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Abstract. In this paper, we propose an approach for the recovery of the dichro-
matic model from two hyperspectral or multispectral images, i.e., the joint esti-
mation of illuminant, reflectance, and shading of each pixel, as well as the optical
flow between the two views. The approach is based on the minimization of an
energy functional linking the dichromatic model to the image appearances and
the flow between the images to the factorized reflectance component. In order to
minimize the resulting under-constrained problem, we apply vectorial total vari-
ation regularizers both to the scene reflectance, and to the flow hyper-parameters.
We do this by enforcing the physical priors for the reflectance of the materials in
the scene and assuming the flow varies smoothly within rigid objects in the im-
age. We show the effectiveness of the approach compared with single view model
recovery both in terms of model constancy and of closeness to the ground truth.

1 Introduction

In computer vision, the modelling and recovery of photometric parameters is a topic of
pivotal importance for purposes of surface analysis and image understanding. Since the
estimation of illuminant and material reflectance are mutually interdependent, the prob-
lem of recovering physically meaningful parameters that govern the image formation
process is closely related to the ability to resolve the intrinsic material reflectance from
their trichromatic colour images captured under varying illumination conditions. Exist-
ing methods often rely upon the use of statistics of illuminant and material reflectance
or draw upon the physics-based analysis of local shading and specularity of the objects
in the scene.

Statistics-based approaches often employ Bayes’s rule [3] to compute the best esti-
mate from a posterior distribution. The illuminant and surface reflectance spectra typi-
cally take the form of a finite linear model with a Gaussian basis [9], where a correlation
matrix is built for a set of known plausible illuminants to characterise all the possible
image colours (chromaticities) that can be observed. Contrary to these statistics-based
approaches, physics-based colour constancy analyses the physical processes by which
light interacts with the object surface [16,26].

Regarding specularities and shading, there have been several attempts to remove
specular highlights from images of non-Lambertian objects. For instance, Brelstaff and
Blake [4] used a thresholding strategy to identify specularities on moving curved ob-
jects. Narasimhan et al. [21] have formulated a scene radiance model for the class of
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“separable” Bidirectional Reflectance Distribution Functions (BRDFs). More recently,
Zickler et al. [32] introduced a method for transforming the original RGB colour space
into an illuminant-dependent colour space to obtain photometric invariants. Other alter-
natives elsewhere in the literature aiming at detecting and removing specularities either
make use of additional hardware [22], impose constraints on the input images [18] or
require colour segmentation [14].

Here, we depart from the dichromatic model so as to describe the image radiance
as a combination of shading, specular highlights, surface reflectance and the illuminant
power spectrum. Our multi-view dichromatic parameter recovery method separates the
scene illuminant, shading and object surface reflectance by linking the reflectance of
objects present in two images to the flow between between them. This is achieved by
minimising the total variation of reflectance and flow, subject to the notion that the
object reflectance and illuminant power spectrum across the two images should not
change. This also imposes further constraints on the optical flow which are akin to
those imposed upon brightness in trichromatic imagery [2]. This leads to an optimisa-
tion problem where a total variation regularization approach is used to enforce the con-
sistency of the scene photometric parameters over an image sequence. This contrasts
with previous approaches where the intersection of dichromatic planes [9,30], assumed
chromaticities of common light sources [9], or structural optimisation [13] are used on
single images. In [15], Kong et al. use polarised images to separate the background and
reflection layers from each of the input images.

2 Contributions

The contributions of this paper are the following:

– To the best of our knowledge, this is the first approach that uses reflectance con-
stancy across multiple images to improve the recovery of the dichromatic parame-
ters, relating the reflectance to the optical flow between multiple images.

– We introduce a novel homographic hyper-prior for the flow similar in spirit to the
affine formulation presented in [17]. This, in combination with a total variation reg-
ularization provides a natural modelling of the scene resulting in an improvement
of the optical flow estimation in parallel with the improvement to the photometric
parameters.

