Heuristics Based on Unit Propagation for Satisfiability Problems

Chu Min Li & Anbulagan
LaRIA, Univ. de Picardie Jules Verne, 33, Rue St. Leu, 80039 Amiens Cédex, France
fax: (33) 3 22 82 75 02, e-mail: {cli@laria.u-picardie.fr, Anbulagan@utc.fr}

Abstract

The paper studies new unit propagation based
heuristics for Davis-Putnam-Loveland (DPL)
procedure. These are the novel combinations of
unit propagation and the usual ”Maximum Oc-
currences in clauses of Minimum Size” heuris-
tics. Based on the experimental evaluations of
different alternatives a new simple unit prop-
agation based heuristic is put forward. This
compares favorably with the heuristics em-
ployed in the current state-of-the-art DPL im-
plementations (C-SAT, Tableau, POSIT).

1 Introduction

Consider a propositional formula F in Conjunctive
Normal Form (CNF) on a set of Boolean variables
{1, %9, ..., 2, }, the satisfiability (SAT) problem consists
in testing whether clauses in F' can all be satisfied by
some consistent assignment of truth values (1 or 0) to
the variables. If it is the case, F' is said satisfiable; oth-
erwise, I’ is said unsatisfiable. If each clause exactly
contains r literals, the subproblem is called »-SAT prob-
lem.

SAT problem is fundamental in many fields of com-
puter science, electrical engineering and mathematics.
It is the first NP-Complete problem [Cook, 1971] with
3-SAT as the smallest NP-Complete subproblem.

The Davis-Putnam-Loveland procedure (DPL) [Davis
et al., 1962] is a well known complete method to solve
SAT problems, roughly sketched in Figure 1.

DPL procedure essentially constructs a binary search
tree, each recursive call constituting a node of the tree.
Recall that all leaves (except eventually one for a sat-
isfiable problem) of a search tree represent a dead end
where an empty clause i1s found. The branching vari-
ables are generally selected to allow to reach as early as
possible a dead end, i.e. to minimize the length of the
current path in the search tree.

The most popular SAT heuristic actually is Mom’s
heuristic, which involves branching next on the variable

having Maximum Occurrences in clauses of Minimum
Size [Dubois et al., 1993; Freeman, 1995; Pretolani, 1993;
Crawford and Auton, 1996; Jeroslow and Wang, 1990].
Intuitively these variables allow to well exploit the power
of unit propagation and to augment the chance to reach
an empty clause. Recently another heuristic based on
Unit Propagation (UP heuristic) has proven useful and
allows to exploit yet more the power of unit prop-
agation [Freeman, 1995; Crawford and Auton, 1996;
Li, 1996]. Given a variable x, a UP heuristic examines
by respectively adding the unit clause # and z to F' and
independently makes two unit propagations. The real
effect of the unit propagations is then used to weigh .

procedure DPL(F)
Begin
if I’ is empty, return "satisfiable'";

F:=UnitPropagation(f'); If F contains an empty
clause, return "unsatisfiable'.

/* branching rule */

select a variable x in F' according to a heuristic
H, if the calling of DPL(F'U{z}) returns
"satigfiable" then return "satigfiable", otherwise
return the result of calling DPL(F' U {z}).

End.

procedure UnitPropagation(F)

Begin

While there is no empty clause and a unit clause !
exists in F', assign a truth value to the variable
contained in ! to satisfy ! and simplify F'.
Return F'.

End.

Figure 1: DPL Procedure

However, since examining a variable by two unit prop-
agations is time consuming, two major problems remain
open: should one examine all free variables by unit prop-
agation at every node of a search tree? if not, what are
the variables to be examined at a search tree node?

In this paper we try to experimentally solve these two
problems to obtain an optimal exploitation of UP heuris-
tic. We define a PROP predicate at a search tree node
whose denotational semantics is the set of variables to be
examined at a search tree node, i.e. x is to be examined
if and only if PROP(z) is true. By appropriately chang-
ing PROP, we experimentally analyse the behaviour of
different UP heuristics. We write 12 DPL procedures
which are different only in PROP and run these pro-
cedures on a very large sample of hard random 3-SAT
problems.

