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Abstract. The satisfiability problem is widely used in research on com-
binatorial search and for industrial applications such as verification and
planning. Real world search problem benchmarks are not plentiful, yet
understanding search algorithm behaviour in the real world domain is
highly important. This work justifies and investigates a randomised sat-
isfiability problem model with modular properties akin to those observed
in real world search problem domains. The proposed problem model pro-
vides a reliable benchmark which highlights pitfalls and advantages with
various satisfiability search algorithms.

1 Introduction

The truth value of a formula of classical propositional logic is totally determined
by the truth assignments to the propositional variables from which it is built. A
formula is satisfiable if at least one truth assignment to its propositional vari-
ables makes the whole formula true. Given a formula using a set of propositional
variables of size n, deciding whether the formula is satisfiable is known to be NP-
complete [1]. For this reason propositional satisfiability is a prototypical search
problem commonly used to analyse search behaviour and problem hardness in
combinatorial search. The advanced state of research in satisfiability has made
it attractive for many real world problem domains such as planning and veri-
fication. Real world problems all have some kind of structure; they differ from
random problems in that they have non-uniform distributions and that certain
parts of the problem (or inferences from that part) are integral units to the prob-
lem as a whole. Real world problems model various interactions with real world
objects. Consider the problem of verification of hardware or software, where we
would at least expect a modular structure in terms of subroutines or logical
integrated circuit components.

Our investigation focuses on identifying generic properties of real world search
problems. We are motivated by the desire for a better understanding of search
and search problems in the real world, and the limited availability of real world
benchmarks. It is evident that, on the whole, real world problems do have ex-
ploitable properties which are independent of any particular classification of
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problem that we want to solve. This is shown by the performance of particu-
lar advanced search techniques that are successful on sets of real world bench-
marks[2]. This work investigates modelling modular structure to emulate real
world problem structure. Section 2 reviews other approaches for generating re-
alistic satisfiability search problems. Section 3 investigates the justification for
using modelling modularity in pseudo-real search problems. Our proposed prob-
lem model is presented in Section 4, and experimental analysis appears in Section
5 and 6. Section 7 discusses our observations with respect to related work.

2 Structured Problem Generators

There are two obvious approaches to modelling real world structure in problems.
The first is to extend the description of a real world problem domain in order to
gain further generalisation, but hopefully retain the structural properties of that
problem type. The second is to attempt to construct a parameterised problem
model by introducing some structural constraints in the problem definition.

There are many approaches based on generating problems using a given prob-
lem domain structure. Quasigroup completion problems encoded as constraint
satisfaction were proposed by Gomes and Selman [3]; a partial definition of a
quasigroup is provided, and must be completed to be solved. Generating satisfi-
able problem instances within the quasigroup domain is further investigated in
[4]. Other approaches include problem generation by encoding the parity prob-
lem (see [5]) and the domain of cryptography [6]. A more general approach called
morphing was devised by Gent et al. [7]. Their work categorises some approaches
of “morphing”, each of which defines a translation from given problem defini-
tions to a new problem via the introduction of noise. The morphing technique
can be a very powerful tool for generating a variety of similar problem instances.

The alternative approach is to define a model that incorporates some struc-
tural content in a problem and allows the problems to be randomly generated
based upon that model. This is the approach taken in this work. We have ar-
gued that modularity is a good generic structural property of many real world
domains and model this by combining instances of random 3-SAT problems as
modules or clusters. Our model will be discussed in detail in Section 4. There
are similar approaches which are briefly reviewed here.

Two methods for random generation of problems with possible real world
similarity were proposed by Rish and Dechter [8]. The first model is similar to
our model in that its modular components are random 3-SAT problems, which
they call sub-theories. The main difference is in [8] the sub-theories are connected
in a chain by joining neighbouring clusters using a single binary clause. Their
observations are discussed in Section 7. Their second model, the (k, m) − tree,
generates a randomly conglomerated set of “cliques” for which a number of
clauses is defined. This model has a graph theory analogy but the details and
implications for satisfiability problems are unclear. Finally we note that there are
other problem generators based around pattern construction and repetition for
other related problem domains (e.g. graph colouring, network topology)[9–11].



