
A Scalable Jointree Algorithm for Diagnosability∗

Anika Schumann
Advanced Computing Research Centre

University of South Australia
Mawson Lakes, SA 5095, Australia
anika.schumann@cs.unisa.edu.au

Jinbo Huang
National ICT Australia and

The Australian National University
Canberra, ACT 0200, Australia

jinbo.huang@nicta.com.au

Abstract

Diagnosability is an essential property that determines how
accurate any diagnostic reasoning can be on a system given
any sequence of observations. An unobservable fault event in
a discrete-event system is diagnosable iff its occurrence can
always be deduced once sufficiently many subsequent observ-
able events have occurred. A classical approach to diagnos-
ability checking constructs a finite state machine known as a
twin plant for the system, which has a critical path iff some
fault event is not diagnosable. Recent work attempts to avoid
the often impractical construction of the global twin plant by
exploiting system structure. Specifically, local twin plants
are constructed for components of the system, and synchro-
nized with each other until diagnosability is decided. Unfor-
tunately, synchronization of twin plants can remain a bottle-
neck for large systems; in the worst case, in particular, all
local twin plants would be synchronized, again producing the
global twin plant. We solve the diagnosability problem in a
way that exploits the distributed nature of realistic systems. In
our algorithm consistency among twin plants is achieved by
message passing on a jointree. Scalability is significantly im-
proved as the messages computed are generally much smaller
than the synchronized product of the twin plants involved.
Moreover we use an iterative procedure to search for a subset
of the jointree that is sufficient to decide diagnosability. Fi-
nally, our algorithm is scalable in practice: it provides an ap-
proximate and useful solution if the computational resources
are not sufficient.

Introduction
Automated fault diagnosis has significant practical impact
by improving reliability and facilitating maintenance of sys-
tems. Given a monitor continuously receiving observations
from a dynamic event-driven system, diagnostic algorithms
detect possible fault events that explain the observations. For
many applications, it is not sufficient to identify what faults
could have occurred; rather one wishes to know what faults
have definitely occurred. Computing the latter in general re-
quires diagnosability of the system, that is, the guarantee
that the occurrence of a fault can be detected with certainty
after a finite number of subsequent observations (Sampath
et al. 1995). Consequently, diagnosability analysis of the

∗This work was supported by NICTA’s SuperCom project. The
first author is currently funded by ARC grant DP0560183.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

system should be performed before any diagnostic reason-
ing. The diagnosability results then help in choosing the
type of diagnostic algorithm that can be performed and pro-
vide some information of how to change the system to make
it more diagnosable.

In this paper, we propose a formal framework for check-
ing diagnosability on event-driven systems which is mainly
motivated by two facts. On the one hand, checking diag-
nosability means determining the existence of two behav-
iors in the system that are not distinguishable. However,
in realistic systems, there is a combinatorial explosion of
the search space that forbids the practical use of classical
and centralized diagnosability checking methods (Sampath
et al. 1995) like the twin plant method (Jiang et al. 2001;
Yoo and Lafortune 2002).

Our proposal makes several contributions to the diagnos-
ability problem. The first one is the definition of a new the-
oretical framework where the classical diagnosability prob-
lem is described as a distributed search problem. Instead
of searching for indistinguishable behaviors in a global twin
plant, we propose to distribute the search based on local twin
plants, represented as finite state machines (FSMs). Specifi-
cally, we exploit the modularity of the system by organizing
the system components into a special tree structure, known
as a jointree, where each node of the tree is assigned a subset
of the local twin plants, whose collective set of events has a
size bounded by the treewidth of the system. Once the join-
tree is constructed we need only synchronize the twin plants
in each jointree node, and all further computation takes the
form of message passing along the edges of the jointree. Us-
ing the jointree properties we show that after two messages
per edge, the FSMs at all nodes are collectively consistent.
This allows us to decide diagnosability by considering these
FSMs in sequence instead of the large global twin plant.