We begin in section 2 by describing the 12 DPL proce-
dures and summarizing the experimental results on these
programs. In section 3 we compare a pure UP heuris-
tic and a pure Mom’s heuristic and show the superiority
of UP heuristics. In section 4 we study different restric-
tions of UP heuristics. In section b we discuss the related
work and compare the best DPL procedure in our exper-
imentation with three state-of-the-art DPL procedures.
Section 6 concludes the paper.

2 UP Heuristics Driven by PROP

Let dif f(Fy1, F3) be a function which gives the number
of clauses of minimum size in F; but not in F5, we show
a generic branching rule in Figure 2, where the equation
defining H(z) is suggested in [Freeman, 1995] and the
weight 5 for uniformizing clauses of different length is
empirically optimal.

For each free variable z such that PROP(z) is
true do
let I’ and F” be two copies of I

Begin
F’ := UnitPropagation(F' U {zx});
F" := UnitPropagation(F" U {Z});

If both F’ and F” contain an empty clause then
return "/’ is unsatisfiable".
If I contains an empty clause then z:=0,
F:=F" else if " contains an empty
clause then #:=1, F:=F’;
If neither I’ nor I” contains an empty clause
then let w(x) denote the weight of z
w(z) :=dif f(F',F) and w(z) :=dif f(F", F)
End;

If all variables examined above are valued or
PROP(z) is false for every z then
For each free variable z in F' do
let r; be the length of the clause C;
w(z) :=Xze0,57 " and w(T) := Xpee, 577

For each variable x do

H(z) = w(z) * w(z) * 1024 + w(z) + w(z)

Branching on the free variable x such that H(z) is
the greatest.

Figure 2: A Generic Branching Rule Driven by PROP

The essential reason to use UP heuristics instead of
Mom’s one 1s that Mom’s heuristic may not maximize the
effectiveness of unit propagation, because it only takes
binary clauses (if any) into account to weigh a variable,
although some extensions try to also take longer clauses
into account with exponentially smaller weights (e.g. b
ternary clauses are counted as 1 binary clauses). A UP
heuristic allows to take all clauses containing a variable
and their relations into account in a very effective way
to weigh the variable. As a secondary effect, it allows
to detect the so-called failed literals in F' which when
satisfied falsify F' in a single unit propagation. However
since examining a variable by two unit propagations is
time consuming, it is natural to try to restrict the vari-
ables to be examined. For this purpose we use PROP
predicate defined at a search tree node.

The success of Mom’s heuristic suggests that the larger
the number of binary occurrences of a variable is, the
higher its probability of being a good branching vari-
able is, implying that if one should restrict UP heuris-
tics by means of P RO P, he should restrict UP heuristics
to those variables having a sufficient number of binary
occurrences. For this reason, all restrictions on PROP
studied in this paper are defined according to the number
of binary occurrences of a variable, so that the resulted
UP heuristics rely on combinations of unit propagation
and Mom’s heuristics.

— inclusion relation

Figure 3: PROP predicate hierarchy by inclusion relation.
PROP;; (x) is true iff has ¢ binary occurrences of which at
least j negative and j positive.

The first PROP predicate in our experimentation is
called PROP, and has empty denotational semantics,
the resulted branching rule using a pure Mom’s heuris-
tic, and the second is called P RO Py whose denotational
semantics is the set of all free variables, the resulted UP
heuristic is in its pure form and plays its full role:

PROP,: PROP,(z) is false for every free variable x;
PROP,: PROPy(z) is true for every free variable x.

Between PROP, and PROUP,, there are many other
possible PROP predicates. Figure 3 defines 8 predicates
constituting a hierarchy by inclusion relation of their de-
notational semantics.

PROPs141 1s defined to be PROPs;, but for nodes
under a fixed depth of a search tree, it is defined to be

PROP,;. Let T be a constant, the last P ROP predicate
1s named PROP, and is defined to be the first of the
three predicates PROPy;, PROPs; and PROPy (in this
order) which has at least T variables in its denotational
semantics.

Each PROP predicate results in a DPL procedure,
PROP,, PROPy, PROPs141 and PROP, respectively
giving Sata, Sat0, Satzi141 and Satz, and PROP;; giv-
ing Sat;;. These programs are different only in PROP
predicate, except Sat0 which need not count the occur-
rences of variables.

We run the 12 programs (compiled using gec with op-
timization) on a PC with a 133 Mhz Pentium CPU under
Linux operating system on a very large sample of ran-
dom 3-SAT problems generated by using the method of
Mitchell et al.[Mitchell et al., 1992]. Given a set V of n
Boolean variables {@1, 23, ..., 2, }, we randomly generate
m clauses of length 3. Each clause is produced by ran-
domly choosing 3 variables from V' and negating each
with probability 0.5. Empirically, when the ratio m/n is
near 4.25 for a 3-SAT formula F', F' is unsatisfiable with
a probability 0.5 and is the most difficult to solve. We
vary n from 140 variables to 340 variables incrementing
by 20, for each n the ratio clauses-to-variables (m/n) is
set to 4.0,4.1,4.2,4.25 4.3, 4.4, 4.5. At each ratio and
by each program, if n < 280 then 1000 problems are
solved, if 280 < n < 300 then 500 problems are solved,
if n = 320 then 300 problems are solved, and if n = 340
then 100 problems are solved. A problem 1s solved suc-
cessively by all the 12 DPL procedures before another
to ensure the same environment to all programs. Due
to the lack of space, we only present the experimental
results for the ratio m/n = 4.25 in Figures 4, 5, and 6,
where the DPL procedures corresponding to the curves
are listed in the same order from top to bottom. The
experimental results on the other ratios give exactly the
same conclusions.

3 A Pure UP Heuristic Versus a Pure
Mom’s Heuristics: Sat0 vs Sata

Sat(systematically examines all the variables by unit
propagation at all nodes, using a pure UP heuristic,
while Sata does not examine any variable so and em-
ploys a pure Mom’s heuristic. One might believe that
Sat) would be simply too slow, but it is not the case.
Sat0 s much faster than Sata. In fact from Figures 4
and 5, all DPL procedures using a UP heuristic in our
experimentation are substantially better than Sata in
terms of search tree size and real run time.

Note that Mom’s heuristic used in Sata is similar to
the so-called two-sided Jeroslow-Wang rule [Hooker and
Vinay, 1995], with the only difference that a clause of
length 1 is counted as 5 clauses of length 141 instead of
2. Our experiments suggest that 5 i1s better than 2. 5 is

also similar to the exponential factors in C-SAT [Dubois
et al., 1993] where 5.71 ternary clauses are counted as 1
binary clause.

x 10°
:
451 sata B
sat42
= 4r sat40)
4 sat4l
8351 4
b= sat3141
o
T 3r sat30 B
o
§ sat31
(= |- -
° 25 sat21
N
"
e Ll sat20 i
[
5 satz
S
515F sat10 bl
Q
@ sat0
1k i
0.5 i
o

5 = o
140 160 180 200 220 240 260 280 300 320 340
nb. of variables

Figure 4: Mean search tree size of each program as a function
of nn for hard random 3-SAT problems at the ratio m/n = 4.25

2500 4

sata
2000 sat42 B
sat10
sat40
sat20
sat30
sat0
sat21
1000~ sat4l q
sat3141
sat31

i
ul
o
o
T
I

time in sec.