3 Justifying Modularity

The observation of modular structure in search problems has been investigated
by Walsh [12], motivated by the observations of “small world” phenomena ob-
served by Watts and Strogatz [11]. The “small world” model describes a rela-
tional system which is somewhere between a completely structured object and a
completely random object. Several small groups are highly related, but relations
between some members of different groups also exist. Our work finds justification
in Walsh’s observations of small world phenomena in search problems.

In order to capture the notion of the small world topology, Watts and Stro-
gatz combine quantified structural properties of a graph. A graph topology may
be characterised by computing the characteristic path length and the cluster-

ing coefficient. The characteristic path length L specifies the average shortest
distance between any two vertices in the graph. The clustering coefficient C is
defined as the average fraction of the fully connected graph that any given vertex
may be a member of. C may be computed as the average Cv for all vertices v,
where Cv is defined as follows. A vertex v with kv neighbours can have have at
most kv(kv − 1)/2 edges between them (the fully connected graph Kkv

). Cv is
the ratio of the actual number of edges between any of v or its neighbours to the
total number of possible edges. These parameters are used to look at a range of
graphs from the completely regular, or structured, to the completely random.

A graph defining a ring lattice, where each vertex is joined to k nearest neigh-
bours, has a high clustering coefficient. We construct a random graph of the same
size by randomly assigning the edge connections. Random graphs tend to have
smaller characteristic path lengths and much smaller clustering coefficients rela-
tive to their regular counterparts. With appropriate bounds guaranteeing graph
connectivity these two topologies are used to find the small world phenomena.

(a) Ring Lattice

p = 0

(b) Small World

0 < p < 1

(c) Completely

Rewired p = 1

Fig. 1. Examples of “connectedness” with a graph of 20 vertices: (a) shows a ring lattice
where each vertex is connected to the four closest neighbours, (b) shows a partially
rewired ring lattice where each edge is rewired with probability p, (c) shows the graph
where every edge has been rewired.



L Lrand C Crand µ

Film Actors 3.65 2.99 0.79 0.00027 2396

Power Grid 18.7 12.4 0.08 0.005 10.61

C. elegans 2.25 2.25 0.28 0.05 4.755

Table 1. Analysis of real networks: Film Actors – from a database of collaborations
between actors in feature films; Power Grid – the electrical power grid for the western
United States; C. elegans – the neural network from a nematode worm. The values
shown are the characteristic path length, the characteristic path length for a random
graph of the same size, the clustering coefficient, the clustering coefficient for a random
graph of the same size, and the proximity ratio µ (see text). Note that L

>
∼ Lrand and

C � Crand which also corresponds to the small world characterisation from the Watts
and Strogatz rewiring experiments. From [Walsh, 1999].

A small world graph will have a relatively high clustering coefficient and a
small characteristic path length. Watts and Strogatz use a “rewiring” concept,
whereby an edge is rewired to a new destination with probability p. The details
of the rewiring process are less important – different approaches appear in [7].
At p = 0 the graph is completely regular, and at p = 1 the graph is completely
random. Watts and Strogatz find small world graphs do exist in the interval
[0, 1] for p. Their analysis shows a small world network is one where L >

∼ Lrand

and C � Crand, where Crand and Lrand are the characteristic path length and
clustering coefficient from a random graph with the same number of vertices and
edges. Figure 1 shows an example of the ring lattice, the partially rewired small
world graph, and the random graph for visual comparison.

Watts and Strogatz apply the small world topological analysis to some ex-
amples of networked relationships and find that the small world network char-
acterisation according to their model is apparent. Table 1 shows values for their
results. Walsh extends the small world analysis of Watts and Strogatz by includ-
ing the proximity ratio. It is defined as a normalised relationship between the
characteristic path length and the clustering coefficient of a graph:

µ =
C

L

Lrand

Crand

where Crand and Lrand are the characteristic path length and clustering coeffi-
cient from a random graph with the same number of vertices and edges. This
measure allows the “small world” characterisation of one graph to be compared
against another. Note that a random graph will have a proximity ratio of 1 and
lattices will have small proximity ratios. For small world graphs µ � 1.