We describe how messages, which are themselves FSMs,
are computed, based on projecting a FSM onto a subset of
its events, and how diagnosability information can be prop-
agated along with the messages. Then we employ a system-
atic iterative procedure so that only a subset of the jointree
is considered at a time and the loop terminates as soon as the
current subset is sufficient for deciding diagnosability.

Since diagnosability analysis is a complex problem, we
also consider the usefulness of our algorithm where it cannot
run to completion due to lack of computational resources.
The distributed nature of our search ensures that in such
cases it is able to provide an approximate solution to the

G1

a0

s3
a1f1

a3
s1

a2
s2

a4

o1

a5
s1
o1o1

G2 G3

b0

s3 b2
s2

b1

s5

o3

o2

c0

c1f2

c2s1

c5

o5

c3o4

c4o4

s1 s1

s3 c6
s4
o6

Figure 1: Three components of a system modeled as FSMs.
Solid, dashed, and dotted lines denote observable, shared,
and failure transitions, respectively.

diagnosability problem. Specifically, it returns a maximal
subsystem for which the existence of indistinguishable be-
haviors has been decided, but not yet verified against the rest
of the system due to the limited computational resources.
In case indistinguishable behaviors have been found, then
the larger this subsystem is, naturally, the more likely the
whole system is not diagnosable; otherwise the reverse is
true. Such an approximate solution is also useful in that it
tells the user that on-line monitoring of this particular sub-
system will not be sufficient to detect occurrences of the
fault.

Background
In this section we review the definition of diagnosability and
the twin plant approach to diagnosability checking, and give
a short introduction to jointrees.

Diagnosability of discrete-event systems
As in (Sampath et al. 1995), we consider a discrete-event
system G consisting of components G1, . . . , Gn. Each com-
ponent is a FSM Gi = 〈Xi,Σi, x0i , Ti〉 where Xi is the set
of states, Σi is the set of events, x0i is the initial state, and
Ti is the transition relation (Ti ⊆ Xi × Σi × Xi). The
set of events Σi is divided into four disjoint subsets: observ-
able events Σoi , unobservable events Σsi shared with other
components, unobservable fault events Σfi , and other unob-
servable events Σui .

Figure 1 depicts three components of a system modeled
as FSMs. Note that a monolithic model for the entire sys-
tem is implicitly defined as the synchronized product, G =
Sync(G1, . . . , Gn), of all component models. The result
of Sync is a FSM whose state space is the Cartesian product
of the state spaces of the components, and whose transitions
are synchronized in that any shared event always occurs si-
multaneously in all components that define it.

A fault F ∈ ⋃
i Σfi of the system is diagnosable iff its

(unobservable) occurrence can always be deduced after fi-
nite delay (Sampath et al. 1995). In other words, a fault
is not diagnosable if there exist two infinite paths from the
initial state which contain the same infinite sequence of ob-
servable events but exactly one of which contains the fault.

More formally, let pF denote a path starting from the ini-
tial state of the system and ending with the occurrence of a
fault F in a state xF , let sF denote a finite path starting from
xF , and let obs(p) denote the sequence of observable events

in a path p. As in (Sampath et al. 1995), we assume that (i)
the system is live (there is a transition from every state), and
(ii) the observable behavior of the system is live (obs(p) is
infinite for any infinite path p of the system). We have:

Definition 1 (Diagnosability) F is diagnosable iff

∃d ∈ N, ∀pF sF , |obs(sF)| > d ⇒
(∀p, obs(p) = obs(pF sF) ⇒ F occurs in p).

Diagnosability checking thus requires the search for two
infinite paths p and p′, i.e. paths containing a cycle, with
obs(p) = obs(p′) such that F is in p but not in p′. The pair
(p, p′) is called a critical pair (Cimatti, Pecheur, & Cavada
2003). From here on we will write path to mean a path that
starts from the initial state of the system.

Twin plant for diagnosability checking
The idea of the twin plant is to build a FSM that compares
every pair of paths (p, p′) in the system that are equivalent
to the observer (obs(p) = obs(p′)), and apply Definition 1
to determine diagnosability (Jiang et al. 2001).