– Our method is quite general in nature and can be modified in a straightforward
manner to regularise any vectorial field whose total variation under consideration is
to be minimised simultaneously with other terms in an energy functional. Indeed,
regularization methods have been reported in the contexts of optical flow computa-
tion [20], curvature-based surface shape representation [29] and the smoothing of
stereo disparity fields [19]. We would like to stress, however, that the focus of the
work presented here is the recovery of illuminant and reflectance in multispectral
and hyperspectral images.

– We employ homographic hyperpriors in the total variation regularizer so as to im-
pose a physically sound set of constraints on the solution. This not only improves
the reflectance recovery results, but also delivers better localisation of the specular
highlights.
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– Experiments show that the approach is capable of providing a more stable recovery
of illuminant, reflectance, shading and specular parameters with respect to the sate
of the art. This is as our approach can achieve both, better photometric accuracy
and can naturally handle the computationally challenging task of simultaneously
processing a large number of wavelength indexed bands.

3 Multi-view Dichromatic Model Recovery

In this section, we present the multi-view dichromatic model energy functional which
permits us, later on, to enforce consistency upon the reflectance across corresponding
scene points in multiple images.

By assuming a uniform illuminant power spectrum across the scene, the dichromatic
model [26] expresses the image radiance I(u, λ) at pixel location u = (u1, u2) and
wavelength λ as follows:

I(u, λ) = g(u)L(λ)S(u, λ) + k(u)L(λ) (1)

where L(λ) and S(u, λ) are the illuminant power spectrum and surface reflectance
at wavelength λ, respectively, g(u) is the shading factor governing the proportion of
diffuse light reflected from the object and k(u) is the specular coefficient at pixel u.

Note that the dichromatic model above assumes a single “global” illuminant power
spectrum while allowing the intensity of the light to vary across the scene. This is not an
overly restrictive assumption. In fact, the dichromatic model has been used extensively
in colour constancy [9]. Here, we also make the assumption that

∑
λ S(u, λ)

2 = 1.
Note that this can be done without any loss of generality since the illuminant power
spectrum can be normalised such that the shading factor and specular coefficients are
rescaled accordingly.

3.1 Optical Flow and Reflectance Coherence

One of the main features of the dichromatic model is that the reflectance S(u, λ) is a
characteristic of the object’s material, being invariant to the geometry of the object and
its relative position with respect to the light source and the viewer. As a consequence,
it is preserved across multiple images. We model this correspondence in a two image
setting by maintaining one single reflectance function on one image and relating it to
the reflectance on a second image through an optical flow function f(u) = u′ : Ω1 →
Ω2 which maps points from the first to the second image. This results in an energy
term per each image comparing the measured irradiance I(u, λ) with the irradiance
reconstructed from the model parameters using Equation (1).

Note that, for the computation of the flow, it is often assumed that the image bright-
ness remains approximately unchanged across the two views under consideration. How-
ever, the “constant” brightness assumption applies to stereo and multiple-view settings
only when the baseline is not overly wide and there is a big change in the relative angle
between the objects in the scene and the illuminant direction. This assumption, how-
ever, breaks on high curvature areas introducing errors in the flow estimation as well as
in the estimation of the reflectance about specular spikes and lobes.
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Another problem in the recovery of the parameters is due to the fact that for highly
specular pixels, the reflectance information is effectively lost at capture, i.e. g(u)L(λ)
S(u, λ) ≈ 0. For this reason, throughout the paper, we make use of the multiplicative
gating function

W (u) = exp (−τ ||I(u, λ)− P(I(u, λ))||) (2)

where P(I(u, λ)) is the projection of the image radiance I(u, λ) onto the dichromatic
plane [8] spanned by the radiance over the neighbourhood about pixel location u. The
dichromatic plane can computed using SVD [24].