Walsh demonstrates that several existing benchmark problems for graph
colouring have high proximity ratios. Furthermore he shows that high proximity
ratios can be calculated for timetabling benchmarks and quasigroup problems.
In a search cost study for graph colouring Walsh also shows topological features
in search problems can have a large impact on search cost [12].



Graph colouring problems have an obvious translation for network topology
analysis. In the case of satisfiability, other notions defining the relations between
variables, such as co-occurrence in clauses, can be used to determine the proxim-
ity ratio, and studies show high proximity ratios for a topological interpretation
of some satisfiability problem benchmarks [7]. The concept of the clustering co-
efficient requires that the modularity be exposed at an atomic level. This means
that a sub-problem or module is only identifiable when the clustering coefficient
in a sub-problem is high. For variable co-occurrence this means that a “cluster”
would be very small, and in practice we should not expect this. Further devel-
opment of small world topological analysis may yield better formal characterisa-
tions for satisfiability problems, however the studies of small world properties in
real world search problems produces a strong argument that modular structure
exists and appears to be a strong feature of real world problems.

4 A Problem Model for Clustering

In order to capture modularity in a parameterisable problem set we propose a
problem model based on the random generation of fixed size modules or clus-
ters. The model uses a set of individual random 3-SAT problems which are
“connected” by a small set of extra clauses.

Formally we define the random clustered problem model as follows. A clus-
tered problem instance has n variables, m clauses, c clusters and p percent links.
We may use the clause to variable ratio r, a common parameterisation in random
3-SAT experiments to indicate the ‘hardness’ of each cluster – each cluster has
n/c variables, and (1 − p/100)m clauses (ignoring remainders). As p increases,
the structure of the individual clusters decay, and eventually the problem will
become a regular random 3-SAT problem. To generate the problems each cluster
is generated as a separate random 3-SAT problem. The remainders of clauses
and variables can be distributed as evenly as possible e.g. cluster i (0 ≤ i < c)
has n/c variables +1 if i < (n mod c). The fraction of clauses that act as links
are randomly generated using the entire set of variables. We wish to investigate
the effects of structural changes such as this. Furthermore we want to define
some level of difficulty within the individual clusters so that they appear to be
a separate sub-problem to the search algorithm. We also want the link clauses
to make the problem appear in some sense as a whole.

The aim of this problem model is to capture structure through some arbitrary
modularity. It does not necessarily have the quantifiable properties of a “small
world” problem, since the size of each individual cluster can be varied. A random
cluster problem will probably only have a small world characterisation when the
cluster sizes are very small since the measurement of the proximity ratio requires
relationships at the atomic level. For small clusters, the clustering coefficient will
be larger, and overall the characteristic path length should be shorter between
most variables. On a meta-level, however, we emulate the small world situation
by modelling the local interactions by clusters, and the global interactions by
the links. This small world concept is relatively independent of the cluster size.



We shouldn’t expect the problems to be particularly difficult if the cluster
problems are not difficult. The problems should measure the ability of a search
algorithm to “concentrate” on a particular problem, or at least identify which
parts of the search space are relevant to the current search state. Consider why
some large real world problems are not as difficult as a hard random 3-SAT
problem. A good search algorithm will be able to identify, through some means,
an appropriate ordering of the search so that each cluster is solved individually
– a divide and conquer style approach.

5 Experimenting with the Model

Experiments were performed to measure search cost for various parameterisa-
tions of the proposed random cluster model. The experimentation reveals that
the theory behind the model can predict search algorithm behaviour. There were
some interesting exceptions in initial experiments which are discussed below.

