ρ(u, λl) in Lines 8-10 of Algorithm

1 by taking the expected value over all pixel u ∈ r as given by

ρ(u, λl) =
1

| r |
∑
uεr

ρ∗(u, λl) (14)
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Algorithm 1 Estimating reflectance model parameters

Input: The hyperspectral input image I whose pixel values correspond to the measured

spectral radiance I(u, λl) indexed to wavelength λl ∈ W .

Output: {ρ(u, λl), η(u, λl), σm(u),Wspec(u),Wdiff (u), p(u), q(u)} | ∀u ∈ I, λl ∈ W

Preprocessing: (i) Estimate the illuminant power spectrum L(λl) using the method in [19]

so as to compute R(u, λl) from I(u, λl) using Equation 11.

(ii) Separate R(u, λl) into Rdiff (u, λl) and Rspec(u, λl) using the method in [47].

1: t← 1

2: while true do

3: for all u ∈ I do

4: for all λl ∈ W do

5: ρ∗(u, λl)←− argminρ(u,λl) Cdiff (I) |Wdiff (u)t−1,η(u,λl)t−1,p(u)t−1,q(u)t−1

6: end for

7: end for

8: for all r ∈ I do

9: ρ(u, λl)
t ←− 1

|r|
∑
u∈r
ρ∗(u, λl) ,∀u ∈ r, λl ∈ W

10: end for

11: for all u ∈ I do

12: Wdiff (u)t ←− argmin
Wdiff (u)

Cdiff (I) |ρ(u,λl)t,η(u,λl)t−1,p(u)t−1,q(u)t−1

13: end for

14: for all u ∈ S do

15: σm(u)t ←− argminσm(u) Cspec(I) |Wspec(u)t−1,η(u,λl)t−1,p(u)t−1,q(u)t−1

16: end for

17: for all u ∈ S do

18: Wspec(u)t ←− argmin
Wspec(u)

Cspec(I) |σm(u)t,η(u,λl)t−1,p(u)t−1,q(u)t−1

19: end for

13



20: for all u ∈ I do

21: for all λl ∈ W do

22: η∗(u, λl)←− argminη(u,λl) C(I) |ρ(u,λl)t,Wdiff (u)t,σm(u)t,Wspec(u)t,p(u)t−1,q(u)t−1

23: end for

24: end for

25: for all u ∈ I do

26: Ck(u)t = argminCk(u)

∑
λl∈W

(
η∗(u, λl)−

M∑
k=1

Ck(u)t−1λ
−2(k−1)
l

)2

27: for all λl ∈ W do

28: η̂(u, λl)
t =

M∑
k=1

Ck(u)tλ
−2(k−1)
l

29: end for

30: end for

31: for all r ∈ I do

32: η(u, λl)
t ←− 1

|r|
∑
u∈r
η̂(u, λl) ,∀u ∈ r, λl ∈ W

33: end for

34: for all u ∈ I do

35: [p(u)t, q(u)t]←− argminp(u),q(u) C(I) |ρ(u,λl)t,Wdiff (u)t,σm(u)t,Wspec(u)t,η(u,λl)t

36: end for

37: converge←
∑
u∈I

∑
λl∈W

δ
(
ρ(u, λl)

)
6 ε and

∑
u∈I

∑
λl∈W

δ
(
η(u, λl)

)
6 ε and

∑
u∈I

δ
(
σm(u)

)
6 ε

38: and
∑
u∈I

δ
(
Wdiff (u)

)
6 ε and

∑
u∈I

δ
(
Wspec(u)

)
6 ε and

∑
u∈I

δ
(
{p(u), q(u)}

)
6 ε

39: if converge or t > tmax then

40: break

41: else

42: t← t+ 1

43: end if

44: end while

45: return ρ(u, λl), η(u, λl), σm(u),Wspec(u),Wdiff (u), p(u), q(u)

14



over all the material regions in the scene.

3.1.2 Recovery of Diffuse Weight

As mentioned earlier, we also recover the diffuse weight Wdiff at each pixel u ∈ I. This is done

making use of the optimal value of diffuse albedo ρ(u, λl) yielded by the optimisation in Equations

13 and 14 and the other parameters, i.e. the index of refraction η(u, λl) and surface gradients p(u)

and q(u) recovered at the previous iteration. This process is outlined in Lines 11-13 of Algorithm

1.

The diffuse weight determines the contribution of the diffuse reflectance in the linear combi-

nation in Equation 2. We, therefore, estimate this parameter by optimising the cost function in

Equation 6 making use of the fact that the diffuse weight should be fixed over the wavelength

domain. Thus, our optimisation is effected per-pixel such that

W ∗
diff (u) = argmin

Wdiff (u)

|W|∑
l=1

[
Rdiff (u, λl)−

Wdiff (u)

L(λl)
fdiff

(
L(λl), p(u), q(u), ρ(u, λl), η(u, λl)

)]2

(15)

3.2 Recovery of Specular Reflectance Parameters

3.2.1 Recovery of Microfacet Slope

With the diffuse albedo and weight, we now focus in the recovery of the microfacet slope and

the specular weight. As the microfacet slope only influences the specular reflection, it cannot

be estimated for matte pixels, which do not convey any information on the specular reflection

parameters. As a result, we only estimate σm for those pixels u ∈ S, where S is the set of specular

pixels in I.