The gating function above reflects the observation that, as the deviation of the image
radiance from the dichromatic plane increases, the diffuse reflection decreases in im-
portance [8]. Therefore, the function W (u) can be viewed as a weight in the illuminant
and reflectance recovery error. Further, W (u) decreases in value for increasingly spec-
ular pixels. This is in accordance with the dichromatic plane formalism used to define
W (u), which implies that, for specular highlights, the gating function tends to zero, i.e.
the gating function and the specular coefficient are nearly orthogonal with respect to
each other. Hence, using this weighting function, the contribution of the specular pixels
to the energy functional is negligible. As a result, we remove the specular coefficient
k(u) from further consideration for purposes of our optimisation approach and, instead,
compute it analytically at the end of the process, once the reflectance, illuminant power
spectrum, and shading are in hand.

Under these assumptions, we obtain the following energy terms comparing mea-
sured and reconstructed irradiance:

EDI1 =

∫
Ω1

W1(u)
2
∑
λ

(
I1(u, λ)− L(λ)g1(u)S(u, λ)

)2
du

EDI2 =

∫
Ω1

W2

(
u′
)2∑

λ

(
I2
(
u′, λ

)
− L(λ)g2

(
u′
)
S(u, λ)

)2
du

where the subscript indicate the index for either of the two images. Note that, even for
the term related to the second image, the integration is performed over the domain Ω1

of the first image whereby the relations with Ω2 is always mediated through the flow f .

3.2 Total Variation Regularization

Our goal is to minimize the energy terms over the flow f and the dichromatic model
parameters. We tackle the under-determination of the problem we by adding a regu-
larization term to the energy functional above. The Total Variation (TV) of a function
φ : Rm ⊇ Ω → Rn is an operator defined as

TV(φ) = sup
p1,...,pm

{∫
Ω

n∑
i=1

φi(x)∇ · pi(x) dx : p1, . . . , pm ∈ C1(Ω,Rn)
}

(3)

where C1(Ω,Rn) is the set of continuously differentiable functions from Ω to Rn,
and p1, . . . , pm satisfy

∑m
i=1 ||pi(x)||2 ≤ 1 everywhere except at most in a subset of
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measure 0. Further, if φ is a differentiable function, the TV assumes the equivalent form

TV(φ) =

∫
Ω

||Dφ(x)||2 dx , (4)

where Dφ is the differential or Jacobian matrix of φ and || · ||2 denotes the Frobenius
norm.

Used as a regularizer, TV privileges piecewise constant solutions. For this property,
it has found a multitude of applications ranging from image processing restoration [25],
to segmentation [23], to the estimation of the optical flow [31,7]. In our proposed for-
mulation we adopt TV to impose smoothness priors both on the reflectance and flow
estimates. The reflectance component is assumed to be constant over image patches of
uniform material, thus TV is naturally applicable to S, seen as a function from Ω1 to
R` where ` is the number of spectral bands.

For the flow, however, there is no reason to assume a piecewise constant model.
Most approaches in the literature opt to express the flow as a displacement f(u) =
u+T (u) where the displacement is regularized, resulting in a piecewise uniform trans-
lation. Here we opt for a higher order smoothness priors, and we compare the use of
an affine prior, similar to one proposed in [17], and an homographic prior, which to the
best of our knowledge has never been used before.

In the affine model we assume the displacement to be locally affine: f(u) = u +
A(u)u, where

A(u) =

a1(u) a2(u) a3(u)
a4(u) a5(u) a6(u)
0 0 0

 (5)

while for the homographic model we assume the full coordinate transformation to be
projective: λf(u) = H(u)u where λ is a scaling factor and H = (hij) is in the special
linear group SGL(3), i.e., the group of 3× 3 real matrices with unit determinant. Both
models can be seen as capturing view transformation of locally planar patches. The
homographic model does so exactly assuming the image to follow the pinhole model,
while the affine model approximates it assuming a so called “weak camera model”.
Under these assumptions, the hyperparameters defining the entries of A and H can be
assumed to be piecewise constant within such patches. In the rest of the paper we will
use Θ and Dom(Θ) to refer to the flow hyperparameters and their domain when these
can be indifferently the affine of the homographic hyperpriors, and A or H when we
want to specify models used. Note that Dom(Θ) is IR6 for the affine model and SGL(3)
for the homographic one.

Finally, we perform a convex relaxation of the total variation functional [5] trans-
forming the TV regularized optimization problem minφE(φ)+TV (φ) into the relaxed
problem

min
φ,φTV

E(φ) +

∫
||φ− φTV||2

δ
+ TV (φTV) . (6)

While the size increases with the addition of the auxiliary function φTV, assuming
E(φ) convex, the formulation becomes convex for δ > 0 and converges to the original
variational problem as δ → 0.
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3.3 Multi-view Dichromatic Functional

Assembling the data fidelity terms and the regularizers, we obtain the energy Multi-
view dichromatic functional

E = α (µEDI1 + (1− µ)EDI2) + ρS

∫
Ω1

||S(u)− STV(u)||2

δS
du

+ ρS

∫
Ω1

||DSTV(u)||2 du+ ρf

∫
Ω1

||Θ(u)−ΘTV(u)||22
δf

du

+ ρf

∫
Ω1

||DΘTV(u)||2 du

(7)

which is then minimized over S, Θ, L, g1, g2, STV, and ΘTV subject to Θ ∈ Dom(Θ),
to obtain simultaneous flow estimation and joint factorization of the dichromatic model
over the two spectral images. Here α, ρS , and ρf are constants balancing the data fi-
delity and regularization terms, while µ ∈ [0; 1] is used to limit the effect that errors
in the estimation of the flow can have in the dichromatic factorization originating form
the second image. Note that, as mentioned earlier, due to the W (u)k(u) orthogonality
we can eliminate the minimization over k, and recover the specular coefficient after
the optimization from the optimal illuminant, reflectance, and shading with the relation
k(u) = 1

`

∑
λ
I(u,λ)
L(λ) − g(u)S(u, λ).

4 Implementation and Discussion

4.1 Minimization Process

To optimize E we adopt an alternating minimization procedure, rotating trough the
following steps:

1. Minimize with respect toL(λ), g1(u), and g2
(
f(u)

)
, keeping S(u, λ),Θ, STV(u, λ)

and ΘTV(u) fixed;
2. Update S(u, λ) and Θ through a projected gradient descent step, keeping all other

variables fixed;
3. Minimize the total variation terms to obtain a new estimate ofΘTV(u) and STV(u).

For the first step, we differentiate E with respect to g1(u) and g2
(
f(u)

)
and set

both equations to zero so as to obtain

g1(u) =

∑
λ I1(u, λ)S(u, λ)L(λ)∑

λ S(u, λ)
2L(λ)2

g2
(
f(u)

)
=

∑
λ I2
(
f(u), λ

)
S(u, λ)L(λ)∑

λ S(u, λ)
2L(λ)2

.

(8)
Similarly, we differentiate E = µEDI1 +(1−µ)EDI2 + const. with respect to L(λ)

and set the derivative to zero, which yields

L(λ) = C1

∫
Ω1
S(u, λ)∆I(u, λ) du∫

Ω1
S(u, λ)2∆S(u, λ) du

, (9)
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where

∆I(u, λ) = µW1(u)
2I1(u, λ)g1(u) + (1− µ)W2

(
f(u)

)2
I2
(
f(u), λ

)
g2
(
f(u)

)
∆S(u, λ) = µW1(u)

2g1(u)
2 + (1− µ)W2

(
f(u)

)2
g2
(
f(u)

)2
and C1 is a normalizing constant satisfying

∑
λ L(λ)

2 = 1.
Hence, for the first step of the optimization process, we find the global optimum of

E with respect to g1(u), g2
(
f(u)

)
, and L(λ) by alternating Equations (8) and (9). Note

that, while we are estimating g1(u) in the regular lattice of the first image, we also do
so for g2

(
f(u)

)
through f . This means that, in a discrete image setting, the estimated

values of the second image’s shading factor are not aligned with that image’s regular
lattice, but are shifted according to the flow f .

