
Heuristics Based on Unit Propagation for Satis�ability Problems

Chu Min Li � Anbulagan
LaRIA� Univ� de Picardie Jules Verne� ��� Rue St� Leu� ����� Amiens C�edex� France

fax� ���	 � 

 �
 �� �
� e
mail� fcli�laria�u
picardie�fr� Anbulagan�utc�frg

Abstract

The paper studies new unit propagation based
heuristics for Davis�Putnam�Loveland �DPL�
procedure� These are the novel combinations of
unit propagation and the usual �MaximumOc�
currences in clauses of Minimum Size� heuris�
tics� Based on the experimental evaluations of
di�erent alternatives a new simple unit prop�
agation based heuristic is put forward� This
compares favorably with the heuristics em�
ployed in the current state�of�the�art DPL im�
plementations �C�SAT� Tableau� POSIT��

� Introduction

Consider a propositional formula F in Conjunctive
Normal Form �CNF� on a set of Boolean variables
fx�� x�� ���� xng� the satis�ability �SAT� problem consists
in testing whether clauses in F can all be satis�ed by
some consistent assignment of truth values �� or 	� to
the variables� If it is the case� F is said satis�able
 oth�
erwise� F is said unsatis�able� If each clause exactly
contains r literals� the subproblem is called r�SAT prob�
lem�

SAT problem is fundamental in many �elds of com�
puter science� electrical engineering and mathematics�
It is the �rst NP�Complete problem �Cook� ��
�� with
��SAT as the smallest NP�Complete subproblem�

The Davis�Putnam�Loveland procedure �DPL� �Davis
et al�� ����� is a well known complete method to solve
SAT problems� roughly sketched in Figure ��
DPL procedure essentially constructs a binary search

tree� each recursive call constituting a node of the tree�
Recall that all leaves �except eventually one for a sat�
is�able problem� of a search tree represent a dead end
where an empty clause is found� The branching vari�
ables are generally selected to allow to reach as early as
possible a dead end� i�e� to minimize the length of the
current path in the search tree�
The most popular SAT heuristic actually is Mom�s

heuristic� which involves branching next on the variable

having Maximum Occurrences in clauses of Minimum
Size �Dubois et al�� ����
 Freeman� ����
 Pretolani� ����

Crawford and Auton� ����
 Jeroslow and Wang� ���	��
Intuitively these variables allow to well exploit the power
of unit propagation and to augment the chance to reach
an empty clause� Recently another heuristic based on
Unit Propagation �UP heuristic� has proven useful and
allows to exploit yet more the power of unit prop�
agation �Freeman� ����
 Crawford and Auton� ����

Li� ������ Given a variable x� a UP heuristic examines x
by respectively adding the unit clause x and �x to F and
independently makes two unit propagations� The real
e�ect of the unit propagations is then used to weigh x�

procedure DPL�F�
Begin
if F is empty� return �satisfiable��

F��UnitPropagation�F�� If F contains an empty
clause� return �unsatisfiable��

�	 branching rule 	�

select a variable x in F according to a heuristic

H� if the calling of DPL�F � fxg� returns

�satisfiable� then return �satisfiable�� otherwise

return the result of calling DPL�F � f�xg��

End�

procedure UnitPropagation�F�
Begin

While there is no empty clause and a unit clause l

exists in F� assign a truth value to the variable

contained in l to satisfy l and simplify F�

Return F�

End�

Figure �� DPL Procedure

However� since examining a variable by two unit prop�
agations is time consuming� two major problems remain
open� should one examine all free variables by unit prop�
agation at every node of a search tree� if not� what are
the variables to be examined at a search tree node�



In this paper we try to experimentally solve these two
problems to obtain an optimal exploitation of UP heuris�
tic� We de�ne a PROP predicate at a search tree node
whose denotational semantics is the set of variables to be
examined at a search tree node� i�e� x is to be examined
if and only if PROP �x� is true� By appropriately chang�
ing PROP � we experimentally analyse the behaviour of
di�erent UP heuristics� We write �� DPL procedures
which are di�erent only in PROP and run these pro�
cedures on a very large sample of hard random ��SAT
problems�

We begin in section � by describing the �� DPL proce�
dures and summarizing the experimental results on these
programs� In section � we compare a pure UP heuris�
tic and a pure Mom�s heuristic and show the superiority
of UP heuristics� In section � we study di�erent restric�
tions of UP heuristics� In section � we discuss the related
work and compare the best DPL procedure in our exper�
imentation with three state�of�the�art DPL procedures�
Section � concludes the paper�

� UP Heuristics Driven by PROP

Let diff�F�� F�� be a function which gives the number
of clauses of minimum size in F� but not in F�� we show
a generic branching rule in Figure �� where the equation
de�ning H�x� is suggested in �Freeman� ����� and the
weight � for uniformizing clauses of di�erent length is
empirically optimal�

For each free variable x such that PROP �x� is
true do
let F � and F �� be two copies of F
Begin

F � �� UnitPropagation�F � � fxg��
F �� �� UnitPropagation�F �� � f�xg��
If both F � and F �� contain an empty clause then

return �F is unsatisfiable��
If F � contains an empty clause then x �� ��
F �� F �� else if F �� contains an empty
clause then x �� �� F �� F ��
If neither F � nor F �� contains an empty clause
then let w�x� denote the weight of x

w�x� �� diff�F �� F � and w��x� �� diff�F ��� F �
End�

If all variables examined above are valued or
PROP �x� is false for every x then
For each free variable x in F do

let ri be the length of the clause Ci

w�x� �� ��x�Ci�
�ri and w��x� �� �x�Ci�

�ri

For each variable x do
H�x� �� w��x� �w�x� � ��	
 � w��x� � w�x�

Branching on the free variable x such that H�x� is
the greatest�

Figure �� A Generic Branching Rule Driven by PROP

The essential reason to use UP heuristics instead of
Mom�s one is that Mom�s heuristic may not maximize the
e�ectiveness of unit propagation� because it only takes
binary clauses �if any� into account to weigh a variable�
although some extensions try to also take longer clauses
into account with exponentially smaller weights �e�g� �
ternary clauses are counted as � binary clauses�� A UP
heuristic allows to take all clauses containing a variable
and their relations into account in a very e�ective way
to weigh the variable� As a secondary e�ect� it allows
to detect the so�called failed literals in F which when
satis�ed falsify F in a single unit propagation� However
since examining a variable by two unit propagations is
time consuming� it is natural to try to restrict the vari�
ables to be examined� For this purpose we use PROP
predicate de�ned at a search tree node�
The success of Mom�s heuristic suggests that the larger

the number of binary occurrences of a variable is� the
higher its probability of being a good branching vari�
able is� implying that if one should restrict UP heuris�
tics by means of PROP � he should restrict UP heuristics
to those variables having a su�cient number of binary
occurrences� For this reason� all restrictions on PROP
studied in this paper are de�ned according to the number
of binary occurrences of a variable� so that the resulted
UP heuristics rely on combinations of unit propagation
and Mom�s heuristics�

inclusion relation

PROP

PROP

PROP

PROP

PROP

PROP PROP

PROP 20

21

30

31

40

41 42

10

Figure �� PROP predicate hierarchy by inclusion relation�
PROPij�x� is true i
 x has i binary occurrences of which at
least j negative and j positive�

The �rst PROP predicate in our experimentation is
called PROPa and has empty denotational semantics�
the resulted branching rule using a pure Mom�s heuris�
tic� and the second is called PROP� whose denotational
semantics is the set of all free variables� the resulted UP
heuristic is in its pure form and plays its full role�

PROPa� PROPa�x� is false for every free variable x


PROP�� PROP��x� is true for every free variable x�

Between PROPa and PROP�� there are many other
possible PROP predicates� Figure � de�nes � predicates
constituting a hierarchy by inclusion relation of their de�
notational semantics�
PROP���� is de�ned to be PROP��� but for nodes

under a �xed depth of a search tree� it is de�ned to be



PROP��� Let T be a constant� the last PROP predicate
is named PROPz and is de�ned to be the �rst of the
three predicates PROP��� PROP�� and PROP� �in this
order� which has at least T variables in its denotational
semantics�

Each PROP predicate results in a DPL procedure�
PROPa� PROP�� PROP���� and PROPz respectively
giving Sata� Sat	� Sat���� and Satz� and PROPij giv�
ing Satij � These programs are di�erent only in PROP
predicate� except Sat	 which need not count the occur�
rences of variables�

We run the �� programs �compiled using gcc with op�
timization� on a PC with a ��� Mhz PentiumCPU under
Linux operating system on a very large sample of ran�
dom ��SAT problems generated by using the method of
Mitchell et al��Mitchell et al�� ������ Given a set V of n
Boolean variables fx�� x�� ���� xng� we randomly generate
m clauses of length �� Each clause is produced by ran�
domly choosing � variables from V and negating each
with probability 	��� Empirically� when the ratio m�n is
near ���� for a ��SAT formula F � F is unsatis�able with
a probability 	�� and is the most di�cult to solve� We
vary n from ��	 variables to ��	 variables incrementing
by �	� for each n the ratio clauses�to�variables �m�n� is
set to ��	� ���� ���� ����� ���� ���� ���� At each ratio and
by each program� if n � ��	 then �			 problems are
solved� if ��	 � n � �		 then �		 problems are solved�
if n � ��	 then �		 problems are solved� and if n � ��	
then �		 problems are solved� A problem is solved suc�
cessively by all the �� DPL procedures before another
to ensure the same environment to all programs� Due
to the lack of space� we only present the experimental
results for the ratio m�n � ���� in Figures �� �� and ��
where the DPL procedures corresponding to the curves
are listed in the same order from top to bottom� The
experimental results on the other ratios give exactly the
same conclusions�

� A Pure UP Heuristic Versus a Pure
Mom�s Heuristics� Sat� vs Sata

Sat	 systematically examines all the variables by unit
propagation at all nodes� using a pure UP heuristic�
while Sata does not examine any variable so and em�
ploys a pure Mom�s heuristic� One might believe that
Sat	 would be simply too slow� but it is not the case�
Sat	 is much faster than Sata� In fact from Figures �
and �� all DPL procedures using a UP heuristic in our
experimentation are substantially better than Sata in
terms of search tree size and real run time�

Note that Mom�s heuristic used in Sata is similar to
the so�called two�sided Jeroslow�Wang rule �Hooker and
Vinay� ������ with the only di�erence that a clause of
length i is counted as � clauses of length i�� instead of
�� Our experiments suggest that � is better than �� � is

also similar to the exponential factors in C�SAT �Dubois
et al�� ����� where ��
� ternary clauses are counted as �
binary clause�

140 160 180 200 220 240 260 280 300 320 340
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

nb. of variables

se
ar

ch
 tr

ee
 s

iz
e 

(n
um

be
r 

of
 n

od
es

)

sat0

sat21

sat31

sat42

sat41

sat3141

satz

sata

sat10

sat20

sat30

sat40

Figure �� Mean search tree size of each program as a function
of n for hard random ��SAT problems at the ratiom�n � 
�	�

140 160 180 200 220 240 260 280 300 320 340
0

500

1000

1500

2000

2500

nb. of variables

tim
e 

in
 s

ec
.

sat0

sat21

sat31

sat42

sat41

sat3141

sat10

sata

satz

sat20

sat30

sat40

Figure �� Mean run time of each program as a function of n
for hard random ��SAT problems at the ratio m�n � 
�	�

Sat	 actually is slower than �ve other programs based
on balanced restrictions of variables to be examined by
unit propagation� but not substantially so �except Satz��
The surprisingly good performance of Sat	 con�rms the
power of UP heuristics for selecting the next branching
variable and suggests that its e�ect for detecting failed
literals is only secondary�

� Restricted UP Heuristics

Figure � illustrates the number of variables examined by
di�erent restricted UP heuristics at a node�



0 10 20 30
0

50

100

150

200

250

search tree depth

av
er

ag
e 

nu
m

be
r 

of
 v

ar
ia

bl
es

 e
xa

m
in

ed
 p

er
 s

ea
rc

h 
tr

ee
 n

od
e

sat21

sat31

sat42

sat10

sat41

sat3141

sat20

sat30

sat40

Figure �� Average number of variables examined at a search
tree node in a given depth when solving hard random ��SAT
problems of ��� variables and �	�� clauses ���� problems are
solved� for � programs

��� Restriction by total number of binary
occurrences of a variable

Four programs Sat��� Sat��� Sat�� and Sat�� realize this
type of restrictions� While a classical Mom�s heuristic
selects the next branching variable having maximumbi�
nary occurrences� the restricted UP heuristics examine
a set of variables having more binary occurrences than
others� including the variable having maximum binary
occurrences� From Figure �� it is clear that the more
variables are examined� the smaller the search tree size
is�

��� Balanced restriction by total number
of binary occurrences of a variable

Four programs Sat��� Sat��� Sat�� and Sat�� realize this
type of restrictions� The PROP predicates require that
a variable occurs both positively and negatively in bi�
nary clauses to balance the search tree� We compare the
duet Sati� and Sati� �i��� �� �� and observe that Sati�
examines strictly fewer variables than Sati� and is faster
than it in spite of a slightly larger search tree� In partic�
ular� Sat�� and Sat�� examine almost the same number
of variables �see Figure ��� but the balanced restriction
gives a faster DPL procedure�

We pay special attention to PROP�� and PROP��
since they seem to be the best balanced restrictions�

��� Dynamic restriction as a function of
search tree depth

Sat���� realizes this restriction� A general observation
when solving ��SAT problems using a DPL procedure
is that there are more and more binary clauses when
descending from the search tree root and the denota�

tional semantics of a PROP predicate such as PROP��
becomes larger and larger� Furthermore� the nodes are
more numerous near the leaves and the branching vari�
ables play a less important role there� It appeared that
one could restrict more the variables to be examined by
unit propagation near the leaves without important loss
on the search tree size so as to obtain some gain in terms
of real run time�
POSIT�s UP heuristic �called BCP�based heuristic�

�Freeman� ����� realizes this idea� under the level � of a
search tree� at most �	 variables are examined by unit
propagation�
Sat���� uses PROP�� from the top of a search tree�

but under the depth empirically �xed to n���
	� it uses
PROP��� where n is the number of variables in the initial
input ��SAT problem� Note that if n � ��	� n � ��
	 �
�� so Sat���� generally strengthens the restriction later
than POSIT�
From Figures � and � Sat���� is not better than Sat���

although it makes many fewer unit propagations to ex�
amine variables �see Figure ��� suggesting that the search
tree depth is rather irrelevant to the restriction of UP
heuristics�

��� Dynamic restriction by number of
variables to be examined

The relatively poor performance of Sat�� seems due to
the small number of variables examined at each node
�see Figure ��� though these variables have many binary
occurrences� A careful analysis shows that even Sat���
the best one up to now� examines few or no variables
at some nodes� especially near the root where there are
few binary clauses� although these nodes are more de�
terminant for the �nal search tree size� PROPz is then
introduced to ensure that at least T variables are exam�
ined at each node� T being empirically �xed to �	� Near
the root� all free variables are examined to exploit the
full power of UP heuristic� As soon as the number of
variables occurring both negatively and positively in bi�
nary clauses and having at least � ��� binary occurrences
is larger than T � only these variables are examined to se�
lect the next branching variable�

� Related Work

C�SAT �Dubois et al�� ����� examines some variables by
unit propagations �called local processing� near the bot�
tom of a search tree to rapidly detect failed literals there�
Pretolani also uses a similar approach �called pruning
method� based on hypergraphs in H�R �Pretolani� ������
But the local processing and the pruning method as are
respectively presented in �Dubois et al�� ����� and �Pre�
tolani� ����� do not contribute to the heuristic to select
the next branching variable� We �nd the �rst e�ective
exploitation of UP heuristic in POSIT �Freeman� �����



and Tableau �Crawford and Auton� ����� which use a
similar idea as in C�SAT to determine the variables to
be examined at a node by unit propagation� x is to be

examined i� x is among the k most weighted variables

by a Mom�s heuristic�

The main di�erence of Satz with Tableau and POSIT
is that Satz does not specify a upper bound k of the
number of variables to be examined at a node by unit
propagation� Instead� Satz speci�es a lower bound� In
fact� Satz examines many more variables by an optimal

combination of unit propagation and Mom�s heuristics�

Given the depth of a node� Table � illustrates the aver�
age number of variables examined ��examined vars� at
the node by Satz� with the depth of the root being 	� In
order to compare with C�SAT� Tableau and POSIT we
also give the theoretical value of kC �for C�SAT�� kT �for
Tableau� and kP �for POSIT� at the node� respectively
according to the de�nitions of k in �Dubois et al�� ����

Crawford and Auton� ����
 Freeman� ������

depth �free vars �examined vars kC kT kP
� ������ ������ � �	� �	

� ��	�
� ��	�
� � ��� ���
� ������ ������ � ��� ���
� ������ ������ � ��� ���

 ����	� ������ � 	� ��
	 ��
��	 �
���� � � �� or �
� ����	� ������ � � �� or �
� ����
� ��
��� � � �� or �
� ������ ���
� � � �� or �
�� �	���	 ���	
 � � �� or �
�� �	��

 �	��� � � �� or �
�� �	��
� ���

 � � �� or �
�� �
	��� ����� � � �� or �
�� �
���� ����� � � �� or �
�
 �����	 ����	 � � �� or �
�	 ��	��� ����� � � �� or �
�� ����	� ���
� � � �� or �
�� ����	� ����� � � �� or �
�� ������ ����	 � � �� or �
�� ������ ����� � � �� or �

Table �� Average number of variables examined in Satz
at a node in a given depth when solving a hard random ��
SAT problem of ��� variables and �	�� clauses ���� problems
are solved� compared with theoretical value of k in C�SAT�
Tableau and POSIT

It is clear that Satz examines many more variables at
each node than any of C�SAT� Tableau or POSIT� Near
the root� Satz examines all free variables� Elsewhere
Satz examines a su�cient number �T � of variables�

We compare C�SAT� Tableau� POSIT and Satz on a
large sample of hard random ��SAT problems on a SUN
Sparc �	 workstation with a ��� MHz CPU� The ��SAT
problems are generated from � sets of n variables and
m clauses at the ratio m�n � ����� n steping from �		
variables to �		 variables by �	�

We use an executable of C�SAT dated July ����� The
version of Tableau used here is called �tab and is the
same used for the experimentation presented in �Craw�
ford and Auton� ������ POSIT is compiled using the pro�

vided make command on the SUN Sparc �	 workstation
from the sources named posit���	�tar�gz�� Table � shows
the performances of the � DPL procedures on problems
of �		� ��	� and �		 variables� where time standing for
the real mean run time is reported by the unix com�
mand �usr�bin�time and t size standing for search tree
size �number of nodes� is reported �or computed from
number of branches reported� by the DPL procedures�

��� vars �
� vars ��� vars
��� problems �
� problems ��� problems

System time t size time t size time t size

C�SAT �� ��
	� 
�� ��
��� ���� �	���	�
Tableau �� ����� 

� �
��		 �
�� �
��

�
POSIT 
� 	���� ��� ���
�� �
�� ��
�	��
Satz �� ����� ��� ������ ���� ��	
	�

Table �� Mean run time �in second� and mean search tree
size of C�SAT� Tableau� POSIT and Satz on ratio m�n�
�	�

Table � shows that Satz is faster than the above cited
versions of C�SAT� Tableau and POSIT� Satz�s search
tree size is the smallest� and Satz�s run time and search
tree size grow more slowly� Table � shows the gain of
Satz compared with the cited version of C�SAT� Tableau
and POSIT at the ratio m�n������ Each item is com�
puted from Table � using the following equation�

gain � �value�system��value�Satz� � �� � �		�

where value is real mean run time or real mean search
tree size and system is C�SAT� Tableau or POSIT� From
Table �� it is clear that the gain of Satz grows with the
size of the input formula�

��� vars �
� vars ��� vars
��� problems �
� problems ��� problems

System time t size time t size time t size

C�SAT ��	
 
�
 �
�
 
�
 ��	
 ��

Tableau ���
 ��
 ��

 �

 ��	
 		

POSIT 	�
 ��
 ���
 ���
 ���
 ���


Table �� The gain of Satz vs� C�SAT� Tableau and POSIT in
terms of run time and search tree size on the ratio m�n�
�	�
computed from Table 	

The central strategy of Satz is to try to reach an
empty clause as early as possible� Further along the line�
we make two relatively small resolvents�driven improve�
ments in Satz� The �rst improvement is the preprocess�
ing of the input formula by adding some resolvents of
length � �� The second improvement consists in re�n�
ing yet more the heuristic H in the nodes where all free
variables are examined by unit propagation� Refer to
Figure �� when PROPz is equal to PROP� we de�ne
w�x� as the number of resolvents the newly produced
binary clauses would result in in F � by a single step of
resolution� w��x� is similarly de�ned�

�
publicly available via anonymous ftp to ftp�cis�upenn�edu in

pub�freeman� directory



Satz improved in this way solves many real�world or
structured SAT problems where previous heuristics were
not successful� For example� Table � shows the perfor�
mance of the � DPL procedures on the well�known Bei�
jing challenging problems�� where a problem that can not
be solved in less than � hours is marked by �� 
�		�
and the version of Tableau is called ntab�� It is clear
that Satz is much more e�cient and solves many more
problems in less than two hours�

Problem Satz C�SAT Posit ntab
�bitadd �� � ���� � ���� � ���� � ����
�bitadd �� ��� � ���� ��� � ����
�bitadd �� ��� 	��� ���
 � ����
�bitcomp 
 ���� ��� ���� ���
�bitmax 	 ���� ��� ���� ��	
�bitadd �� � ���� � ���� � ���� � ����
�bitadd �� �
�� � ���� � ���� � ����
�blocks ��� ��� ��� ��	�
�blocksb ��� ��� �� � ����
�blocks �
�� � ���� � ���� � ����
e�ddr�����by�
�� ��
 � ���� � ���� � ����
e�ddr�����by�
�� ��� � ���� �
�� ��	
enddr�����by�
�� � ���� � ���� � ���� � ����
enddr�����by�
�� ��� � ���� � ���� ��
ewddr�����by�
�� ��� � ���� ��� � ����
ewddr�����by�
�� ��� � ���� � ���� ���

Table �� Run time �in sec�� of Beijing challenging problems

� Conclusion

We found that UP heuristic is substantially better than
Mom�s one even in its pure form realized by PROP�
where all free variables are examined at all nodes� In
its restricted forms based on combinations of unit prop�
agation and Mom�s heuristics� the more variables are
examined� the smaller the search tree is� con�rming the
advantages of UP heuristic� but too many unit propaga�
tions slow the execution� The combinations realized by
PROP�� and PROP�� represent good compromises�

A dynamic restriction such as PROP���� which
strengthens the restriction under a �xed depth of a
search tree fails to work better than the static restric�
tion PROP��� We design the dynamic restriction along
another line� PROPz ensures that at least T candidates
are examined by unit propagation at every node of a
search tree by successively using PROP��� PROP�� and
PROP�� giving the very e�cient and very simple DPL
procedure called Satz�
Satz is favorably compared with several current state�

of�the�art DPL implementations �C�SAT� Tableau and
POSIT� on a large sample of hard random ��SAT prob�
lems and the recent Beijing SAT benchmarks� The good
performance of Satz on the structured or real�world SAT
problems shows that UP heuristic can tackle new prob�
lems or problem domains where Mom�s heuristics were

�
available from http���www�cirl�uoregon�edu�crawford�beijing

�
available from http���www�cirl�uoregon�edu�crawford�

not successful and enhances the belief that if a DPL pro�
cedure is e�cient for random SAT problems� it should
be also e�cient for a lot of structured ones�

Acknowledgments

We thank Olivier Dubois� James M� Crawford and Jon
W� Freeman for kindly providing us their DPL proce�
dures and anonymous referees for their comments which
helped improve this paper�

References

�Chvatal and Szemeredi� ����� V� Chvatal and E� Sze�
meredi� Many Hard Examples for Resolution� Journal
of ACM� ������
���
��� October �����

�Cook� ��
�� S� A� Cook� The Complexity of Theorem
Proving Procedures� In �rd ACM Symp� on Theory of

Computing� pages �������� Ohio� ��
��

�Crawford and Auton� ����� J� M� Crawford and L� D�
Auton� Experimental Results on the Crossover Point
in Random ��SAT� Arti�cial Intelligence� ��� �����

�Davis et al�� ����� M� Davis� G� Logemann� and D�
Loveland� A machine program for theorem proving�
Communication of ACM� ��
��������
� July �����

�Dubois et al�� ����� Olivier Dubois� P� Andre� Y�
Boufkhad and Jacques Carlier� SAT versus UNSAT�
Second DIMACS Challenge� Cliques� Coloring and

Satis�ability� Rutgers University� NJ� �����

�Freeman� ����� Jon W� Freeman� Improvements to
Propositional Satis�ability Search Algorithms� Ph�D�
thesis� Department of computer and Information sci�
ence� Univ� of Pennsylvania� Philadelphia� PA� �����

�Hooker and Vinay� ����� J� N� Hooker and V� Vinay�
Branching Rules for Satis�ability� Journal of Auto�

mated Reasoning� ����������� �����

�Jeroslow and Wang� ���	� R� Jeroslow and J� Wang�
Solving Propositional Satis�ability Problems� Annals
of Mathematics and AI� ����
���
� ���	�

�Li� ����� ChuMin LI� Exploiting Yet More the Power
of Unit Clause Propagation to Solve ��SAT Problem�
In ECAI��	 Workshop on Advances in Propositional

Deduction� pages ������ Budapest� Hungary� �����

�Mitchell et al�� ����� D� Mitchell� B� Selman� H�
Levesque� Hard and Easy Distributions of SAT Prob�
lems� In AAAI��
� pages �������� San Jose� CA� �����

�Pretolani� ����� Daniele Pretolani� Satis�ability and
hypergraphs� Ph�D� thesis� Dipartimento di Informat�
ica� Universit a di Pisa� �����


