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An Optimal Dimensionality Sampling Scheme on
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Harmonic Transform for Diffusion MRI
Alice P. Bates, Student Member, IEEE, Zubair Khalid, Member, IEEE and Rodney A. Kennedy, Fellow, IEEE

Abstract—We design a sampling scheme on the sphere and a
corresponding spherical harmonic transform (SHT) for the mea-
surement and reconstruction of the diffusion signal in diffusion
magnetic resonance imaging (dMRI). By exploiting the antipodal
symmetry property of the diffusion signal in the spectral (spheri-
cal harmonic) domain, we design a sampling scheme that attains
the optimal number of samples, equal to the degrees of freedom
required to represent the antipodally symmetric band-limited
diffusion signal in the spectral domain. Compared with other
sampling schemes that can be used with the optimal number of
samples, we demonstrate, through numerical experiments, that
the proposed scheme enables more accurate computation of the
SHT, and this accuracy is practically rotationally invariant. In
addition, it results in more efficient computation of the SHT and
storage of the diffusion signal.

Index Terms—diffusion magnetic resonance imaging; sam-
pling; spherical harmonic transform; antipodal signal; sphere.

I. INTRODUCTION

In diffusion magnetic resonance imaging (dMRI), the dif-
fusion signal measurements in each voxel are collected on
a spherical sampling grid or multiple concentric spherical
sampling grids in q-space [1]–[7], where q is the diffusion
wave vector. The reconstruction of the diffusion signal from
these measurements is achieved by expanding the signal in
the spherical harmonic basis–a complete orthonormal basis on
the sphere [8]. The expansion in spherical harmonic basis is
enabled by the spherical harmonic transform (SHT).

For the accurate reconstruction and spectral analysis in
the spherical harmonic domain of the diffusion signal, it is
necessary to design the sampling scheme such that the SHT
can be computed accurately from the measurements. As fibres
may assume any orientation, a sampling scheme design should
allow for a reconstruction accuracy that is independent of the
orientation of the diffusion signal or the sampling grid (rota-
tionally invariant) [1], [9]. Since the number of measurements
of the diffusion signal that can be acquired is heavily restricted
by the scan time, it is also important that fewer samples
are required by a sampling scheme [10], [11]. In order for
a sampling scheme to allow for the accurate computation
of the SHT, the minimum number of samples required is
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equal to the degrees of freedom of the diffusion signal in the
spectral domain; this number is referred as the optimal spatial
dimensionality or optimal dimensionality for short [12]. For
the diffusion signal band-limited at L (defined in Section II),
the optimal dimensionality is NO = L(L + 1)/2 [13]. Fur-
thermore, computational complexity and storage requirements
of the measurement and reconstruction process are important
considerations in the design of a sampling scheme [14].

Electrostatic energy minimisation [1], [5], tessellation of
the sphere [15], [16] and spherical code [2] are some of
the methods used to achieve a sampling grid with uniform
sampling and antipodal symmetry. These methods, can be
used to construct sampling grids of arbitrary size (with the
exception of spherical tessellation), however they only allow
for approximate computation of the SHT using least-squares,
where the approximation improves with a larger number of
samples [17]. The least-squares method is also computational
intensive compared with fast SHT algorithms [12], [18]. The
spherical design with uniform density sampling method [10]
has a uniform and antipodally symmetric arrangement of
samples, and allows for the accurate computation of the SHT,
however it requires more than NO samples [17].

An equiangular scheme [18] with 2L2 samples that allows
accurate and efficient computation of the SHT has been
used in dMRI [3]. An iso-latitude scheme with L2 samples,
the optimal dimensionality of an arbitrary (without antipodal
symmetry) band-limited signal on the sphere, has also been
developed [12], which allows the accurate and fast compu-
tation of the SHT. However, the samples in both of these
schemes are neither antipodally symmetric nor uniform by
design. In this work, we focus on the recently proposed
sampling scheme [13] which exploits the antipodal symmetry
property of the diffusion signal in the spatial domain to place
the samples on the sphere such that the SHT in [12] can be
used with the optimal number of samples. We refer to this
scheme as the spatial antipodal sampling scheme.