500 satz i

0 s & & = = I
140 160 180 200 220 240 260 280 300 320 340
nb. of variables

Figure 5: Mean run time of each program as a function of n
for hard random 3-SAT problems at the ratio m/n = 4.25

Sat0 actually is slower than five other programs based
on balanced restrictions of variables to be examined by
unit propagation, but not substantially so (except Satz).
The surprisingly good performance of Sat0 confirms the
power of UP heuristics for selecting the next branching
variable and suggests that its effect for detecting failed
literals is only secondary.

4 Restricted UP Heuristics

Figure 6 illustrates the number of variables examined by
different restricted UP heuristics at a node.

N
a
o

sat10
sat20
sat21
sat30
sat31
sat3141
sat40
sat4l
sat42

= = N

o a o

=) =} =)
T T T

average number of variables examined per search tree node
a1
o
T

0 10 20 30
search tree depth

Figure 6: Average number of variables examined at a search
tree node in a given depth when solving hard random 3-SAT
problems of 300 variables and 1275 clauses (500 problems are
solved) for 9 programs

4.1 Restriction by total number of binary
occurrences of a variable

Four programs Satyg, Satsg, Satsg and Satag realize this
type of restrictions. While a classical Mom’s heuristic
selects the next branching variable having maximum bi-
nary occurrences, the restricted UP heuristics examine
a set of variables having more binary occurrences than
others, including the variable having maximum binary
occurrences. From Figure 4, it is clear that the more
variables are examined, the smaller the search tree size
is.

4.2 Balanced restriction by total number
of binary occurrences of a variable

Four programs Satyy, Satsy, Sats; and Satss realize this
type of restrictions. The PROP predicates require that
a variable occurs both positively and negatively in bi-
nary clauses to balance the search tree. We compare the
duet Sat;p and Sat;; (i=2, 3, 4) and observe that Sat;;
examines strictly fewer variables than Sat;q and 1s faster
than it in spite of a slightly larger search tree. In partic-
ular, Saty; and Satyy examine almost the same number
of variables (see Figure 6), but the balanced restriction
gives a faster DPL procedure.

We pay special attention to PROPs; and PROP,
since they seem to be the best balanced restrictions.

4.3 Dynamic restriction as a function of
search tree depth

Satsa; realizes this restriction. A general observation
when solving 3-SAT problems using a DPL procedure
is that there are more and more binary clauses when
descending from the search tree root and the denota-

tional semantics of a P ROP predicate such as PRO Ps;
becomes larger and larger. Furthermore, the nodes are
more numerous near the leaves and the branching vari-
ables play a less important role there. It appeared that
one could restrict more the variables to be examined by
unit propagation near the leaves without important loss
on the search tree size so as to obtain some gain in terms
of real run time.

POSIT’s UP heuristic (called BCP-based heuristic)
[Freeman, 1995)] realizes this idea: under the level 9 of a
search tree, at most 10 variables are examined by unit
propagation.

Satziq uses PROPs; from the top of a search tree,
but under the depth empirically fixed to n*4/70, it uses
PRO Py, where n is the number of variables in the initial
input 3-SAT problem. Note that if n > 160, n x4/70 >
9, so Satsia1 generally strengthens the restriction later
than POSIT.

From Figures 4 and 5 Satsy41 is not better than Satsy,
although it makes many fewer unit propagations to ex-
amine variables (see Figure 6), suggesting that the search
tree depth is rather irrelevant to the restriction of UP
heuristics.

4.4 Dynamic restriction by number of
variables to be examined

The relatively poor performance of Satss seems due to
the small number of variables examined at each node
(see Figure 6), though these variables have many binary
occurrences. A careful analysis shows that even Satsy,
the best one up to now, examines few or no variables
at some nodes, especially near the root where there are
few binary clauses, although these nodes are more de-
terminant for the final search tree size. PROUP, is then
introduced to ensure that at least T variables are exam-
ined at each node, T" being empirically fixed to 10. Near
the root, all free variables are examined to exploit the
full power of UP heuristic. As soon as the number of
variables occurring both negatively and positively in bi-
nary clauses and having at least 4 (3) binary occurrences
is larger than 7', only these variables are examined to se-
lect the next branching variable.