We now present the twin plant method based on the com-
ponent models. From them we compute the interactive di-
agnoser (Pencolé 2005), which gives the set of faults that
can possibly have occurred for each sequence of observable
and shared events. The interactive diagnoser of a compo-
nent Gi is the nondeterministic finite state machine G̃i =
〈X̃i, Σ̃i, x̃0i , T̃i〉 where X̃i is the set of states (X̃i ⊆ Xi×F
with F ⊆ 2Σfi), Σ̃i is the set of events (Σ̃i = Σoi ∪ Σsi),
x̃0i = (x0i , ∅) is the initial state, and T̃i ⊆ X̃i × Σ̃i × X̃i is
the transition set (x,F) σ−→ (x′,F ′) such that there exists a
transition sequence x

σ1−→ x1 · · · σm−−→ xm
σ−→ x′ in Gi with

Σ′i = {σ1, . . . , σm} ⊆ Σfi ∪Σui and F ′ = F ∪ (Σ′i∩Σfi).
Figure 2 (top) depicts the interactive diagnoser for compo-

nent G1 in Figure 1. Following the transitions s2, o1 from
the initial state of the diagnoser, for example, we arrive at
state (a4, {f1}), meaning that the system contains a path
to state a4 on which the sequence of observable and shared
events is exactly s2, o1 and the set of faults is exactly {f1}.

The local twin plant is then constructed by synchronizing
two instances G̃l

i (left) and G̃r
i (right) of the same interactive

diagnoser based on the observable events Σoi = Σl
oi

= Σr
oi

.
Since only observable behaviors are compared, the shared
events must be distinguished between the two instances: in
G̃l

i (resp. G̃r
i), any shared event σ ∈ Σsi from G̃i is renamed

l:σ ∈ Σl
si

(resp. r:σ ∈ Σr
si

). This gives us the local twin
plant Ĝi = Sync

(
G̃l

i, G̃
r
i

)
.

Figure 2 (bottom) depicts part of the twin plant for com-
ponent G1 in Figure 1. The top labels x0, . . . , x6 of the
states are their identifiers to which we will refer in subse-
quent figures. State labels are composed of a state in the
left interactive diagnoser (middle label) and one in the right
interactive diagnoser (bottom label). Each state of the twin
plant is a pair x̂ = ((xl,F l), (xr,Fr)) that represents two
possible diagnoses given the same sequence of observable
events. If some fault F belongs to F l ∪ Fr but not to
F l∩Fr, then the occurrence of F cannot be deduced in this
state. In this case, the state x̂ is called F-nondiagnosable;

a0, {}

s3
a2, {f1}s2

a3, {}
s1

a4, {f1}
o1

a4, {}
o1

a5, {f1}
s1

a5, {}
s1

o1

o1

x0
a0, {}
a0, {}

r:s3
l:s3

x1
a0, {}
a3, {}

r:s1

x2
a2, {f1}
a0, {}

l:s2
x3

a2, {f1}
a3, {}

l:s2
x4

a4, {f1}
a4, {}

o1
r:s1

x5
a4, {f1}
a5, {}

x6
a5, {f1}
a5, {}

r:s1l:s1

o1

Figure 2: Diagnoser (top) and part of a twin plant (bottom).

otherwise it is called F-diagnosable. In Figure 2 the oval
nodes represent f1-nondiagnosable states. By extension, a
state x̂ = (x̂1, . . . , x̂k) is F-nondiagnosable iff it is com-
posed of one F-nondiagnosable state.

A fault F is diagnosable in system G iff, its global twin
plant (GTP for short) Sync(Ĝ1, . . . , Ĝn) has no path p with
a cycle containing at least one observable event and one F -
nondiagnosable state (Schumann and Pencolé 2007). Such
a path p represents a critical pair (p1, p2), and is called a
critical path. The oval nodes in Figure 2, for example, form
part of a critical path.