In this work, we address the following research questions:
• Can we exploit the antipodal symmetry property of

the diffusion signal in the spectral domain to design a
sampling scheme with optimal spatial dimensionality and
which allows for an accurate SHT?

• Does the proposed scheme allow for superior reconstruc-
tion of the diffusion signal compared with the spatial
antipodal sampling scheme, the only scheme that has NO
samples and allows for the accurate computation of the
SHT, in terms of accuracy of reconstruction, computation
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complexity of the SHT and storage requirements? Does
the scheme achieve rotationally invariant reconstruction?

In addressing these questions, we organise the rest of
the paper as follows. We review the necessary mathematical
background for the diffusion signal and spherical harmonics in
Section II, where we also review the spatial antipodal sampling
scheme. The proposed sampling scheme and SHT is presented
in Section III. In Section IV, we carry out the analysis of
reconstruction accuracy, rotational invariance, computational
complexity and storage requirements of the SHT associated
with the proposed sampling scheme. Concluding remarks are
then made in Section V.

II. PRELIMINARIES

A. Diffusion Signal on the Sphere
The diffusion signal at a fixed q-space radius represents

a signal on the sphere. Let the diffusion signal be denoted
by d(θ, φ), where θ ∈ [0, π] is the co-latitude and φ ∈
[0, 2π) denotes the longitude, which parameterise a point
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R3 on the unit sphere S2.

Remark 1 (On the antipodal symmetry property of the
diffusion signal in the spatial domain): The diffusion signal
has the property that it is antipodally symmetric; in the spatial
domain the diffusion signal has the same value at locations di-
ametrically opposite each other with d(θ, φ) = d(π−θ, φ+π).

B. Spherical Harmonic Expansion
The spherical harmonic functions (or spherical harmonics

for short) form a complete basis for L2(S2) and are defined
as [8]

Y m` (θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (1)

for integer degree ` ≥ 0 and integer order |m| ≤ `. In (1),
Pm` denotes the associated Legendre function of degree ` and
order m [8].

Due to completeness of spherical harmonics, we can expand
the diffusion signal as [8]

d(θ, φ) =

∞∑
`=0

∑̀
m=−`

(d)m` Y
m
` (θ, φ), (2)

where (d)m` denotes the spherical harmonic coefficient of
degree ` and order m and is given by the spherical harmonic
transform (SHT) defined as

(d)m` ,
∫
S2
d(θ, φ)Y m` (θ, φ) sin θ dθ dφ. (3)

The spherical harmonic coefficients (d)m` constitute the spec-
tral domain representation of the diffusion signal.

Remark 2 (On the antipodal symmetry property of the
diffusion signal in the spectral domain): Since Y m` (θ, φ) =
Y m` (π − θ, π + φ) for even ` and Y m` (θ, φ) = −Y m` (π −
θ, π+φ) for odd `, (Remark 1) implies that (d)m` = 0 for odd
degree ` [10], [13], [19].

In this work, we assume that the diffusion signal is band-
limited1 at degree L such that (d)m` = 0 for ` ≥ L. With

1The band-limit L required to accurately represent the diffusion signal
depends on the q-space radius [3], [4], [19].

this consideration and following Remark 2, we rewrite the
expansion of the diffusion signal in (2) as

d(θ, φ) =

L−1∑
`=0
` even

∑̀
m=−`

(d)m` Y
m
` (θ, φ), L odd. (4)

We refer to the reconstruction of the diffusion signal from its
spherical harmonic coefficients, given in (4), as the inverse
SHT.

Remark 3 (Optimal dimensionality of the sampling scheme
for diffusion signal): The number of spherical harmonic co-
efficients required to represent the diffusion signal, given in
(4), is NO = L(L + 1)/2 [19], [20], which also represents
the optimal dimensionality, defined as the number of samples
attainable by any sampling scheme that allows the accurate
computation of the SHT of any band-limited antipodal signal
on the sphere.