5 Related Work

C-SAT [Dubois et al., 1993] examines some variables by
unit propagations (called local processing) near the bot-
tom of a search tree to rapidly detect failed literals there.
Pretolani also uses a similar approach (called pruning
method) based on hypergraphs in H2R [Pretolani, 1993].
But the local processing and the pruning method as are
respectively presented in [Dubois et al., 1993] and [Pre-
tolani, 1993] do not contribute to the heuristic to select
the next branching variable. We find the first effective
exploitation of UP heuristic in POSIT [Freeman, 1995]

and Tableau [Crawford and Auton, 1996] which use a
similar idea as in C-SAT to determine the variables to
be examined at a node by unit propagation: z s to be
examined iff x is among the k most weighted variables
by a Mom’s heuristic.

The main difference of Satz with Tableau and POSIT
is that Satz does not specify a upper bound k& of the
number of variables to be examined at a node by unit
propagation. Instead, Satz specifies a lower bound. In
fact, Satz examines many more variables by an optimal
combination of unit propagation and Mom’s heuristics.

Given the depth of a node, Table 1 illustrates the aver-
age number of variables examined (#examined_vars) at
the node by Satz, with the depth of the root being 0. In
order to compare with C-SAT, Tableau and POSIT we
also give the theoretical value of k¢ (for C-SAT), kr (for
Tableau) and kp (for POSIT) at the node, respectively
according to the definitions of k in [Dubois et al., 1993;
Crawford and Auton, 1996; Freeman, 1995].

depth #free_vars #eramined_vars ke kT kp
1 298.24 298.24 0 263 265
2 296.52 296.52 0 227 230
3 294.92 293.89 0 193 198
4 292.44 292.21 0 141 149
5 288.60 282.04 0 61 72
6 285.36 252.14 0 0 10 or 3
7 281.68 192.82 0 0 10 or 3
8 277.54 125.13 0 0 10 or 3
9 273.17 71.51 0 0 10 or 3
10 268.76 40.65 0 0 10 or 3
11 264.55 26.81 0 0 10 or 3
12 260.53 21.55 0 0 10 or 3
13 256.79 19.80 0 0 10 or 3
14 253.28 19.24 0 0 10 or 3
15 249.96 19.16 0 0 10 or 3
16 246.77 19.28 0 0 10 or 3
17 243.68 19.57 0 0 10 or 3
18 240.68 19.97 0 0 10 or 3
19 237.73 20.46 0 0 10 or 3
20 234.82 20.97 0 0 10 or 3

Table 1: Average number of variables examined in Satz
at a node in a given depth when solving a hard random 3-
SAT problem of 300 variables and 1275 clauses (500 problems
are solved) compared with theoretical value of k in C-SAT,
Tableau and POSIT

It is clear that Satz examines many more variables at
each node than any of C-SAT, Tableau or POSIT. Near
the root, Satz examines all free variables. Elsewhere
Satz examines a sufficient number (T') of variables.

We compare C-SAT, Tableau, POSIT and Satz on a
large sample of hard random 3-SAT problems on a SUN
Sparc 20 workstation with a 125 MHz CPU. The 3-SAT
problems are generated from 3 sets of n variables and
m clauses at the ratio m/n = 4.25, n steping from 300
variables to 400 variables by 50.

We use an executable of C-SAT dated July 1996. The
version of Tableau used here is called 3tab and is the
same used for the experimentation presented in [Craw-
ford and Auton, 1996]. POSIT is compiled using the pro-

vided make command on the SUN Sparc 20 workstation
from the sources named posit-1.0.tar.gz'. Table 2 shows
the performances of the 4 DPL procedures on problems
of 300, 350, and 400 variables, where tzme standing for
the real mean run time is reported by the unix com-
mand /usr/bin/time and {_size standing for search tree
size (number of nodes) is reported (or computed from
number of branches reported) by the DPL procedures.

