
Crossword Puzzles as a Constraint Problem

Anbulagan and Adi Botea

NICTA� and Australian National University, Canberra, Australia
{anbulagan,adi.botea}@nicta.com.au

Abstract. We present new results in crossword composition, showing
that our program significantly outperforms previous successful tech-
niques in the literature. We emphasize phase transition phenomena, and
identify classes of hard problems. Phase transition is shown to occur
when varying problem parameters, such as the dictionary size and the
number of blocked cells on a grid, of large-size realistic problems.

1 Introduction

In this paper we propose new ideas in solving crossword puzzles presented in a
hybrid model with two viewpoints, one containing cell variables and the other
containing word slot variables. We discuss an architecture where search and
nogood learning exploit the strenghts of each viewpoint. Our program solves
more crossword problems than previous successful techniques in the literature.
We present the program performance on a collection of realistic puzzles, which
has been used in previous studies [1,2,3].

We also analyze the behaviour of the crossword domain in detail. We em-
phasize phase transition phenomena and identify classes of hard problems. We
discuss how the structure of a problem is affected by varying parameters such
as the size of a dictionary and the number of blocked cells on a grid. Such
structural changes exhibit phase transition phenomena. Unlike previous CSP
contributions on phase transition (e.g., [4,5]), which always consider randomly
generated problems, we experiment with large-size realistic problems.

The earliest contribution to crossword grid composition reported in the liter-
ature belongs to Mazlack [6]. In that work, a grid is filled with a letter-by-letter
approach. Ginsberg et al. [7] focus on an approach that adds an entire word at
a time. The list of matching words for each slot is updated dynamically based
on the slot positions already filled with letters. Meehan and Gray [8] compare
a letter-by-letter approach against a word-by-word encoding and conclude that
the latter is able to scale up to harder puzzles.

Cheesman et al. [9] showed that the hard instances in NP-hard problems
often exhibit a phase transition phenomenon. The classical phase transition in
SAT [10] is observed when the ratio between the number of variables and the
number of clauses varies.
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 550–554, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Crossword Puzzles as a Constraint Problem 551

2 Encoding Crosswords into CSP

Formally, a crossword puzzle consists of a grid size, a fixed configuration of
blocked cells, and a dictionary. The problem is to fill the grid with words from
the dictionary. No word can be placed more than once on the grid. As in [1,2],
we adopt a hybrid encoding where both cells and word slots are used as CSP
variables. Consider a slot s and its i-th cell c. A binary intersection constraint
enforces that the letter assigned to c is the same as the i-th letter of the word
assigned to s. Each pair of same-length slots defines a repetition constraint, which
forbids to place the same word into two distinct slots. The hybrid encoding can
be obtained from a basic model with only cell variables by applying the hidden
variable transformation. It can also be seen as two combined viewpoints, one
with high-level (or dual) slot variables and one with low-level cell variables.

3 Combus: A Crossword Composer

The solving engine highlighted in this section exploits the hybrid problem en-
coding by instantiating only dual variables in search and by using only low-level
variables as part of nogood records. An instantiation to a dual variable in search
is a macro of low-level instantiations. Macro-actions can reduce the depth of
a search at the cost of increasing the branching factor per node (the utility
problem). When the non-binary constraints that generated the dual variables
are reasonably tight, the utility problem does not appear to be an issue. Since
each dual variable contains several low-level variables, the search tree depth is
reduced considerably. The branching factor can be kept low due to constraint
propagation and to preferring variables with small domains to be instantiated.

In building nogoods we exploit that, in crosswords and other real-life, struc-
tured problems, a partial assignment to the dual variables can partition the unin-
stantiated variables into clusters that do not interact via common constraints.
In crosswords, clustering is possible if we ignore the repetition constraints, which
can connect slots on any two grid areas. A cluster is initialized to a seed slot
and extended iteratively up to a fix point by adding new uninstantiated dual
variables (i.e., empty or partially filled slots) that intersect the cluster.