The satisfiability search system satz [13] was chosen for performing pre-
liminary experiments. It uses a Davis-Putnam-Logemann-Loveland (DPLL)[14]
based search algorithm with a powerful choice heuristic. It is an efficient and
reliable implementation, and furthermore is very capable in solving large ran-
dom 3-SAT problems. This allows testing on larger problem sizes and the use
of large sample sets. It is posited that the use of a state of the art system is a
reasonable approach in testing the proposed benchmark problems. Additionally,
the use of large cluster sizes allows greater potential for “isomorphic richness”
in individual clusters. Very small random 3-SAT clusters is not representative.
Experiments were done using a Sun UltraSPARC II (248MHz) processor.

To generate the random clustered problems, a problem generator that takes
the problem set parameters and produces the set of problems was implemented.
Clauses which contain a duplicate variable are not included, and problems that
are unconnected are not produced; i.e. if the set of links does not join each cluster
through co-occurrence then the links are regenerated.

Clustered problem sets for a range of number of clusters, and a variety of
different percentage links, were generated for initial experiments. Each problem
had 200 variables and 840 clauses. Surprisingly, at around 5 clusters the problems
became significantly harder to solve. For low values of percentage links, a number
of the problems could not be solved within the 5 minute CPU time limit set for
each problem. This contrasts severely with the CPU time taken to solve a single
cluster problem (the regular random 3-SAT problem) of the same size. For a set
of single cluster problems a median time of 0.56 seconds was measured, where
69 percent of the instances were satisfiable. Figure 2 shows the results computed
for the cluster problems using 15 percent of the clauses as links. The drop in
satisfiability is consistent with predictions, but the performances are not. As
the percentage of links increases, the level of difficulty drops. The most difficult
problems are the ones with 5, 6 or 7 clusters. Increasing the percentage links
values causes the difficulty to subside.
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Fig. 2. Time taken for clustered problems of 200 variables and 840 clauses. The number
of clusters ranges from 2 to 9. The number of clauses that are used as links is 15 percent
of the total number of clauses. 200 problems were tested for each cluster size. The
median values are shown by the solid curve, and various percentile points are plotted.
The percentage of problems that are satisfiable is also plotted as a dashed curve. Note
that for a single cluster the time taken is less than 1 second.

It appears that in the initial experiments the difficulty is a function of the
percentage of links as well as the number of clusters. The source of the difficulty
is not within the DPLL search part of satz, but in a resolution based prepro-
cessing technique it uses. It is claimed by the authors of satz that this technique
reduces the search cost by about 10 percent for hard random 3-SAT, and a va-
riety of speed-ups is seen for benchmark problem classes [15]. The fine details
of this procedure are not important - the key issue is that a weakly controlled
resolution process occurs before any DPLL style search is performed. Although
resolvent sizes are limited this does not bound the process strongly enough to
cope with the situations presented in some of the random cluster problems. For
the apparently difficult random cluster problems generated, satz created far too
many resolvents for the preprocessing technique to cope with. The probability of
co-occurrence of variables is high for small random problems, thus the potential
number of small resolvents in each cluster will also be high. The small world
qualities of these cluster problems is likely to be higher merely due to their size,
and it is the “cliqueishness” of each cluster that causes the breakdown of the pre-
processing technique. It is highly likely that a fuller version of resolution could
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Fig. 3. Median time taken for clustered problems of 250 variables and 1061 clauses (a
global clause to variable ratio of about 4.24) for a variety of percentage links. The key
indicates the percentage of the clauses that are used as links for particular curves. The
number of clusters ranges from 2 to 10. 1000 problems were used for each cluster size.
Note that for a single cluster problem (a random 3-SAT problem of 250 variables and
1061 clauses) the median time taken for 1000 problems is around 4.2 seconds.