For the second step, we compute the gradient of E with respect to the reflectance
S(u, λ) and the hyper-parameter Θ(u). Further, in the case of the homographic hyper-
parameter H , we project the gradient onto the tangent plane of SGL(3) before taking
the gradient step and then reproject the updated H onto SGL(3). The constraint defin-
ing SGL(3) is C = det(H)− 1 = 0, from which we get the projection of the gradient
on the tangent space as

∂
‖
HE = ∂HE −

∂HC
T∂HE

∂HCT∂HC
∂HC . (10)

The reprojection of the updated hyperparameter H is obtained by dividing it by the
cubic root of its determinant.

Note that the data fidelity term only depends of f(u), thus, using the chain rule for
the data fidelity term only, we can write

∂Θ(u)E = (∂u′E) (∂Θ(u)u
′) + ρf

Θ(u)−ΘTV(u)

δf
. (11)

The gradient with respect to the flow can be computed easily in terms of the dichro-
matic parameters

∂u′E = α(1− µ)

[
EDI2(u

′)∂f(u)W2

(
u′
)
+ 2W2

(
u′
)∑

λ

(
I2
(
u′, λ

)
− L(λ)g2

(
u′
)
S(u, λ)

)
·
(
∂u′I2

(
u′, λ

)
− L(λ)S(u, λ)∂f(u)g2

(
u′
)) ]

.

(12)

For the affine model, the derivative of the flow with respect to the hyperparameters
is a linear function:

∂Au
′ = ∂(a1,...,a6)f(u) =

(
1 0
0 1

)
⊗
(
u v 1

)
(13)
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Fig. 1. Sample image pair showing the effect of the priors on the regularized parameters. First col-
umn: input image pair and optical flow. Second column: Reflectance value computed by H&RK
(top) and by our approach with affine and homographic hyper-priors (center and bottom). Third
column: Reflectance norm magnitude computed by H&RK (top) and by our approach with affine
and homographic hyper-priors (center and bottom). Last column: Forbenious norm of the differ-
ential of the initial (top) affine and homographic hyper-parameters (center and bottom).

where A ⊗ B is the Kronecker product of matrices A and B and u = (u, v)T . For the
homographic model we have:

∂Hu′ = (
∂u′

∂h11
, . . . ,

∂u′

∂h13
,
∂u′

∂h21
, . . . ,

∂u′

∂h33
)

=
1

ζ

(
1 0 −(h11u+ h12v + h13)
0 1 −(h21u+ h22v + h23)

)
⊗
(
u v 1

)
where ζ = h31u+ h32v + h33.

Furthermore, the energy gradient with respect to reflectance can be expressed as:

∂S(u,λ)E =− 2αµg1(u)W1(u)L(λ) (I1(u, λ)− g1(u)L(λ)S(u, λ))

− 2α(1− µ)g2
(
u′
)
W2

(
u′
)
L(λ)

(
I2
(
u′, i

)
− L(λ)g2

(
u′
)
S(u, λ)

)
+ 2ρS

S(u, λ)− STV(u, λ)

δS
.

We approximate ∂u′W2

(
u′
)

and ∂u′I2
(
u′
)

with central finite differences that are
pre-computed at the beginning of the optimization process. As we mentioned before,
obtaining ∂f(u)g2

(
u′
)

is not straightforward since we never optimize g2(u) in the reg-
ular lattice of the second image but only its representation warped to the first image
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through the flow f(u). However, by the chain rule, we have:

∂

∂u
g2
(
f(u)

)
=
∂g2
(
f(u)

)
∂f(u)

· ∂f(u)
∂u

, (14)

from which we have

∂g2
(
f(u)

)
∂f(u)

=
∂

∂u
g2
(
f(u)

)(∂f(u)
∂u

)−1
(15)

or, equivalently

∇f(u)g2
(
f(u)

)
=
(
Duf(u)

T
)−1∇ug2

(
f(u)

)
, (16)

where both terms∇ug2
(
f(u)

)
and Duf(u) are computed with standard central differ-

ences from g2
(
f(u)

)
and f(u) respectively.