With the optimal values of specular weight Wspec(u) and the index of refraction η(u, λl) com-

puted at the previous iteration, we recover the microfacet slope making use of the optimisation

corresponding to

σ∗m(u) = argminσm

|W|∑
l=1

[(
Rspec(u, λl)−

Wspec(u)

L(λl)
fspec(L(λl), p(u), q(u), σm(u), η(u, λl))

)2

+αR
]

(16)

this accounts for Lines 14-16 of Algorithm 1 and is consistent with the fact that every wavelength-

indexed band for the pixel u share the same σm.
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Here, we have also introduced a regularisation term R where α is a constant that determines

the contribution of the regulariser to the optimisation process. A number of regularisation schemes

can be used, these span from curvature constraints as applied in shape-from-shading [54] to surface

integrability [11]. Since, in practice, σm should not overly vary over the neighborhood of the pixel

u, here we employ a regularisation term which enforces a smoothly varying microfacet slope given

by

R =
∑
vεΩu

(σm(u)− σm(v))2 (17)

3.2.2 Recovery of Specular Weight

This parameter determines the contribution of specular component of reflectance in the linear com-

bination in Equation 2. We, therefore, estimate this parameter by optimising cost function in Equa-

tion 7 so as to encourage data closeness between the measured specular reflectance Rspec and the

specular term in Equation 2. For totally diffuse pixels, the specular weight should be zero. Our

method therefore estimates Wspec for each pixel u ∈ S given the optimal value of microfacet slope

σm(u) estimated using Equation 16 and the current estimates of the refractive index η(u, λl) and

surface gradients p(u), q(u). This corresponds to Lines 17-19 in Algorithm 1.

In a manner analogous to the diffuse weight recovered in Subsection 3.1.2, Wspec varies per

pixel, remaining fixed over the wavelength domain. Thus, we optimise over the wavelength-

indexed bands as follows

W ∗
spec(u) = argmin

Wspec(u)

|W|∑
l=1

[
Rspec(u, λl)−

Wspec(u)

L(λl)
fspec

(
L(λl), p(u), q(u), σm(u), η(u, λl)

)]2

(18)

3.3 Recovery of Index of Refraction and Object’s Shape

3.3.1 Recovery of Index of Refraction

Finally, we turn our attention to the two parameters that apply to both, specular and diffuse reflec-

tion. Here, we estimate the index of refraction by noting that each material has its own unique

refracted index defined over the spectral domain. Thus, our algorithm recovers the index of refrac-

tion per material. Further, following [20], we have constrained the index of refraction to follow

Cauchy’s dispersion equation [5].
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Analogous to our approach to recover the diffuse albedo, we first estimate the index of refraction

per pixel. Then, we refine our estimated value by updating η(·) per material making use of the

expected value over all pixels belonging to each material in the scene. Since η(·) contributes

to both, the specular and diffuse component of reflection, we optimise using the cost function in

Equation 5, which comprises the data closeness terms for both, the specular and diffuse reflectance.

This is depicted in Lines 20-24 of Algorithm 1. Here, in a manner akin to Subsection 3.2.1,

we assume that, at each wavelength λl, η(·) varies slowly about the neighborhood of pixel u.

Therefore, we optimise over Ωu, i.e. the neighborhood of pixel u, so as to recover η(·) at pixel u

and wavelength λl as follows

η∗(u, λl) = argminη(u,λl)

∑
v∈Ωu

[(
Rdiff (v, λl)−

Wdiff (v)

L(λl)
fdiff

(
L(λl), p(v), q(v), ρ(v, λl), η(v, λl)

))2

+

(
Rspec(v, λl)−

Wspec(v)

L(λl)
fspec (L(λl), p(v), q(v), σm(v), η(v, λl))

)2
]

(19)

and, with the per-pixel estimates at hand, We constrain the refractive indexes to follow Cauchy’s

dispersion equation.

Recall that Cauchy’s equation is an empirical expression relating the refractive index to the

wavelength through material specific dispersion coefficients. To enforce Cauchy’s dispersion, we

first estimate dispersion coefficients by fitting Cauchy’s equation to the estimated index of refrac-

tion as follows

C∗k(u) = argminCk

|W|∑
l=1

(
η∗(u, λl)− M

∑
k=1

Ck(u)λ
−2(k−1)
l

)2

(20)

Here, the coefficients Ck(u), kε {1, ....,M} can be viewed as a characteristic of the material. In

Algorithm 1, Lines 25-30 we recover the M dispersion coefficients at each pixel u by optimising

over the corresponding wavelength-indexed bands. With the estimated dispersion coefficients, the

index of refraction can be updated, as shown in Line 28 of Algorithm 1, using the expected value

for Cauchy’s equation given by

η(u, λl) =
1

| r |
∑
uεr

M∑
k=1

C∗k(u)λl
−2(k−1) (21)

where we have used the regions recovered while updating the diffuse albedo.
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3.3.2 Recovery of Surface Normal

We now proceed to recover the object surface gradients making use of the viewer-centered global

coordinate system presented in Section 2.1. Recall that, on our viewer-centered coordinate system,

the surface normal ~N can be expressed in terms of surface gradients. As a result, the vectors

[1, 0, p]T and [0, 1, q]T are, hence, tangent to the surface. By definition, the surface normal is

perpendicular to all vectors in the tangent plane and parallel to the cross-product of these two, that

is

[1, 0, p(u)]T × [0, 1, q(u)]T = [−p(u),−q(u), 1]T (22)

and, as mentioned earlier, the normalised surface normal is given by

~N(u) =
1

[p(u)2 + q(u)2 + 1)
1
2

[−p(u),−q(u), 1]T (23)