The twin plant method searches for such a path in the
GTP. In this paper, we propose a new algorithm that avoids
building the global twin plant, which is impractical for sys-
tems with a large number of states. Instead, local twin plants
are built for components Gi of the system. Since the exis-
tence of a critical path in a local twin plant does not imply
nondiagnosability of the global system, we need to propa-
gate information between local twin plants, which we ac-
complish by message passing on a jointree.

Jointrees
Jointrees have been a classical tool in probabilistic reasoning
and constraint processing (Shenoy and Shafer 1986; Dechter
2003), and correspond to tree decompositions known in
graph theory (Robertson and Seymour 1986). For our pur-
poses, a jointree is a tree whose nodes are labeled with sets
of events satisfying two special properties:
Definition 2 (Jointree) Given a set of FSMs G1, . . . , Gn

defined over events Σ1, . . . , Σn respectively, a jointree is a
tree where each node is labeled with a subset of Σ =

⋃
i Σi

such that
• every Σi is contained in at least one node, and
• if an event is in two distinct nodes, then it is in every node

on the path between them.
Figure 3 (left) depicts a jointree for the three local twin

plants for the system in Figure 1. The label on each edge rep-
resents the intersection of the two neighboring nodes, known
as the separator.

The size of the largest label on a node, minus 1, is known
as the width of the jointree. Although finding a jointree of
minimal width for a given graph is known to be NP-hard,
in practice polynomial-time heuristics, such as min-fill, can
produce good results (Dechter 2003).

Once a jointree is constructed, each FSM Gi is assigned
to a node that contains its events Σi. Figure 3 (right) de-
picts such an assignment. Note that in general each node

can have multiple FSMs assigned to it. Now we need only
synchronize the FSMs in each node, and the properties of the
jointree then guarantee that consistency among all the FSMs
can be achieved by passing exactly two messages over each
edge of the jointree, one in each direction.

A Jointree Algorithm for Diagnosability
The synchronization of all twin plants on a jointree would
solve the diagnosability problem. However, for large sys-
tems this can easily be impractical. Therefore we will only
synchronize the twin plants in each jointree node and all
further computation takes the form of messages passing be-
tween nodes, in such a way that diagnosability can be de-
cided in the end.

Jointrees admit a generic message passing method that
achieves consistency among the nodes (Dechter 2003). In
our case this translates into a method that achieves consis-
tency of all FSMs labeling the jointree nodes. The messages
passed on will themselves be FSMs. In this section we de-
scribe how these messages can be computed and passed and
how the diagnosability information can be propagated cor-
rectly as part of the messages. This will then also enable us
to present an iterative diagnosability algorithm.

Computing messages
Messages are exchanged to achieve consistency. A FSM Gi

with events Σi is globally consistent with respect to FSMs
G1, . . . , Gn iff for every path pi in it, there exists a path p in
the synchronized product Sync(G1, . . . , Gn) of all FSMs
that has with respect to Σi the same event sequence as pi.
A FSM Gc

i is complete iff it contains all globally consistent
paths of Gi.

We now describe how we can compute the messages that
need to be passed over the jointree edges in order to obtain
a complete and globally consistent FSM in every jointree
node. Each edge of a jointree can be regarded as a two-way
partition of the nodes of the tree, and a message sent over
an edge will represent a summary of the collective behavior
permitted by one side of the partition. A major advantage
of this method is that this summary needs only to mention
events given by the separator labeling the edge (the jointree
properties ensure that this equals the intersection of the two
sets of events across the partition).

Hence a message can be computed by projecting a FSM
onto a subset of its events. The projection ΠΣ′(G) =
〈X ′, Σ′, x0, T

′〉 of a FSM G on events Σ′ ⊆ Σ is obtained

Figure 3: Jointree (left) and assignment of local twin plants
to jointree nodes (right).

from G by first contracting all transitions not labeled by an
event in Σ′ and then removing all states (except the initial
state x0) that are not a target of any transition in the new set
of transitions T ′. More formally, T ′ is given as follows:

T ′ =
{

x
σ′−→ x′ | x, x′ ∈ X ′ and σ′ ∈ Σ′ and

∃ x
σ1−→ x1 · · · σk−→ xk

σ′−→ x′

in G such that σi /∈ Σ′ ∀i = 1, . . . , k
}

.