actually solve the individual cluster problems as in [8], which shall be discussed
in further detail in Section 7. A further set of experiments was performed with
the satz resolution actions disabled on problems with 250 variables and 1061
clauses, using from 2 to 10 clusters, for a variety of percentage links values. For
these experiments 1000 problems were tested for each combination of parame-
ters used. Figure 3 shows the median search cost in CPU time for a variety of
percentage links, against the number of clusters in the problems. As expected,
the cost decreases as the number of clusters increase since the individual sub-
problems are easier to solve. For higher values of percentage links the problems
are more like the single cluster, or basic random 3-SAT, and are harder to solve
than the problems with well defined clustering. This may be because there is less
information about where the search algorithm should concentrate as more links
will direct the branching heuristics to a different sub-problem. Also note that
the percentage of satisfiable problems decreases with cluster size. This is due
to the compounding of the individual probability of any cluster being unsatisfi-



able. A problem with a higher number of clusters is easier when an unsatisfiable
sub-problem is identified early, as search is terminated.

6 Measuring A System’s “Concentration”

Earlier it was hypothesised that the random cluster model could be used to
measure how well a satisfiability search system could “concentrate” on a problem.
By this we mean how well it can search and solve a sub-problem before moving
onto some other part of the problem. A variety of state of the art systems
were tested with the random cluster model. In order to get an idea of how well
they coped, their ability was compared to the basic random 3-SAT problems by
ranking the performance results for both problem types. Those that rank highly
in the random cluster problems should have a good ability to “concentrate”. By
comparing the rankings to those for the random 3-SAT problems we should see
the relative difference when modularity is introduced. The systems used were:

satz [15] The initial system used for our experimentation which relies solely on its
ability to make the best choices in the search tree. This system is renowned for
its performance on random 3-SAT problems, so the individual cluster problems
should not be difficult for it.

posit [16] A somewhat earlier system which uses a combination of methods to select
good variable choices and prune search space. Freeman’s thesis demonstrates that
it is successful in solving a wide variety of benchmark problems as well as random
SAT problems [16].

relsat [2] An advanced system that utilises a version of dynamic backtracking and
learning techniques. Its ability to reason about relevancy in search space should
make it an ideal candidate for modular problems, and it is generally very successful
on real world benchmark problems.

OKSolver [17] A system which uses a variety of pruning techniques and branch ordering
heuristics which seems to be motivated by complexity analysis.

sato [18] This system utilises an alternative data structure for search reasoning and
has proven very successful on quasi-group problems, having solved open problems
in this domain.

The results are ranked in order of smallest median score. Both sets of problems
contained 1000 samples. The random 3-SAT problems had 200 variables and a
clause to variable ratio of 4.25. The random cluster problems had 450 variables
and a clause to variable ratio of 4.25 with 9 clusters and 20 percent of the
clauses acting as links. We stress that the two sets of results are produced to
gain a ranking only, as we cannot directly compare the performances on these
potentially very different problem sets. Table 2 a) shows statistical data gathered
from the random 3-SAT experiment. Both satz and posit outperform the other
systems, and the other median scores are several times greater than the two top
systems. The results shown in Table 2 b) show quite a different trend. Notably
relsat copes far better with the random cluster problems. The bottom three
systems again have median costs several times greater than the best, with sato

and posit being slower by more than an order of magnitude. The rankings
of a selection of different systems show that the search method is important



System Average Median Maximum Minimum Std Dev.

posit 0.345 0.34 1.29 0.03 0.198

satz 0.355 0.36 0.99 0.04 0.195

OKSolver 1.123 1.13 4.54 0.05 0.819

relsat 1.792 1.69 7.72 0.07 1.360

sato 3.891 3.02 28.85 0.00 3.745

a) Ranked Results for One Cluster Problems

System Average Median Maximum Minimum Std Dev.

satz 10.806 5.68 151.57 0.19 15.140

relsat 13.051 8.56 137.30 0.29 14.452

OKSolver 28.754 19.58 277.38 0.18 31.722

sato 167.571 58.30 3852.26 0.08 333.333

posit 151.737 65.69 3392.30 0.19 266.545

b) Ranked Results for Nine Clusters Problems
Table 2. These tables show an ordering of run-time statistics for a selection of state-
of-the-art systems. Each table is ordered by increasing median value. Note that the
ordering of the other statistics is similar but does not always agree. Table a) shows
results and ranking for regular random 3-SAT problems. Table b) shows results and
ranking for the clustered problems. The difference in the ordering of the two tables
indicates how the different methods cope with the random cluster model.