To extract a nogood from a deadlocked node n, a deadlock cluster is built
around the variable selected for instantiation, whose possible assignments have
been invalidated either through further search or statically (via arc-consistency
propagation). If n is not a leaf node and its subtree has explored instantiating
variables in other clusters too, an additional condition is needed to ensure that
the deadlock is contained within the current cluster, being independent of the
rest of the problem. Specifically, we require that no parts of n’s subtree have been
pruned because of deadlocks that involve variables from other clusters. Then the
instantiated cells in the deadlock cluster are a superset of a nogood.

Nogoods are stored in a database and used for pruning in the future. As no-
good learning ignores repetition constraints, nogoods might be built that are
actually part of a correct solution, giving up the method completeness. As repe-
tition constraints are handled in the main search, all found solutions are correct.

552 Anbulagan and A. Botea

4 Empirical Results on Composer Performance

We examine the performance of Combus on a suite of problems introduced
in [1] and subsequently used in other studies [2,3]. The suite contains ten grids
of each of the following sizes: 5x5, 15x15, 19x19, 21x21 and 23x23. There are two
dictionaries: the smaller one, called “words”, contains 45,000 words and “UK”
contains 220,000 words. Each combination of a grid and a dictionary creates a
problem instance. Thus, we obtain a set of 100 instances.

Table 1. Time (T) in seconds and expanded nodes (N) of the 80 instances. The 5x5
problems are too easy and their details are not presented. A dash means that no
solution was found in the given time limit.

15x15 grids 19x19 grids 21x21 grids 23x23 grids
Inst words UK words UK words UK words UK
ance T N T N T N T N T N T N T N T N

01 86 83 287 71 56 118 320 123 113 471 851 128 1 0 209 157

02 11 75 216 74 23 96 429 109 134 143 1133 141 81 178 697 172

03 41 71 239 73 34 315 245 108 76 139 624 130 455 12121 1185 160

04 18 304 290 66 75 127 738 116 740 15367 525 139 180 1700 715 162

05 25 65 354 70 13 112 121 115 56 238 288 132 105 178 707 170

06 84 1678 521 64 96 126 313 121 99 140 560 137 – – 462 227

07 146 118 548 65 34 118 296 126 128 152 571 136 86 241 572 162

08 41 76 196 78 62 122 396 120 68 145 551 142 320 7842 766 156

09 25 77 210 75 23 121 342 121 64 141 479 138 689 18109 366 160

10 114 506 462 65 14 119 120 121 – – 857 119 – – 680 135

In Table 1, we present the results obtained by switching on the nogood recording
procedure. Combus solves 97 instances in less than 20 minutes per instance on
a 2.4GHz Intel Duo Core. The results show that problems corresponding to the
“UK” dictionary require few node expansions. The number of expanded nodes is
close to the depth of the search tree, indicating that, often, solutions are found
with no backtracking. The “words” dictionary generates harder problems with
respect to the number of nodes. All three unsolved problems are in this category.
In general, our results are significantly better than the results presented in [1,2,3].

5 Empirical Results on Crossword Phase Transition

The experiments were run using the Combus engine. The incomplete method
of nogood learning is switched off, to ensure that an instance reported as UN-
SAT has no solution indeed. In this study, we vary the dictionary size and the
percentage of blocked cells.

5.1 Changing Dictionary Size

Here, we study the problem hardness and the phase transition by varying the
dictionary size. The full dictionary has 220,000 words [1]. Subsets of it are

Crossword Puzzles as a Constraint Problem 553

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

percentage of dictionary

in
 p

er
ce

nt
ag

e

median hardness
%sat

0 10 20 30 40 50 60 70 80 90 100 110
10

0

10
1

10
2

10
3

10
4

10
5

10
6

percentage of dictionary

nb
. o

f e
xp

an
de

d
no

de
s

15x15
19x19
21x21
23x23

a. On 9x9 grids. b. On larger grids.

Fig. 1. Phase transition and problem hardness when percentage of dictionary varies

obtained by adding 2,200 words (1%) at a time. We created a set of 10 9x9
grids, having 12 blocked cells each, to be able to solve them all in a reasonable
time and compute the percentage of SAT instances. Figure 1a shows the problem
hardness (the median expanded nodes) and the percentage of SAT instances on
9x9 grids. The hard instances occur in the phase transition region, where the
dictionary ranges from about 10,000 to 35,000 words.