Figure 4 shows the result of projecting the twin plant for
G1 on {l:s2,r:s2,l:s3,r:s3}.

 x0

r:s3
l:s3

 x3 l:s2

 x2
 l:s2

Figure 4: Projection Π{l:s2,r:s2,l:s3,r:s3}(Ĝ1).

Message passing
We now describe the message passing assuming that the
FSMs in every node have been synchronized into a single
FSM. To achieve consistency among the FSMs, each node of
the jointree will in principle require a summary of the behav-
ior permitted by FSMs residing in the rest of the tree. Given
the jointree properties, all these summaries can be computed
in only two passes over the jointree, one inward pass, in
which the root “pulls” messages toward it from the rest of
the tree and one outward pass, in which the root “pushes”
messages away from it toward the leaves. Once all these
messages have been sent, every FSM is updated based on all
the messages it receives resulting in a complete and globally
consistent FSM.

The process starts by designating any node of the tree as
root. Then, in the first, inward pass, beginning with the
leaves each node sends a message to its (unique) neighbor
in the direction of the root. To compute this message, its
FSM is synchronized with all messages it receives from its
other neighbors (leaves do not have “other neighbors” and
hence skip this step). The message it sends is then the pro-
jection of this FSM onto the separator between itself and the
receiver of the message.

In the second, outward pass, each node (except the root)
receives a message from its (unique) neighbor in the direc-
tion of the root. Again this message is computed by syn-
chronizing its FSM with all messages it received from its
other neighbors and by projecting the resulting FSM onto
the separator between itself and the receiver of the message.

Finally, each node updates its own FSM by synchronizing
it with messages from all its neighbors. Then every FSM
Gc

i of a jointree node represents exactly the behavior that is
complete and globally possible. Figure 5 illustrates the in-
ward and outward propagation steps performed on the join-
tree of Figure 3 (right), resulting in the FSMs Ĝc

1, Ĝc
2 and

Ĝc
3. These propagations give us the following theorem:1

Theorem 1 Every FSM Gc
i labeling a jointree node is

complete and consistent with respect to all other FSMs
1 Proofs of theorems in this paper are in (Schumann 2008).

Figure 5: Inward (left) and outward (right) message prop-
agation using jointrees, where Σ = {l:s2, r:s2, l:s3, r:s3}
and Σ′ = {l:s1, r:s1, l:s3, r:s3}.

G1, . . . , Gn of the tree once it is synchronized with all mes-
sages it received.

In particular this means that for every path p in Ĝ′i =
ΠΣi

(Ĝ1, . . . , Ĝn) there is also an equivalent path pi in Ĝc
i ,

i.e., pi is defined over the same event sequence as p, and vice
versa. Now, for deciding diagnosability this simple equiva-
lence is not sufficient. In addition we need to ensure that for
every critical path p in G′i there is also an equivalent critical
path pi in Gc

i . This requires the propagation of diagnosabil-
ity information.

Propagation of diagnosability information
In the rest of the section we will assume that (i) the twin
plants for components have been assigned to appropriate
jointree nodes and synchronized within each node, (ii) GF

is the component defining the fault F whose diagnosability
is to be checked, and (iii) the node containing the twin plant
ĜF is chosen as root.

Now, if any twin plant of a jointree node contains a con-
sistent critical path, then the fault F is nondiagnosable. The
root can already be searched for critical paths after the in-
ward propagation, for two reasons: Firstly, the synchroniza-
tion of the root with all its incoming messages results in a
globally consistent twin plant, and secondly, since the fault
F appears in the root the latter already contains diagnos-
ability information, that is, the classification of states into
diagnosable and nondiagnosable ones.

After the propagations are completed and every twin plant
Ĝi is synchronized with all its incoming messages, every
state of a twin plant is composed of a tuple (x̂1, . . . , x̂n),
i.e., it is also composed of a state in ĜF . This state is “re-
ceived” by Ĝi through its synchronization with the outward
message, since the root is an ancestor of all nodes. When
computing the outward messages we therefore need to en-
sure that we do not “lose” a path to a nondiagnosable state.