Finally, for the third optimization step, we follow the fast iterative method proposed
by Bresson and Chan [5].

4.2 Initialization

Note that our approach relies on an initial estimate of the flow f(u), illuminant power
spectrum and specular highlights. This is since, if the illuminant power spectrum and the
specular coefficient is known, the reflectance and the shading factor can be obtained via
algebraic manipulation and normalisation operations [12]. Indeed, there are a number
of methods elsewhere in the literature that can be used to obtain these initial estimates.
Here, we use the method in [28] to recover the image highlights and that in [9] for the
recovery of the initial estimate of the illuminant power spectrum.

For the optical flow, we avoid the common coarse-to-fine-approaches, proposing to
rather exploit a small set of initial sparse matches as a starting point for the flow optimi-
sation. This is a similar approach to that used in recent works by Leordeanu et al.[17]
or Brox and Malik [6] which are proven to deal with very large displacements. To this
end, we compute a small set of reliable sparse matches from an image pair following the
method in [1] and making use of SURF features extracted from the initial shading fac-
tor. We modified the original pay-off function to include a similarity term that weights
the angular error of the reflectance spectra among two matches. As a consequence, we
are better able to select a good set of inliers without epipolar filtering, which is not a
feasible option if the scene objects are allowed to move.

We use these sparse matches to get an initial estimate of the flow around a limited
set of points in our optimization domain, where we have designed an energy functional
composed by a data term and a simple L2 regularizer given by

Ef = α

∫
Ω

D(u)H(u) [µ1Es(u) + µ2Er(u)] + ||∂uT (u)||22du (17)
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Fig. 2. Qualitative example of the results obtained for Scene 4. Top row: Initial input pairs, re-
flectance value, reflectance gradient magnitude and specular factors computed by H&RK. Central
and Bottom rows: Shading, reflectance value, reflectance gradient magnitude and specular factors
computed by the proposed method with the affine and homographic hyper-priors respectively.

with

Es(u) = [g1(u)− g2
(
u+ T (u)

)
]2 (18)

Er(u) = e−
∑
λ S1(u,λ)S2

(
u+T (u)),λ

)
(19)

D(u) = e−
1
σ minm∈M ‖u−m‖ (20)

H(u) = γ

∑
λ ‖∂uS1(u, λ)‖2

maxu′
∑
λ ‖∂u′S1(u′, λ)‖2

+ 1 (21)

where γ, µ1 and µ2 are constants, σ is the radius of the spatial weighting term and we
have written Si(u, λ) to imply that the reflectance corresponds to the ith view under
consideration, i.e. i = {1, 2}.

In the expression above, the data term accounts for both the photometric Es and
material Er consistency between the two images trough an L2-norm penalty function.
The spatial weighting term D moderates the effect of the L2-regularizer with respect to
the data term as a function of the distance from the closest match in the initial set M
whereas (H) is used to allow discontinuities in the proximity of edges. Here, we tackle
the minimization of the functional above as a standard variational problem by solving
the set of associated Euler-Lagrange equations [10] and have set all constants to unity.