Figure 1b presents the median expanded nodes for larger grids. The data
contain ten grids of each of the following sizes: 15x15, 19x19, 21x21 and 23x23 [1].
The percentage of blocked cells is around 15 to 20%. Here, the time limit is set
to 5 hours per problem. The results clearly show easy-hard-easy transitions for
each grid collection. The hard region size increases with the grid size. The 15x15
data set shows a hard region from around 22,000 to 66,000 words, whereas hard
23x23 problems occur from about 22,000 to 110,000 words. Problems with a
small dictionary size have no solution. The search cost to prove this is low.
As we progress along the horizontal axis, problems become solvable. Finding a
solution is hard at the beginning of the SAT range. The search effort decreases
as larger and larger dictionaries are used.

5.2 Changing Number of Blocked Cells

In this experiment we use the 23x23 grids and the 220,000 words dictionary.
To vary the number of blocked cells, we started from a configuration with 192
blocked cells (36% of all cells) placed symmetrically on the grid. We gradually
removed pairs of symmetrical cells until an entirely blank grid was obtained.

Table 2 presents data showing the occurence of phase transition phenomena
when solving the crossword puzzles on 23x23 grids. In the table, “Time”
represents the mean runtime in seconds and “Total” represents the number of
instances in the given solution region. There are three distinct experiments, one
with the full dictionary (D=100%), one with half of it (D=50%), and one with

554 Anbulagan and A. Botea

Table 2. The phase transition of crossword puzzles on 23x23 grids

Solution D=100% D=50%
Region blocked cells Total Time blocked cells Total Time

Unsat 0-36 19 60 0-48 25 1835

Hard 38-66 15 >86400 50-72,76 13 >86400

Sat 68-192 60 734 74, 78-192 56 228

Solution D=30%
Region blocked cells Total Time

Unsat 0-48 25 13

Hard 50-80,84,104,110,114,116 21 >86400

Sat 82,86-100,106,108,112,118-192 48 516

D=30%. The data show that there are more hard problems for the D=30% case.
As the dictionary size gets smaller, the number of Unsat instances increases.

The problem set is partitioned into three regions. Problems with few blocked
cells have no solutions and are easy to solve. We call this the Unsat region.
Instances with a large number of blocked cells have solutions that are easy to
compute (Sat region). Since we work with large problems, the hard instances
between the previous two regions cannot be solved in 24 hours (Hard region).

References

1. Beacham, A., Chen, X., Sillito, J., van Beek, P.: Constraint Programming Lessons
Learned from Crossword Puzzles. In: Stroulia, E., Matwin, S. (eds.) Canadian AI
2001. LNCS (LNAI), vol. 2056, pp. 78–87. Springer, Heidelberg (2001)

2. Samaras, N., Stergiou, K.: Binary Encodings of Non-binary Constraint Satisfaction
Problems: Algorithms and Experimental Results. JAIR, 641–684 (2005)

3. Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Proc. of 20th AAAI,
pp. 390–396 (2005)

4. Smith, B.: Phase Transition and the Mushy Region in Constraint Satisfaction Prob-
lems. In: Proc. of 11th ECAI, pp. 100–104 (1994)

5. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: Scaling Effects in the CSP Phase
Transition. In: Proc. of 1st CP, pp. 70–87 (1995)

6. Mazlack, L.J.: Computer Construction of Crossword Puzzles Using Precedence
Relationships. Artificial Intelligence, 1–19 (1976)

7. Ginsberg, M.L., Frank, M., Halpin, M.P., Torrance, M.C.: Search Lessons Learned
from Crossword Puzzles. In: Proc. of 8th AAAI, pp. 210–215 (1990)

8. Meehan, G., Gray, P.: Constructing Crossword Grids: Use of Heuristics vs Con-
straints. In: Proc. of R & D in Expert Systems, pp. 159–174 (1997)

9. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems Are.
In: Proc. of 12th IJCAI, pp. 163–169 (1991)

10. Gent, I.P., Walsh, T.: The SAT Phase Transition. In: Proc. of 11th ECAI, pp.
105–109 (1994)

	Introduction
	Encoding Crosswords into CSP
	Combus: A Crossword Composer
	Empirical Results on Composer Performance
	Empirical Results on Crossword Phase Transition
	Changing Dictionary Size
	Changing Number of Blocked Cells

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