Recall that the projection operation, applied when com-
puting the outward message, removes all states that are no
longer a target state of a transition labeled by a separator
event in Σ. This can lead to the removal of nondiagnosable
states resulting in the incomplete propagation of diagnos-
ability information. Consider for instance the twin plant Ĝu

shown in Figure 6 (left). When computing the message Pu

we remove the nondiagnosable state u1. This results in the
consistent twin plant Ĝc

v which does not contain any critical
paths although it should contain one as Ĝc′

v indicates.

u0

s1

u1
o1

u0

s1

v0

o2

v1
s1
o3 (u0,v0)

o2

(u0,v1)
s1
o3 (u0,v0)

o2 (u0,v1)
s1

(u1,v0)o2
o3

o3
o2

Figure 6: Twin plants Ĝu, Pu = Π{s1}(Ĝu), Ĝv , Ĝc
v =

Sync(Π{s1}(Ĝu), Ĝv), and Ĝc′
v = ΠΣv (Sync(Ĝu, Ĝv))

(from left to right).

We therefore need to ensure that every message passed
on from Ĝ to Ĝ′ via the separator events Σsep will lead
to a consistent twin plant Ĝ′c that has a critical path iff
ΠΣsep

(Sync(Ĝ,Ĝ
′)) has one. To achieve this we need to

memorize for every diagnosable state x̂ in P whether it has
a nondiagnosable local future, that is, whether there is a
transition sequence τ starting in x̂ and leading to the non-
diagnosable state x̂k such that none of the transition events
is kept in the projection. Formally this is the case iff the
following condition is satisfied:

There exists a transition sequence τ = x̂
σ1−→

x̂1 · · · σk−→ x̂k in Ĝ such that x̂k is nondiagnosable and
none of the events σ1, . . . , σk is in Σsep.

We do the memorization by adding for every diagnosable
state x̂ satisfying above condition a nondiagnosable ex-
tended terminal state ext(x̂) and a terminal transition x̂

ext−−→
ext(x̂). The resulting FSM is the message which is passed.

Figure 7 illustrates the message M1,3 sent from Ĝ1

(see Figure 2) to Ĝ3. Here the projection P =
Π{l:s1,r:s1,l:s3,r:s3}(Ĝ1) has the two diagnosable states x0
and x1, which both satisfy the above condition (see paths
x0 l:s2−−→ x2 and x1 l:s2−−→ x3 in Ĝ1 in Figure 2). Thus
M1,3 contains two terminal transitions. On the other hand
the message sent from Ĝ1 to Ĝ2 is the same as the project-
ing Π{l:s2,r:s2,l:s3,r:s3}(Ĝ1) shown in Figure 4 since there does
not exist such a path in Ĝ1 for the only diagnosable state x0.

We are now ready to state the following major result:
Theorem 2 Fault F is diagnosable in G iff after both passes
of jointree propagation with diagnosability information, no
FSM in a jointree node has a critical path.

An iterative jointree algorithm
Rather than propagating messages over the entire jointree,
we now describe how we can improve efficiency and scala-
bility by searching for a subset of it that is sufficient to de-
cide diagnosability.

The idea is that any critical path p in the global twin plant
can be detected by looking only at those twin plants that de-
fine events appearing on p, since every other twin plant has

x0

r:s3
l:s3

ext(x0)ext

x1
 r:s1

x3

 r:s1

ext(x1)ext

x5

 l:s1

 l:s1 x6
 r:s1
 l:s1

Figure 7: Message M1,3. Grey states are nondiagnosable
and hexagon shaped ones are extended states.

no impact on the behavior represented by p. Our aim is it
to find a critical path defined over as few events as possible.
The search for such a path will be done by iteratively in-
creasing the set of jointree nodes (twin plants) Ĝ under con-
sideration, and looking for a critical path defined over only
events Σint that are internal to Ĝ (i.e., events that do not ap-
pear in the rest of the jointree). The detection of such a path
establishes nondiagnosability and terminates the search.