C. Spatial Antipodal Sampling Scheme

We briefly review the spatial antipodal sampling scheme
[13] which customises the sampling scheme [12] for acqui-
sition of measurements of the diffusion signal in dMRI. We
first revisit the optimal dimensionality sampling scheme [12],
followed by the review of the spatial antipodal sampling
scheme [13].

The optimal dimensionality sampling scheme has an iso-
latitude sampling grid [12]; the L locations along θ where
the iso-latitude rings are placed are stored in the vector
θ , [θ0, θ1, . . . , θL−1]T . The scheme has 2n + 1 equally
spaced samples along longitude in the ring placed at θn ∈ θ
with φn , [0, ∆n, 2∆n, . . . , (2n)∆n], ∆n = 2π

2n+1 . The
sampling grid, formed by θ and φn, is composed of L2

samples, which is equal to the number of degrees of freedom
required to represent any signal band-limited at degree L.

The spatial antipodal sampling scheme [13] uses an antipo-
dal placement of samples on the sphere; the iso-latitude rings
in θ are placed in pairs antipodal to one another, with the
samples in the ring θn antipodal to the samples in the ring
θn−1 for n = 2, 4, . . . , L− 1, that is

θ , [0, . . . , π − θL−3, θL−3, π − θL−1, θL−1]T , L odd.
(5)

This arrangement means that measurements only need to be
taken over the rings θn, n = 0, 2, . . . , L − 1. Samples are
equally spaced along longitude, with k-th sample location,
denoted by φnk , in the ring placed at θn given by

φnk ,

{
2kπ
2n+1 , n = 0, 2, . . . , L− 1, k ∈ [0, 2n],
π(2k+1)
2n+3 , n = 1, 3, . . . , L− 2, k ∈ [0, 2(n+ 1)].

(6)

Since the measurements are only required to be taken over
(L + 1)/2 rings due to antipodal symmetry (Remark 1), the
antipodal scheme requires L(L+ 1)/2 = NO, in total, for the
computation of the SHT. Thus the spatial antipodal sampling
scheme achieves the optimal dimensionality.
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(a) (b)
Fig. 1: (a) North pole view and (b) South pole view of the
proposed sampling scheme on the sphere given by (5) and (6)
for measuring diffusion signal d(θ, φ) band-limited at L = 7.

III. PROPOSED SAMPLING SCHEME AND SPHERICAL
HARMONIC TRANSFORM

In order to answer Q1, posed in Section I, we use the
antipodal symmetry property of the diffusion signal in the
spectral domain to customise the optimal dimensionality sam-
pling scheme [12] to design a sampling scheme that achieves
optimal dimensionality and allows accurate computation of
the SHT. As with [13], we propose that measurements are
taken over (L+ 1)/2 iso-latitude rings. However, rather than
using the antipodal symmetry property of the diffusion signal
in the spatial domain (Remark 1) to determine the value of
the diffusion signal on the remaining (L− 1)/2 rings, we re-
design the SHT algorithm proposed in [12]. By exploiting the
antipodal symmetry property in the spectral domain (Remark
2), the proposed SHT only requires diffusion signal values on
(L + 1)/2, rather than L, iso-latitude rings. We refer to the
proposed scheme as the spectral antipodal sampling scheme.

A. Proposed Sampling Grid

We propose an iso-latitude sampling scheme, denoted by
S(L), with (L+ 1)/2 iso-latitude rings, located at

θ , [θ0, θ1, . . . , θ(L−1)/2]T , L odd, (7)

and sample equally spaced along longitude, with k-th sample
location, denoted by φnk , in the ring placed at θn given by

φnk ,
2kπ

4n+ 1
, n ∈ [0, (L− 1)/2], k ∈ [0, 4n]. (8)

As an example, Fig. 1 shows the proposed scheme for L = 7.
Remark 4 (On the dimensionality of proposed sampling

scheme): Since the total number of samples in the proposed
scheme S(L) are

(L−1)/2∑
n=0

(4n+ 1) =
(L+ 1)L

2
= NO. (9)

the proposed scheme attains the optimal spatial dimensionality.