The expression above is important since it permits the recovery of the object’s shape at each

pixel by estimating only 2 variables, i.e. p(u) and q(u), per pixel u. As per the reparameterisation

in Equation 2, we perform the optimisation procedure making use of both, the diffuse and spec-

ular components. This is reflected in Lines 34-36 of Algorithm 1. This is a straightforward task

since the other reflection parameters are in hand. Moreover, we introduce a regularisation term

corresponding to the integrability constraint widely used in shape-from-shading [11, 54]. Thus,

the optimisation becomes

[p∗(u), q∗(u)] = argminp(u),q(u)

∑
vεΩu

|W|∑
l=1

[(
Rdiff (v, λl)−

Wdiff (v)

L(λl)
fdiff

(
L(λl), p(v), q(v), ρ(v, λl), η(v, λl)

))2

+
(
Rspec(v, λl)−

Wspec(v)

L(λl)
fspec (L(λl), p(v), q(v), σm(v), η(v, λl))

)2

+

(
∂p(v)

∂y
− ∂q(v)

∂x

)2
]

(24)

In the optimisation above, the last term on the right-hand-side corresponds to the regularisation

term. Also, note that we optimise the cost functional over the neighbourhood Ωu of pixel u.

This implies that the surface normal ~N varies slowly about the pixel under consideration. This

assumption does not imply any strong constraint on the surface shape rather reflects that, over

small neighbourhoods of u, the surface can be considered to be locally smooth.
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3.4 Stopping Criteria

Finally, we discuss two criteria of the algorithm to stop searching for optimal values of the param-

eters: (i) when the algorithm is already converged; no improvement is seen at the current cycle

of optimisation along different coordinate directions, (ii) when the algorithm already completed

maximum number of iterations tmax and therefore giving up. Lines 37-38 of Algorithm 1 describe

the convergence criteria, where the function δ(·) is used to denote the absolute difference between

the estimates at iterations t and t − 1 for any of the reflectance parameters. Therefore, as long as

there is a significant change in the current estimate for at least one of the parameters and t < tmax,

the algorithm continues, otherwise, it stops and returns the parameter values estimated so far.

4 Reflectance Models

So far, we have made no assumptions regarding the specific reflectance model to be used for

purposes of optimisation. In this section, we examine a number of reflectance models elsewhere

in the literature which conform to the general formulation and optimisation approach described in

Sections 2 and 3. It is worth noting in passing that, in previous sections, we have used the diffuse

and specular image radiance, which can be related to the reflectance in the models hereafter making

use of the relations

Rdiff (u, λl) =
1

L(λl)
fdiff (L(λl), p(u), q(u), ρ(u, λl), η(u, λl))

Rspec(u, λl) =
1

L(λl)
fspec (L(λl), p(u), q(u), σm(u), η(u, λl)) (25)

In practice, we can use the relations above so as to substitute the reflectance corresponding to one

or more of the models elsewhere in the literature into the cost function in Equation 5. Thus, we

elaborate upon four reflectance models elsewhere in the literature and their specific parameters.

4.1 The Torrance-Sparrow Model

We commence by exploring the use of the Torrance-Sparrow model [49], which describes the

reflectance from rough surfaces as comprised by two components. These are Lambertian diffuse

reflection and the specular lobe. Here, we will focus on the component describing the specular

lobe exhibited by smooth and rough surfaces. The main idea in [49] is to model a surface as a
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collection of perfectly smooth mirror like microfacets. In the model, these microfacets are perfect

mirrors.

For a given light source and viewer directions ~L and ~V , the specular reflection is solely depen-

dent on those microfacets with a normal ~N aligned with the halfway vector ~H . The corresponding

equation for the specular reflectance is therefore given by:

RTS(u, λl) =
Af
4
F (θi, η(u, λl))

G(θi, θs, φi, φs)

cosθs
D(θh, σm) (26)

where

G(θi, θs, φi, φs) = min

1,
2
(
~N. ~H

)(
~N.~V

)
~(V . ~H)

,
2
(
~N. ~H

)(
~N.~L

)
~(V . ~H)

 (27)

D(θh, σm) = c exp(− θ2
h

2σ2
m

) (28)

the notation · denotes the dot product between vectors, c is a constant and σm is the roughness

parameter.

Note that, according to Equation 26, the specular reflectance RTS(·) at pixel u and wavelength

λl is governed by the microfacet area Af , the wavelength dependent Fresnel term F (·), geometric

attenuation factor G(·) and the microfacet slope distribution function D(·). In the model, the geo-

metric attenuation factor G(·), as given in Equation 27, accounts for the microfacet-to-microfacet

masking and shadowing. The microfacet distribution functionD(·) used here is a rotationally sym-

metric normal distribution with zero mean, i.e. θ̄h = 0, and standard deviation σm, which captures

the probability density of the microfacets pointing in the direction of the halfway vector ~H .

As the surface is not a perfect reflector, only a fraction of the incident light reaching the facets

will be reflected. The Fresnel term F (·) determines the fraction of incident light which is reflected

by each facet. The computation of the Fresnel term is quite expensive computationally and, there-

fore, here we apply the Schlick approximation [42] given by

F (θi, η(u, λl)) = Ro + (1−Ro) (1− cosθi)5 (29)

where, as before, θi is the angle of incidence and η(u, λl) is the refractive index at pixel u and

wavelength λl. In Schlick’s approximation, Ro is the reflectance at normal incidence, defined as

R0 =
(

1−η(u,λl)
1+η(u,λl)

)2

.
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4.2 The Cook-Torrance Model

A model akin to that of Torrance and Sparrow is that developed by Cook and Torrance [7]. This is

actually a combination of the Torrance-Sparrow model [49] and the Blinn model [3]. Just like the