Algorithm 1 CheckDiagnosability(jointree: J)

1: Ĝ← ∅ nodes in J being considered
2: Σint ← ∅ events internal to Ĝ
3: while Ĝ 6= J and HasNondiagState(root) and

SufficientMemory(Ĝ) do
4: v ← PickNode(J, Ĝ)

5: UpdateSets(v, Ĝ, Σint)

6: Propagate(Ĝ)

7: ĜΣint ← GetAllPathsOverΣint(Ĝ)

8: Propagate(ĜΣint)

9: if ExistsTwinP lantWithCritPath(ĜΣint) then
10: return GetCritPath(ĜΣint)

11: if SufficientMemory(Ĝ) then
12: return “F is diagnosable”
13: else
14: ω ← set of components included in Ĝ
15: if ExistsTwinP lantWithCritPath(Ĝ) then
16: return “ω has a critical path”
17: else
18: return “ω has no critical path”

Algorithm 1 gives pseudo-code for this procedure. Our
set of jointree nodes Ĝ starts out containing just the root
(PickNode on line 4 always returns the root the first time it is
called), as the root is the only initial source of diagnosability
information, without which no critical path can be detected
in the other twin plants. At each iteration we select a new
node that has a neighbor in Ĝ (line 4), and add it to Ĝ as well
as update the set of internal events Σint (line 5). (We will
discuss the node selection heuristic in the next subsection.)

Jointree propagation is then run twice:

• firstly on Ĝ (line 6) to remove inconsistent paths in
it. This can lead to the removal of nondiagnos-
able states which in turn might cause the function
HasNondiagState(root) to return false and thus verify
diagnosability, and

• secondly on ĜΣint (line 8) which is obtained by removing
from all twin plants in Ĝ all transitions labeled by events
not in Σint. This allows the detection of whether a twin
plant Ĝ ∈ Ĝ has a critical path whose global consistency
can be verified by considering only the twin plants in Ĝ
(since it does not contain any event that appears in the rest
of the tree).

The following two conditions also terminate the algorithm:
• The entire jointree is considered but none of the twin

plants contains a critical path; hence the diagnosability
of the fault is verified (line 12).

• Due to limited computational resources, the algorithm ter-
minates (lines 13–18). In this case it returns the maximal
set of components ω for which the existence of critical
paths has been decided (but not yet verified against the
rest of the system). In case critical paths exist in ω, then
the larger this subsystem is, naturally, the more likely the
whole system is not diagnosable; otherwise the reverse is
true. As mentioned earlier, such an approximate solution
is also useful in that it tells the user that on-line monitor-
ing of this particular subsystem will not be sufficient to
detect occurrences of the fault.

Jointree node selection
The heuristic used to select a jointree node to explore next
can have a considerable impact on the number of nodes nec-
essary to decide diagnosability. Instead of directly choosing
a node, we first consider choosing an event which the new
node might bring into Σint.

Let Σp denote the set of shared events appearing on a crit-
ical path p in some twin plant Ĝ ∈ Ĝ. A reasonable heuris-
tic is to expand Σint with some new event in Σp \ Σint in
the hope that p may at some point evolve into a new critical
path that contains only internal events. To further focus the
search, we will only consider events in Σp \ Σint for paths
p for which |Σp \ Σint| is minimal.

Among these “eligible” events, we then select one that
appears in the fewest nodes outside Ĝ. The idea here is to
minimize the number of nodes that need to be included in Ĝ
for that event to be internal. Finally, after choosing the event,
we add to Ĝ a neighboring node containing that event.

Related Work
The diagnosability problem of discrete-event systems was
introduced in (Sampath et al. 1995) where the authors solved
it by considering a deterministic diagnoser for the global
system and a part of the global model. The main draw-
back of this method is its exponential space complexity in
the number of system states.

Jiang et al. (2001) and Yoo and Lafortune (2002) then
propose new algorithms which are only polynomial in the
number of states in G and which introduce the twin plant
method. The question of efficiency is raised in (Cimatti,
Pecheur, & Cavada 2003) where the authors propose to use
symbolic model-checking to test a restrictive diagnosability
property by taking advantages of efficient model-checking
tools. But, still the diagnosability problem is seen as a test
on a system whose size is exponential in the number of com-
ponents, even when encoded by means of binary decision
diagrams as in (Cimatti, Pecheur, & Cavada 2003).

Some of the most recent work decides either diagnosabil-
ity or nondiagnosability but not both. The work by Rintanen
and Grastien (2007) shows how to search for critical paths
using SAT thus verifying nondiagnosability. On the other
hand, the decentralized approach of Schumann and Pencolé
(2007) can only verify diagnosability.

The approach of Pencolé (2004) is the closest to ours.
It is based on the assumption that the observable behavior
of every component is live, which is more restrictive than
the assumption in (Sampath et al. 1995) which we adopted,

namely that the observable behavior of the system (but not
necessarily that of individual components) is required to be
live. This restriction implies that it is sufficient to only
search for a critical path in the twin plant ĜF containing
the fault. In (Pencolé 2004) this is done by iteratively syn-
chronizing ĜF with other local twin plants until diagnos-
ability can be decided. In comparison to our approach this
corresponds to the synchronization of all twin plants Ĝ con-
sidered at each iterative step of Algorithm 1. In contrast we
do not require this synchronization but achieve consistency
by propagating messages with bounded event sets. Note that
if we would adopt the same liveliness restriction we would
only need to search the jointree root for critical paths and
hence no outward propagation with diagnosability informa-
tion would be required.

Conclusion and Future Work
We have presented a new algorithm for the diagnosability
problem that addresses the fundamental bottleneck of the
classical twin plant method. Specifically, only a subsystem
is considered at a time in an iterative fashion, and more im-
portantly, the construction of the global twin plant and the
synchronization of twin plants in a subsystem being exam-
ined are both avoided. Instead local twin plants are made
consistent by message passing on a jointree. Even if the
computational resources are not sufficient our algorithm pro-
vides an approximate solution. Future work includes extend-
ing this approach to allow for an analysis of a nondiagnos-
ability result so that information can be provided to the user
regarding possible ways to rectify the system.

References
Cimatti, A.; Pecheur, C.; and Cavada, R. 2003. Formal verifica-
tion of diagnosability via symbolic model checking. In IJCAI-03,
363–369.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Jiang, S.; Huang, Z.; Chandra, V.; and Kumar, R. 2001. A polyno-
mial time algorithm for diagnosability of discrete event systems.
IEEE Transactions on Automatic Control 46(8):1318–1321.
Pencolé, Y. 2004. Diagnosability analysis of distributed discrete
event systems. In ECAI-04, 43–47.
Pencolé, Y. 2005. Assistance for the design of a diagnosable
component-based system. In ICTAI-05, 549–556.
Rintanen, J., and Grastien, A. 2007. Diagnosability testing with
satisfiability algorithms. In IJCAI-07, 532–537.
Robertson, N., and Seymour, P. D. 1986. Graph minors II: Algo-
rithmic aspects of treewidth. Journal of Algorithms 7:309–322.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.;
and Teneketzis, D. 1995. Diagnosability of discrete event system.
IEEE Transactions on Automatic Control 40(9):1555–1575.
Schumann, A., and Pencolé, Y. 2007. Scalable diagnosability
checking of event-driven systems. In IJCAI-07, 575–580.
Schumann, A. 2008. Towards Efficiently Diagnosing Large Scale
Discrete-Event Systems. Ph.D. Dissertation, Computer Science
Laboratory, The Australian National University.
Shenoy, P. P., and Shafer, G. 1986. Propagating belief functions
with local computations. IEEE Expert 1(3):43–52.
Yoo, T., and Lafortune, S. 2002. Polynomial-time verification of
diagnosability of partially-observed discrete-event systems. IEEE
Transactions on Automated Control 47(9):1491–1495.