for solving this kind of modular structure. Since the individual problems are
random 3-SAT problems, we would normally expect that a system that solves
these well will cope with random clusters. This was not the case with posit

whose search technique was not powerful enough to detect the sub-problems as
well as the best ranked systems. relsat, known for an ability to deal with real
world domain problems fared much better in the rankings for the random cluster
model problems than with the random 3-SAT problem. This is evidence that the
modular structure is apparent to its search method, and furthermore suggests
that the random cluster model is a far better model of the real world domain
than the random 3-SAT model.

7 Related Work

We previously noted the work of Rish and Dechter [8] who independently created
a structured problem model they call random 3-CNF chains. In a series of exper-
iments that appears to show Directional Resolution (DR) is more capable than
DPLL algorithms, they find anomalously hard problems for their implementation
of DPLL. The search times differ by orders of magnitude. We found no anoma-
lous hardness spikes in any of our experiments using DPLL style algorithms, bar
the resolution based preprocessing problems. The difference in observations is



most likely to be due to the fact that our clusters are not chained – the path
length from any cluster to another is very short. Rish and Dechter pose that
when a sub-problem at the end of the chain is unsatisfiable then the entire prob-
lem must be re-solved. This would infer that their algorithm chose a particularly
unfortunate ordering, and it seems that such a situation would be reasonably
rare. In our experiments we sampled tens of thousands of large problems with
different parameterisations. It is conceivable that the same unfortunate ordering
could occur when the last cluster to be solved was unsatisfiable. However we
did not notice any problems that were as extremely hard as those observed in
[8]. We suspect that a combination of the heuristics used and the scale of the
model used by Rish and Dechter is also responsible for large search costs. In
fact, for the number of variables in the problems, some of the worst search costs
suggest that the supposedly advanced choice ordering has failed badly. Since
this ordering is based on tableaux [19], we suspect that the empirically derived
choice mechanism is over-fitted to random 3-SAT problems and will prefer to
work on binary links rather than sub-problems. We also believe that the size of
the sub-problems Rish and Dechter use is a significant factor. The probability
of co-occurrence for any pair of variables is extremely high. In this situation a
resolution based approach is bound for success. Larger sized chain components
will eliminate this advantage. By adding back-jumping to their DPLL implemen-
tation Rish and Dechter are able to avoid most difficult problems, but they do
suggest a possible phase transition phenomenon in chain problems. This seems
false in view of the other experiments.

8 Conclusions

Modularity has been identified as an important structural concept based on intu-
itive reasoning and the work of Walsh [12]. The proposed problem model based
on clusters of random 3-SAT problems gives a simple framework to generate
modular problems that can be manipulated via the parameter set that defines
them. This problem model generally behaves as the theory predicts when used
in experimentation. However, our experimentation revealed possible problems
with search methods that integrate resolution style techniques. This is because
the nature of small connected sub-problems can yield an exponential explosion
in the number of resolvents. The success of Rish and Dechter’s DR algorithm in-
dicates that more advanced implementations of resolution algorithms to perform
the search are far less likely to succumb to the problems we observed. Our ob-
servations reveal further explanations for the performance results observed in [8]
for a related problem model and highlight the fact that choice heuristics derived
from 3-SAT experimentation may not translate to other problem domains.

A reasonable search algorithm is one which is able to “concentrate” on a
problem by tackling sub-problems. We observed this behaviour with some state
of the art systems using the random cluster model. These results indicate that
the proposed model has much better real world similarity than basic random
models. That problem difficulty is likely to be only as hard as the contained



sub-problems is reinforced by recent work in modularity detection [20]. The
proposed model yields a simple framework for generating large sets of test cases
with real world properties for satisfiability search algorithms.
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