4.3 Effect of the regularization terms

Recall that the total variation hyper-prior regularization term was introduced to enforce
the patch-wise uniform material assumption and the locally uniform flow assumption
formalized in terms of locally-homographic transformation. Figure 1 shows the effect
of the priors on the regularized parameters on a sample hyperspectral image pair. The
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left-most column shows the input color image pair (we show the pseudocolour obtained
using the colour matching functions of Stiles and Burch [27] over the 30 bands in the
visible range as delivered by the camera) and the initial flow. The second column shows
the reflectance (again, in pseudocolour) as returned by [12] (H&RK) and as optimized
by our process with the affine and homographic priors respectively in the first, second
and third row. The third column shows the gradient magnitude of the reflectance for the
same three methods, while the last column shows the Frobenius norm of the differential
of the hyper-parameters A and H at initialization and after optimization.

From the figure, it is clear that the algorithm is capable of clustering together re-
gions of uniform material that had significant variation in the estimated reflectance with
H&RK. For example, look at the gradient magnitude of the reflectance in areas like the
roof of the truck on the right or the wheels of the trick on the left. In both cases the
materials are uniform and thus should exhibit uniform reflectance, but the wide vari-
ation in shading leaks into variations in the reflectance estimated with H&RK, on the
other hand, our approach strongly reduces the variation in reflectance, while maintain-
ing sharp variations across different materials.

Also note that the regularization of the hyper-parameters significantly improve the
details captured by the flow. For instance, the flow around the logos on the two trucks
correspond to a pure change in material and should not have any effect on the flow.
However, the edges of the logos are clearly visible in the gradient magnitude of the
flow hyper-parameters at initialization, which indicates a leakage of information from
the estimated reflectance to the estimated flow. After optimization, not only is the flow
generally more uniform, with high gradient mostly in correspondence with depth dis-
continuities or occluded pixels, but the boundaries of the logos vanish almost com-
pletely. Indeed, from the reflectance gradient in the 3rd column, we can see many more
shading artefacts and edge ghosting effects in the results yielded by the H&RK alter-
native than in those obtained with our approach. As expected, the homographic hyper-
prior performs better than the affine one as it captures the assumption of locally planar
patches. This is clear by observing the yellow logo on the truck. The affine case (cen-
tral row) suffers a loss of contrast which is almost negligible for the homographic case
while still effectively clustering uniform patches of similar material.

5 Experiments

For purposes of comparison, we have used the method in [12]. Our choice hinges in the
fact that the alternative is aimed at processing imaging spectroscopy data based upon
the dichromatic model. Moreover, the method in [12] is an optimisation approach. Both
our method and the alternative have been initialised using the same estimates of the
illuminant power spectrum and specular highlights.

For the experiments shown in this section, we have used four image sequences ac-
quired using an uncalibrated multispectral camera delivering six channels in the visible
spectrum i.e. six wavelength indexed bands in the range 430 − 680nm with 50nm
steps, and one in the near-infrared at 950nm. It is worth noting in passing that our
method can be easily applied to data comprising any number of wavelength bands, as
shown in Figure 1, where the images comprised 30 bands. Each of our image sequences
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Fig. 3. Qualitative example of the results obtained for Scene 5. Top row: Initial input pair, re-
flectance value, reflectance gradient magnitude and specular factors computed by H&RK. Central
and Bottom rows: Shading, reflectance value, reflectance gradient magnitude and specular factors
computed by the proposed method with the affine and homographic hyper-priors respectively.

here comprises 10 frames, depicting scenes containing a wide variety of objects made
of different materials and depicting a wide variety of shapes. Each of these scenes is
illuminated by different lights, spanning artificial sunlights, tungsten and incandescent
lamps. For each of these, the ground truth illuminant power spectrum has been acquired
using a LabSphere Spectralon calibration target. For our dataset, we have computed re-
flectance images for groundtruthing purposes following the procedure in [11]. All our
pseudocolour images have been obtained using the colour matching functions of Stiles
and Burch [27].