300 vars 350 vars 400 vars
300 problems 250 problems 100 problems
System time t_size time t_size time t_size
C-SAT k4 49567 512 275303 | 3818 1624869
Tableau 79 43041 558 253366 | 4544 1524551
POSIT 57 61797 474 400588 | 3592 2751611
Satz 34 32780 203 174337 | 1207 916569

Table 2: Mean run time (in second) and mean search tree

size of C-SAT, Tableau, POSIT and Satz on ratio m/n=4.25

Table 2 shows that Satz is faster than the above cited
versions of C-SAT, Tableau and POSIT, Satz’s search
tree size is the smallest, and Satz’s run time and search
tree size grow more slowly. Table 3 shows the gain of
Satz compared with the cited version of C-SAT, Tableau
and POSIT at the ratio m/n=4.25. Each item is com-
puted from Table 2 using the following equation:

gain = (value(system)/value(Satz) — 1) x 100%

where value is real mean run time or real mean search
tree size and system is C-SAT, Tableau or POSIT. From
Table 3, it is clear that the gain of Satz grows with the
size of the input formula.

300 vars 350 vars 400 vars
300 problems 250 problems 100 problems
System time t_size time t_size time t_size
C-SAT | 126% 51% 152% 58% 216% 77%
Tableau | 132% 31% 175% 45% 276% 66%
POSIT 68% 89% 133% 130% 198% 200%

Table 3: The gain of Satz vs. C-SAT, Tableau and POSIT in
terms of run time and search tree size on the ratio m/n=4.25
computed from Table 2

The central strategy of Satz is to try to reach an
empty clause as early as possible. Further along the line,
we make two relatively small resolvents-driven improve-
ments in Satz. The first improvement is the preprocess-
ing of the input formula by adding some resolvents of
length < 3, The second improvement consists in refin-
ing yet more the heuristic H in the nodes where all free
variables are examined by unit propagation. Refer to
Figure 2, when PROP, is equal to PROP, we define
w(z) as the number of resolvents the newly produced
binary clauses would result in in F’ by a single step of
resolution. w(#) is similarly defined.

1publicly available via anonymous ftp to ftp.cis.upenn.edu in
pub/freeman/ directory

Satz improved in this way solves many real-world or
structured SAT problems where previous heuristics were
not successful. For example, Table 4 shows the perfor-
mance of the 4 DPL procedures on the well-known Bei-
jing challenging problems?, where a problem that can not
be solved in less than 2 hours is marked by 7> 7200”
and the version of Tableau is called ntab®. It is clear
that Satz is much more efficient and solves many more
problems in less than two hours.

Problem Satz C-SAT Posit ntab
2bitadd_10 > 7200 > 7200 > 7200 > 7200
2bitadd_11 201 > 7200 0.3 > 7200
2bitadd_12 0.4 6379 0.05 > 7200
2bitcomp_b 0.03 0.1 0.01 0.4
2bitmax._6 0.07 3.7 0.01 1.6
3bitadd_31 > 7200 > 7200 > 7200 > 7200
3bitadd_32 4512 > 7200 > 7200 > 7200
3blocks 2.0 4.3 1.8 1468
4blocksb 8.2 118 49 > 7200
4blocks 1542 > 7200 > 7200 > 7200
e0ddr2-10-by-5-1 215 > 7200 > 7200 > 7200
e0ddr2-10-by-5-4 232 > 7200 3508 236
enddr2-10-by-5-1 > 7200 > 7200 > 7200 > 7200
enddr2-10-by-5-8 229 > 7200 > 7200 92
ewddr2-10-by-5-1 339 > 7200 283 > 7200
ewddr2-10-by-5-8 279 > 7200 > 7200 119

Table 4: Run time (in sec.) of Beijing challenging problems

6 Conclusion

We found that UP heuristic i1s substantially better than
Mom’s one even in its pure form realized by PROPF,
where all free variables are examined at all nodes. In
its restricted forms based on combinations of unit prop-
agation and Mom’s heuristics, the more variables are
examined, the smaller the search tree is, confirming the
advantages of UP heuristic, but too many unit propaga-
tions slow the execution. The combinations realized by
PROPs; and PRO Ps; represent good compromises.