Torrance-Sparrow model, it considers the Fresnel term, surface self-shadowing and microfacets

for reflectance modelling. However, it provides microfacet distribution functions for the Phong

model [38], the Trowbridge-Reitz [50] and the Beckmann [2] distributions. Here we describe the

reflectance equation of this model using the Beckmann distribution. Therefore, the reflectance

equation, as described by this model, is given as,

RCT (u, λl) = F (θi, η(u, λl))
G(θi, θs, φi, φs)

cosθscosθi
DBK(θh, σm) (30)

where DBK(·) stands for the Beckmann distribution function given by

DBK(θh, σm) =
1

σm2cos4θh
exp(−tanθh

σm
)2 (31)

4.3 The Beckmann-Kirchhoff Model

We now turn our attention to another model widely cited in the computer vision and graphics

literature. The Beckmann-Kirchhoff model [2] describes the reflection from a surface as a sum of

two terms. The first of these corresponds to the scattering component in the specular direction and

the latter represents the diffuse scattering. The term describing the specular spike given by

RBK(u, λl) = P 2
0 (θh, σ) exp(−g(θi, θs, λl, σh))F (θi, η(u, λl)) (32)

where,

P0 (θh, σ) =
1√
2πσ

exp(− θ2
h

2σ2
) (33)

and

g(θi, θs, λl, σh) =

(
2π
σh
λl

(cosθi + cosθs)

)2

(34)

The third term in Equation 32 corresponds to the wavelength dependent Fresnel term F (·) as

described in Equation 29. Note that, even though there is no Fresnel term in the model as proposed

in [2], we have included it without any loss of generality so as to make the specular reflectance

component consistent across the models presented in this section. This also reflects the notion that

no surface is a perfect reflector and, therefore, the Fresnel term is used to determine the fraction of

the incident light reflected from the surface as a function of incident angle and index of refraction.
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According to Equation 32, the specular reflectance RBK(·) at pixel u and wavelength λl is a

product of three terms. The first of these is the magnitude of the specular reflectance P0 which

is a function of θh. This function is nearly zero for all scattering directions except a very narrow

range around the halfway vector ~H . In the Beckmann-Kirchhoff model, P0 is expressed as a sinc

function. Nonetheless, here, for the sake of computational efficiency, we have followed Nayar et al.

[34] and employed a Gaussian function with a very small standard deviation σ. The second term is

comprised by the function g(·), which is related to the surface roughness through σh
λl

, the incidence

angle θi and reflected light angle θs. The three cases g � 1, g ≈ 1, and g � 1 correspond to

smooth surface, moderately rough and rough surface, respectively.

Note that both, the Torrance-Sparrow and Beckmann-Kirchhoff models incorporate the surface

roughness parameter, i.e. σm in Equation 26 and σh in Equation 32, as a pertinent parameter

to influence the reflectance characteristic of the surface. However, these two reflectance models

are based on two different surface models. Whereas the Beckmann-Kirchhoff model uses the

microfacet height distribution, the Torrance-Sparrow model is based on slope distribution model.

Hence, the roughness parameters of these two models are not equivalent. This is important, since

our work defines the surface based on slope distribution model and uses a roughness parameter akin

to that in the Torrance-Sparrow model. This is not overly restrictive since the surface roughness

parameter in the Beckmann-Kirchhoff model can be transformed into that used in our derivation

following the approach presented in [34]. We do this making use of the correlation distance T for

the height distribution model. We get

σh =
T

2
tan(
√

2σm) (35)

where

g(θi, θs, λl, σm) =

(
πT

λl
tan(
√

2σm) (cosθi + cosθs)

)2

(36)

4.4 The Wolff Model

Finally, we elaborate upon the model proposed by Wolff [53]. This is a diffuse reflection model

for smooth dielectric surfaces. When the angle between the illuminant and the viewing direction is

large, a significant deviation from Lambert’s law [25] is prevalent for many dielectric objects. The

Wolff model explains this deviation from Lambert’s law by considering the refractive attenuation

at the surface-air layer. It multiplies Lambert’s cosine law with two Fresnel terms: one for incident
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light and the other for reflected light. The diffuse reflectance, as defined by the Wolff model is

given by:

RWF (u, λl) = ρ(u, λl)cosθi [1− F (θi, η(u, λl))]

[
1− F (θ

′

s,
1

η(u, λl)
)

]
(37)

where, as in previous sections, ρ(u, λl) is the diffuse albedo, η(u, λl) is the index of refraction of

the dielectric medium, θi is the angle of incidence for the light ray and θ′s is the internal angel of

incidence that relates the reflected angle θs with Snell’s law, i.e. θ′s = arcsin( sin(θs)
η(u,λl)

).

5 Implementation issues

Recall that we have expressed the image reflectance as a linear combination of the specular and

diffuse reflection. In our experiments, we use a linear combination of three reflectance models

described in the previous section. This is given by

R(u, λl) = Wdiff (u)RWF (u, λl) +Wlobe(u)RTS(u, λl) +Wspike(u)RBK(u, λl) (38)

In Equation 38, each term represents a different reflection component. We have selected the

Wolff model [53] to describe the diffuse reflectance. We have further divided the specular term

into the spike and lobe, where we use the Torrance-Sparrow model [49] for the specular lobe and

the Beckmann-Kirchhoff model [2] to describe the specular spike. These two terms are governed

by the weights Wlobe and Wspike, which control the contribution of the specular lobe and spike to

the image radiance.

The parameters for each of these models are summarised in Table 1. The optimisation procedure

described in Section 3 can be readily applied to recover all the parameters except the contributions

of the lobe and spike as captured by Wlobe and Wspike. These can be estimated making use of the

optimisation given by

[W ∗
lobe(u),W ∗

spike(u)] = argmin[Wlobe(u),Wspike(u)]

|W|∑
l=1

(
Rspec(u, λl)−Wlobe(u)RTS(u, λl)

−Wspike(u)RBK(u, λl)

)2
(39)

as an alternative to Equation 18. In the equation above, we have accounted for the relationship

between the specular image radiance and reflectance and opted for a notation consistent with Equa-

tion 26 and 32.
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As shown in Algorithm 1, our coordinate descent algorithm operates on each coordinate in a

cyclic order until convergence. At each cycle, it recovers ρ(u, λl),Wdiff (u), σm(u), {Wlobe(u),Wspike(u)},

η(u, λl) and {p(u), q(u)} in interleaved separate minimisation steps. Note that the recovery of

ρ(u, λl), Wdiff (u) and {Wlobe(u),Wspike(u)} can be formulated as linear least squares minimi-

sation problems. These are therefore variable-wise convex and have a globally optimal unique

solution.

First, we turn our attention to the recovery of diffuse albedo using the following equation, which

is in fact, a model specific form of Equation 13, where we place the Wolff reflectance model to

account for the diffuse reflectance.

ρ∗(u, λl) = argminρ(u,λl)

∑
vεΩu

[
Rdiff (v, λl)−Wdiff (v)RWF (v, λl)

]2

(40)

The second order derivative of Equation 40 with respect to albedo is 2
∑
vεΩu

C(v, λl)
2 where,

C(v, λl) = Wdiff (v)cosθi [1− F (θi, η(v, λl))]
[
1− F (θ

′
s,

1
η(v,λl)

)
]
. Note that the second order

derivative is always positive and, thus, Equation 40 is convex with respect to the diffuse albedo.

Analogously, we can derive the second order derivative of model specific form of Equation 15 with

respect to diffuse weight, which is also always positive, 2
|W|∑
l=1

RWF (u, λl)
2 and hence guarantees

global minima.

For the two specular weights, Wlobe(u) and Wspike(u), we use Equation 39. The determinant of

corresponding Hessian matrix is:

det(H) = 4

|W|∑
l=1

RTS(u, λl)
2

|W|∑
l=1

RBK(u, λl)
2 − 4

 |W|∑
l=1

RTS(u, λl)RBK(u, λl)

2

(41)

which is also positive and therefore confirms the unique minima for this function.

The recovery of σm(u), η(u, λl), and {p(u), q(u)} are nonlinear least squares problems. Note

that, as mentioned earlier, the measure of non-linearity and the ability to chose initial estimates

close to the real parameter determines whether our method will converge to a minimum. In all our

experiments, the algorithm converges with our provided initial values, as described in Section 3.

By calculating the remaining second order derivatives for the corresponding cost functions, we

can further comment on the non-linearity of the estimation task in hand. For example, for the

microfacet slope σm(u), the cost function is “flat” when the angle θh(u) has large values; i.e.

when the halfway vector significantly deviates from the surface normal. According to specular
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reflectance models [2, 49, 7], in this case, u is not a specular pixel and therefore the algorithm can

not estimate σm(u) at pixel u that does not contribute to the specular reflectance. That is why we

estimate microfacet slope only at specular pixels.

We have already seen that the cost function for index of refraction has contribution from both

specular and diffuse component. If we are to estimate η(u, λl) where local neighborhood of u is a

purely diffuse region, just like σm(u), the specular part of the cost function becomes flat for larger

value of θh. In this case, η(u, λl) can still be recovered from the diffuse part. On the other hand,

the diffuse part becomes flat for pixels with poor illumination and low image reflectance.

For all our least square optimisation, we have used the Levmar C++ library available for down-

load from FORTH-ICS 1. This library provides a Levenburg-Marquardt method which can employ

both, an analytic Jacobian or finite difference approximated Jacobians. For computing the gra-

dients {p(u), q(u)}, we avoid the possibly complex analytical derivation of the Jacobian and use

finite difference approximated Jacobians. For all the other parameters, we provide the solver with

analytic Jacobians. This has the effect of a reduced computational complexity.

In our experiments, the Levmar solver has been set to terminate when at least one of the follow-

ing conditions is met: when the gradient of the cost drops bellow a threshold ε1, when the change

in parameter values has fallen to some threshold ε2, when cost itself has reached some acceptable

value ε3, and when specified number of iterations itmax is completed. Therefore, the library re-

quires four user defined threshold values; We provide 10−15 for ε1 and ε2, 10−20 for ε3, and 100

for itmax. The library also requires a user input τ to set the initial value for the damping term.

According to the damping strategy of the algorithm, τ should be smaller only if we believe that

our provided initial value of the unknown parameters are close to optimal value. Therefore, we set

τ to 10−6 for {p(u), q(u)} as we get the initial value from image gradients, whereas, we set 10−1

for the rest.

6 Experiments

In this section, we provide example results for our method and compare with alternatives. In all

our experiments, we have used the method in [19] to recover the power spectrum of the illuminant

and expressed the image reflectance as a linear combination as given in Equation 38.