In Figures 2 and 3 we present some qualitative results comparing the proposed
method against H&RK for two sample scenes in our dataset. In the first row, a pseudo-
colour image pair obtained in the same way as in [12] is shown together with the re-
flectance, reflectance gradient magnitude and specular factor estimated by H&RK. In
the second and the third row the output of our method for affine and homographic hy-
per priors respectively is shown together with the estimated shading factor. Note how
the total variation regularisation process in our approach has improved the reflectance
estimate by removing artefacts arising from the surface geometry. The specular high-
lights delivered by our method are in better accordance with the input imagery as can
be appreciated by observing the screwdriver box, the jars and the cups present in the
scenes. Overall, both the regularizer performs better than H&RK producing similar re-
sults. However, a better estimation of the flow given by the homographic hyperprior
improves the reflectance contrast and specular highlights localization.

In Figures 4 and 5 we illustrate the results yielded by our method and the alternative
regarding the recovery of the reflectance and the illuminant power spectrum. To this
end, the left-hand side of Figure 4, we plot the illuminant delivered by H&RK and our
method superimposed over the ground-truth (red-line). In the panel, the top trace depicts
the spectrum whereas the bottom bar plot corresponds to the standard deviation of the
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Fig. 4. Illuminant power spectra for each scene. First and second column: power spectrum for
each scene image as computed by H&RK and our approach respectively. Third column: average
spectrum with the standard deviation for each band.

illuminant per band over the corresponding image sequence. Note that the standard
deviation for the illuminant power spectrum is much lower for our method. This is
also the case for the reflectance. In Figure 5 we show the reflectance for four colour
tiles on an XRite colour checker placed in one of our scenes. For the sake of clarity of
presentation, the figure shows a close up of the color checker and, in a fashion similar
to Figure 4, the spectrum as a trace at the top of the plots with the standard deviation at
the bottom on a bar plot.

In Table 5 we show the RMS and Euclidean angular error for the illuminant power
spectrum recovered by our approach and the H&RK method across all the images for
the four scenes in our dataset. Note that, for both measures, our method exhibits a lower
error. This is consistent with our qualitative results showed earlier. Finally, in Table 5,
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mean st. dev.
H&RK θ 0.075242 0.01740
Our θ 0.073063 0.02032
H&RK RMS 0.028431 0.00657
Our RMS 0.027607 0.00767

Table 1. Average and standard de-
viation of the RMS and Euclidean
angular error (θ) of the estimated
reflectance inside the coloured tiles
shown in Figure 5.

Scene H&RK θ Our θ H&RK RMS Our RMS

1 0.080354 0.080045 0.026777 0.026675
2 0.066695 0.055120 0.023576 0.019485
3 0.076167 0.074565 0.025383 0.024849
4 0.021691 0.020638 0.007669 0.007296

Table 2. RMS and Euclidean angular error (θ) for the
illuminant recovered by our approach and the H&RK
method for all the four scenes of our dataset.

we show the RMS and Euclidean angular error of the recovered reflectance averaged
among each coloured tile shown in Figure 5.

6 Conclusions

In this paper, we proposed a novel method for dichromatic model recovery from a spec-
tral image pair by means of an energy minimization that simultaneously take into ac-
count the model parameters and the flow between the images. We introduced a novel
affine hyper-prior for the flow that, in combination with a Total Variation regularization,
provides a natural piecewise-planar assumption of the scene under the pinhole camera

Fig. 5. Reflectance spectra and the standard deviation for each band for the pixels inside the
respective color tiles.
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model. The same kind of regularizer is used for the reflectance imposing the assumption
that objects are composed by local patches of uniform materials. As a result, we are able
to obtain a better reflectance estimation with respect to the current single-image state
of the art approaches. Moreover, our approach has shown a significant lower variance
while computing the illuminant spectrum over a sequence of images of the same scene.
This behaviour is crucial for many applications for which a coherence of the dichro-
matic parameters is advisable when analysing multiple instances of the same objects
involved in a sequence for which the illuminant is constant across the scene. Further-
more, qualitative results shows that the method discriminates better between the shading
(i.e. the geometrical features of a surface) and the texture an object.
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