A dynamic restriction such as PROPsy41 which
strengthens the restriction under a fixed depth of a
search tree fails to work better than the static restric-
tion PROPs;. We design the dynamic restriction along
another line: PROP, ensures that at least T' candidates
are examined by unit propagation at every node of a
search tree by successively using P RO P,;, PRO P31 and
PROP,, giving the very efficient and very simple DPL
procedure called Satz.

Satz i1s favorably compared with several current state-
of-the-art DPL implementations (C-SAT, Tableau and
POSIT) on a large sample of hard random 3-SAT prob-
lems and the recent Beijing SAT benchmarks. The good
performance of Satz on the structured or real-world SAT
problems shows that UP heuristic can tackle new prob-
lems or problem domains where Mom’s heuristics were

2 available from http://www.cirl.uoregon.edu/crawford /beijing

% available from http://www.cirl.uoregon.edu/crawford/

not successful and enhances the belief that if a DPL pro-
cedure is efficient for random SAT problems, it should
be also efficient for a lot of structured ones.

Acknowledgments

We thank Olivier Dubois, James M. Crawford and Jon
W. Freeman for kindly providing us their DPL proce-
dures and anonymous referees for their comments which
helped improve this paper.

References
[Chvatal and Szemeredi, 1988] V. Chvatal and E. Sze-

meredi. Many Hard Examples for Resolution. Journal

of ACM, 35(4):759-768, October 1988.

[Cook, 1971] S. A. Cook. The Complexity of Theorem
Proving Procedures. In 3rd ACM Symp. on Theory of
Computing, pages 151-158, Ohio, 1971.

[Crawford and Auton, 1996] J. M. Crawford and L. D.
Auton. Experimental Results on the Crossover Point

in Random 3-SAT. Artificial Intelligence, 81, 1996.

[Davis et al., 1962] M. Davis, G. Logemann, and D.
Loveland. A machine program for theorem proving.

Communication of ACM, 5(7):394-397, July 1962.

[Dubois et al., 1993] Olivier Dubois, P. Andre, Y.
Boufkhad and Jacques Carlier. SAT versus UNSAT.
Second DIMACS Challenge: Cliques, Coloring and
Satisfiability, Rutgers University, NJ, 1993.

[Freeman, 1995] Jon W. Freeman. Improvements to
Propositional Satisfiability Search Algorithms. Ph.D.
thesis, Department of computer and Information sci-
ence, Univ. of Pennsylvania, Philadelphia, PA, 1995.

[Hooker and Vinay, 1995] J. N. Hooker and V. Vinay.
Branching Rules for Satisfiability. Journal of Auto-
mated Reasoning, 15:359-383, 1995.

[Jeroslow and Wang, 1990] R. Jeroslow and J. Wang.
Solving Propositional Satisfiability Problems. Annals
of Mathematics and Al 1:167-187, 1990.

[Li, 1996] ChuMin LI. Exploiting Yet More the Power
of Unit Clause Propagation to Solve 3-SAT Problem.
In ECAI’96 Workshop on Advances in Propositional
Deduction, pages 11-16, Budapest, Hungary, 1996.

[Mitchell ef al., 1992] D. Mitchell, B. Selman, H.
Levesque. Hard and Easy Distributions of SAT Prob-
lems. In AAAI’92, pages 459-465, San Jose, CA, 1992.

[Pretolani, 1993] Daniele Pretolani. Satisfiability and
hypergraphs. Ph.D. thesis, Dipartimento di Informat-
ica, Universita di Pisa, 1993.