1http://www.ics.forth.gr/˜lourakis/levmar
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Table 1: Parameters to be recovered for each of the reflectance models under consideration.
Reflectance Corresponding Equation Parameters

Model to estimate

TS RTS(u, λl) =
Af
4 F (θi, η(u, λl)) σm(u),

G(θi,θs,φi,φs)
cosθs

D(θh, σm) η(u, λl), {p(u), q(u)}

BK RBK(u, λl) = P 2
0 (θh, σ) σm(u),

exp(−g(θi, θs, λl, σm)) η(u, λl), {p(u), q(u)}

F (θi, η(u, λl))

Wolff RWF (u, λl) = ρ(u, λl)cosθi ρ(u, λl)

[1− F (θi, η(u, λl))] η(u, λl),{p(u), q(u)}[
1− F (θ′s, 1

η(u,λl)
)
]

, {p(u), q(u)}

6.1 Synthetic Data

In this section, we perform experiments on a number of synthetic imagery so as to verify the ac-

curacy of the recovered photometric parameters and object shape. Our synthetic data comprises of

the Stanford Bunny and the Happy Buddha whose mesh files can be downloaded from the Stanford

University Computer Graphics Laboratory 2. Making use of these meshes, we have rendered the

images using the reflectance model given in Equation 38, making use of two indexes of refrac-

tion, microfacet slope values and diffuse albedos. Note that this results in two images per mesh,

which we name Stanford Bunny A, Stanford Bunny B, Happy Buddha A and Happy Buddha B. The
2http://graphics.stanford.edu/data/3Dscanrep/

Reflectance Image Name

model parameters

Happy Happy Stanford Stanford

Buddha A Buddha B Bunny A Bunny B

Microfacet slope (4.0, 0.01) (8.0, 0.01) (4.0, 0.01) (8.0, 0.01)

(mean, std)

Albedo yellow paper yellow paper orange gel box orange gel box

Index of refraction BK7 BK7 Si Si

Table 2: Parameter values for our synthetic images
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parameter values for each of these images is summarised in Table 2.

It is worth noting in passing that, for the two microfacet slope values, we have used a normal

distribution, whereas for theground truth value of albedo, we have used spectra acquired in-house

making use of a StellarNet spectrometer for both, a yellow paper and an orange gel box. For the

indexes of refraction, we use those corresponding to BK7, i.e. a high quality optical glass, and

Silicon (Si). The ground truth value for the indexes of refraction are available at Filmetrics 3. All

our imagery is comprised of 30 bands in the range of [430nm− 720nm], in 10nm steps.

With these images in hand, we first turn our attention to the capacity of our method to recover

the diffuse albedo. To this end, we show, in Figure 2 the diffuse albedo plots for both, the ground

truth and that recovered by our method. In the bottom row of the figure we show the plot for the

average average estimated normalised albedo. In the figures, the error bars denote the standard

deviation across the estimates for all pixels. Note that for both, the Stanford Bunny and the Happy

Buddha the mean albedos recovered by our method are in close accordance with the ground truth.

Moreover, the standard deviation is quite small.

We now provide a qualitative illustration of the capacity of our method to recover the reflection

parameters which correspond to the specular and diffuse reflection components in the imagery. To

this end, we show, in Figure 3 and 4, the specular, diffuse and composite reflection for the Happy

Buddha A and Happy Buddha B. In the figures, from left-to-right, we show the composite, the

specular lobe, the specular spike and the diffuse reflectance for both, the ground truth value and

our estimated value. The top row shows images rendered with all ground truth values whereas

the bottom row shows images rendered with our estimated parameters. It is worth noting that,

in the figures, we show pseudocolour imagery obtained making use of the CIE Colour Matching

functions as proposed by Stiles and Burch [46].

Similarly, in Figures 5 and 6, we show the field of surface normals, i.e. needlemaps, for the

Happy Buddha A and the Stanford Bunny A images recovered by our method and two alternatives.

These are the method in [54] and that presented in [18]. The first of these is a shape-from-shading

one which imposes a hard constraint on the surface normals. Since this method assumes Lamber-

tian reflectance, we have used, as input, the diffuse component delivered by the method in [47].

The method in [18] is an optimisation one which employs Euler-Lagrange equations to recover the

shape and index of refraction.

3http://www.filmetrics.com/refractive-index-database.
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Figure 2: Top row: Plots of the normalised ground truth albedo used for the Happy Buddha and

the Stanford Bunny images; Bottom row: Plots of the average estimated normalised albedo over

all pixels in the Happy Buddha and Stanford Bunny images. Here, the error bars account for the

standard deviation of the estimated albedo over all pixels in the image.

In the figures, our method delivers the surface normal field which better reflects the shape of the

object. Indeed, for both images, the needlemap yielded by our method is the one which better cap-

tures the details of the object, with less over smoothing and abrupt bogus changes on the direction

of the surface normals. This is despite the challenging nature of both object’s shape.

We provide a quantitative analysis on the index of refraction recovered by our method as com-

pared to that delivered by the alternative in [18]. In Table 3, we show the average per-pixel angular

error, in degrees, for the index of refraction yielded by our method and the alternative. Note that

our method delivers a considerable improvement over the method in [18]. As mentioned earlier,

we impose the index of refraction to follow Cauchy’s dispersion equation. This constraint signif-
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Figure 3: A qualitative illustration of the capacity of our method to recover the reflection model

parameters for the Happy Buddha A. From left-to-right, we show the composite, the specular lobe,

the specular spike and the diffuse reflectance for both, the ground truth (top row) and the estimated

images rendered with the parameters recovered by our method (bottom row).

icantly improves our results as it provides a further constraint on the optimisation process. This

can be appreciated in the four images, where the index of refraction is quite robust to the shape

variations between the two meshes and the combinations of microfacet slope values and diffuse

albedos.

Finally, we present the computation time for our algorithm in Table 4. Note that, the compu-

Figure 4: A qualitative illustration of the capacity of our method to recover the reflection model

parameters for Happy Buddha B. From left-to-right, we show the composite, the specular lobe,

the specular spike and the diffuse reflectance for both, the ground truth (top row) and the estimated

images rendered with parameters recovered by our method (bottom row).
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Figure 5: (a) Ground truth surface normals for the Happy Buddha; (b) Needlemap delivered by our

method; (c) Needlemap delivered by the method in [54]; (d) The surface normal field delivered by

the algorithm in [18].

tational cost of our method depends on the image size, number of wavelength-indexed bands in

the image, neighborhood size for each pixel and the reflectance models involved. Therefore, as

a reference, we provide the per pixel, per band time for the Happy Buddha A image in Figure 3

for each of the reflectance parameters under consideration. Note that, in our implementation, we
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Happy Happy Stanford Stanford

Buddha A Buddha B Bunny A Bunny B

Our method 0.1555 0.1552 0.1549 0.1561

Method in [18] 6.4066 6.4001 9.9730 9.9910

Table 3: Average per-pixel angular error (in degrees) with respect to ground truth for the index of

refraction recovered by our method and the alternative in [18].

discard dark and achromatic pixels as these convey no information about reflectance. We do this

based on a threshold value on the image intensity. This yields 72326 valid pixels for the Happy

Buddha A image. Moreover, the specularity removal method in [47] yields 5381 specular pixels.

In our experiments, we consider a 3x3 neighborhood size for each pixel while estimating ρ, η, and

p, q. This altogether gives us the total computation time of 19.78 minutes on a workstation with a

Figure 6: (a) Ground truth surface normals for the Stanford Bunny; (b) Needlemap delivered by

our method; (c) Needlemap delivered by the method in [54]; (d) The surface normal field delivered

by the algorithm in [18].
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2.0 GHz Intel Xeon 7500 series processor and 32GB of RAM.

Note that, in our method, the estimation of the index of refraction requires the longest time as

compared to other parameters. The reasons for this are twofold. Firstly, the refractive index is

estimated per pixel and per band. Secondly, its computation involves both, the diffuse and the

specular terms of our cost function.

To reduce the compuational complexity, recall that, in Section 3.1.1, we segment the image

into {r1, ......, rc} regions, where each region r corresponds to a specific material. We can take

advantage of this segmentation so as to reduce the computation time for the refractive index. This is

as each material has its own unique refractive index defined over the spectral domain. Thus, we can

replace the pixel-based computation in Equation 19 with the following region-based estimation.

η∗(r, λl) = argminη(r,λl)

∑
v∈r

[(
Rdiff (v, λl)−

Wdiff (v)

L(λl)
fdiff

(
L(λl), p(v), q(v),

ρ(v, λl), η(v, λl)
))2

+

(
Rspec(v, λl)−

Wspec(v)

L(λl)

fspec (L(λl), p(v), q(v), σm(v), η(v, λl))
)2
] (42)

It is also worth noting that, as explained in Section 2.2, our formulation of the problem allows

for the optimisation on the diffuse and specular reflection components to be effected in parallel.

Parallel execution of our method can significantly speed up the process.

6.2 Real-world Imagery

In this section, we provide results on real world data. Our real world hyperspectral imagery com-

prises of the database reported in [19], which was acquired using an OKSI Turnkey Hyperspectral

Camera System. The images correspond to 51 human subjects, each captured under one of 10

directional light sources with varying directions and spectral power. The light sources are divided

into two rows. The first of these is placed above the camera system and the second one at the same

height as the camera. The main directions of the lights are adjusted so as to point towards the

centre of the scene.

We commence by showing results on the recovered fields of surface normals. In Figure 7, we

show needlemap plots for two sample images in the database. In the Figure, we show the fields
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Estimated Parameter Notation Reflectance Computation Time

Model Involved (in sec)

Diffuse albedo ρ(u, λ) Wolff 9.21× 10−05 per pixel, per band

Diffuse weight Wdiff (u) Wolff 1.28× 10−06 per pixel

Microfacet slope σm(u) TS, BK 0.051 per specular pixel

Specular weight Wspec(u) TS, BK 3.71× 10−05 per specular pixel

Index of refrac. η(u, λ) Wolff, TS, BK 2.31× 10−04 per pixel, per band

Surface gradients {p(u), q(u)} Wolff, TS, BK 2.92× 10−03 per pixel

Table 4: Computation time per pixel, band and reflection parameter for the Happy Buddha A image

of surface normals delivered by our method and two other alternatives. These are the method in

[54] and that presented in [18]. The first of these is a shape-from-shading one which is based on

Lambertian reflectance. Therefore, we provide, as input to this method, the diffuse component

Figure 7: Fields of surface normals, i.e. needlemaps, for sample faces in our database. First

column: input images; Second column: Needlemap delivered by our method; Third column:

Needlemap recovered by the method in [18]; Fourth column: The surface normal field yielded

by the algorithm in [54].
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delivered by the method in [47]. The method in [18] is an optimisation one which takes a hyper-

spectral image at input and employs Euler-Lagrange equations to recover the shape. Note that, in

the figure, our method delivers the surface normals that better capture the details of the face, with

less over smoothing and abrupt bogus changes at specular regions.

Next, we present results on skin recognition. We do this following the notion that an accurate

recovery of the reflectance, i.e. diffuse albedo, should yield a high recognition rate. Moreover,

there is evidence that the Torrance-Sparrow model [49] and the Beckmann micro-facet distribution

[2] can be used to model the skin reflectance [52]. The Torrance-Sparrow model [49] has also been

used for purposes of rendering human skin [8], whereas the Schlick approximation for the Fresnel

term has been employed to model skin reflection [35].

Notice that our diffuse albedo is expected to be invariant to changes in illumination direction

and surface geometry. Here, we pose this recognition task as a classification problem where the

skin and non skin reflectance spectra comprise of positive and negative classes, respectively. To

obtain a training data set, we select skin and non skin regions from a single image captured under

a light source placed in a high oblique position in front of the subject. On an average, there are

856 skin pixels and 7796 non-skin pixels selected from several regions in each image as training

data. Subsequently, the albedo is used as input to a Support Vector Machine (SVM) classifier [44]

with a Radial Basis Function (RBF) kernel. We have effected ten trials where the parameters of

the classifier are selected using 5-fold cross validation at training time. For testing, the resulting

SVM classifier is then applied to the testing images. Note that the test images are acquired under

different illuminant conditions than those corresponding to the training imagery, which further

complicates the recognition task.

In Figure 8, we present sample skin probability maps obtained using different features as input

to the classifier. In the figure, the first row shows sample training image. The second row shows

the sample testing images. Note that the illuminant directions and power spectra differ between

the training and testing imagery. This is evident by the difference in shading and shadows. The

four remaining rows show the skin probability maps generated by the SVM classifier trained using

different reflectance-based features. The third row shows skin probability maps obtained using the

spectral diffuse reflectance recovered by our method whereas the fourth row shows that yielded by

the diffuse reflectance estimated by the alternative in [19]. The fifth row shows the maps obtained

by using the reflectance computed via the normalisation of the image radiance by the illuminant.

The bottom row shows the probability maps for the raw radiance.
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From Figure 8, we note that the skin probability maps in the third and fourth rows depict more

visually accurate results. This is due to our method and the alternative in [19] being less prone to

error due to changes in illumination direction and power spectra between the training and testing

Figure 8: Skin probability maps obtained using different reflectance-based feature as input for clas-

sification. Top row: sample training images; Second row: sample test images of the corresponding

subjects, captured under a different illumination condition. The third to last rows show the skin

probability maps obtained using the reflectance delivered by our method (third row), the reflectance

yielded by the alternative in [19] (fourth row), the reflectance obtained via normalisation by the

illuminant (fifth row) and the raw radiance (bottom row).
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Feature for Classification CDR(%) FDR(%) CR(%)

Estimated reflectance by our method 92.89± 9.48 4.10± 2.77 95.09± 4.26

Estimated reflectance by method in [19] 85.12± 13.36 5.10± 6.30 90.94± 6.12

Reflectance by illuminant normalisation 70.63± 16.95 5.50± 5.69 84.75± 8.04

Raw radiance 47.27± 20.58 12.48± 11.64 71.23± 9.17

Table 5: Skin detection rates, false detection rates and classification rates yielded by different

features. Top row: results yielded by the reflectance recovered by our method; Second row: those

yielded when the reflectance estimated by the alternative in [19] is used; Third row: recognition

rates corresponding to the reflectance obtained via illuminant normalisation of the image radiance;

Bottom row: recognition rates for the raw radiance.

images. Further, nonetheless the probability maps in the third and fourth rows are comparable, our

method still provides a margin of improvement over the alternative. This is particularly noticeable

on the subjects in the middle columns, where the eyebrows, lips and beard have been better outlined

by our method.

As mentioned earlier, for the probability maps on the fifth row, we have use the reflectance com-

puted by normalising the image radiance with respect to the illuminant spectrum. Although being

illuminant invariant, this classification feature gives poor results at pixels near the face boundary

and the specular regions. This is due to the fact that, normalising the image radiance by the illumi-

nant power spectrum does not achieve surface shading independence. Moreover, it disregards the

specular component inherent in the dichromatic reflection model. In contrast, our method estimates

the reflectance taking into account the shading and specularities. Therefore, still our method de-

livers a reflectance feature that allows for classification even at grazing angles and specular spikes

and lobes. In the other hand, the raw radiance spectra is not illuminant invariant. Therefore, as

expected, this feature generates poor results when the illumination direction and power spectra

change between the training and testing images. As a result, the false negative rate is high in skin

areas and false positives are rife in non-skin regions.

Finally, we provide a quantitative analysis in Table 5. In the table, we compare the performance

achieved using the reflectance yielded by our method with that yielded by the alternatives. The

table shows the classification rate (CR), correct detection rate (CDR), and false detection rate

(FDR). Here, CDR stands for the percentage of skin pixels correctly classified, whereas FDR
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corresponds to the percentage of non-skin pixels falsely classified as skin. The CR is the total

percentage of skin and non-skin pixels classified accurately. For our experiments, we have used

the ground truth skin data provided with the dataset. As reported in [19], this has been obtained

by manually labelling skin and non-skin pixels for all subjects in the dataset. From the table,

we conclude that the reflectance delivered by our method outperforms the alternatives in all the

three measures used for analysis, with a better average performance and a lower variance. This is

consistent with the qualitative result shown in Figure 8.

7 Conclusions

In this paper, we have presented a method to recover photometric parameters and object’s shape

from a single hyperspectral image. The method is quite general in nature, stemming from the

use of a general formulation for the image radiance based upon a linear combination of the dif-

fuse and specular reflection components. This treatment permits, in turn, the use of a coordinate

descent least-square optimisation approach to recover the parameters governing the reflection pro-

cess. Moreover, the formulation provided here allows for the optimisation on the diffuse and

specular reflection to be effected in parallel. We have illustrated how this optimisation process

can be used in combination with the Beckmann-Kirchhoff, the Torrance-Sparrow, and the Wolff

reflectance model to recover the index of refraction, microfacet slope, diffuse albedo, and surface

normal from a single image. We have also shown results on skin recognition and compared with

an alternative elsewhere in the literature.
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