B. Proposed Spherical Harmonic Transform (SHT)

We propose a SHT over the proposed sampling grid, de-
fined by the vectors θ and φnk , given in (7) and (8). We
define a vector θm , [θ|m/2|, θ|m/2|+1, . . . , θ(L−1)/2]T ⊂
θ |m| < L, m even and θm , θm+1 m odd. The vector
gm ≡ Gm(θm), with

Gm(θn) ,
∫ 2π

0

f(θn, φ)e−imφdφ = 2π

L−1∑
`=|m|
` even

(f)m` P̃
m
` (θn),

(10)

is defined for |m| < L and θn ∈ θ, where P̃m` (θn) ,
Y m` (θn, 0). The integral in (10) can be accurately evaluated as
a summation provided there are at least 2m+1 samples along
φ [12]. As samples are equally spaced around φ (8), Gm(θn)
for θn ∈ θm can be computed using the FFT, then the spherical
harmonic coefficients of order m can be recovered from (10)
by setting up a system of linear equations, given by

gm = PmL fm, |m| ≤ L, (11)

where

fm =

{[
(f)m|m|, (f)m|m|+2, . . . , (f)mL−1

]T
, m even,[

(f)m|m|+1, (f)m|m|+3, . . . , (f)mL−1
]T
, m odd,

(12)
and PmL is defined as

PmL , 2π


P̃m
|m|(θs) P̃m

|m|+2(θs) · · · P̃m
L−1(θs)

P̃m
|m|(θs+1) P̃m

|m|+2(θs+1) · · · P̃m
L−1(θs+1)

...
...

. . .
...

P̃m
|m|(θL−1

2
) P̃m

|m|+2(θL−1
2

) · · · P̃m
L−1(θL−1

2
)

 ,

for even m and

PmL , 2π


P̃m
|m|+1(θs) P̃m

|m|+3(θs) · · · P̃m
L−1(θs)

P̃m
|m|+1(θs+1) P̃

m
|m|+3(θs+1) · · · P̃m

L−1(θs+1)
...

...
. . .

...
P̃m
|m|+1(θL−1

2
)P̃m
|m|+3(θL−1

2
)· · ·P̃m

L−1(θL−1
2

)

 ,

for odd m. Here s = d|m|/2e, where d·e denotes the integer
ceiling function. We note that the size of system of linear
equations given in (11) is d(L− |m|)/2e, rather than L− |m|
for the case of spatial antipodal sampling scheme [13].

C. Placement of Iso-latitude Rings

In order to accurately compute the SHT, we require the
sampling points along co-latitude to be chosen such that the
matrix PmL is well-conditioned for each |m| ≤ L [12], [13].
We propose the following method to achieve this: define a
set of equiangular (L+ 1)/2 samples along co-latitude given

by Θ =

{
π(2t+1)

L

}
, t = 0, 1, . . . , L−12 , then the optimal

ordering is selected by first choosing the location of the ring
of 2L − 1 (the largest number of) samples along φ from the
set Θ as farthest from the poles, then for each m = L −
3, L − 5, . . . 2, choose θm/2 from the set Θ that minimises
the sum of the condition numbers of the matrices PmL and
Pm−1L and finally set θ0 = π. Such placement of samples
along co-latitude results in PmL being well-conditioned, which
ensures the accurate computation of the SHT. We analyse the
accuracy of the SHT in the next section.

IV. EVALUATION OF SPECTRAL ANTIPODAL OPTIMAL
DIMENSIONALITY SAMPLING SCHEME

In order to address Q2 posed in Section I, we now investi-
gate whether the proposed scheme performs better in terms
of reconstruction accuracy, and computational and storage
efficiency than the spatial antipodal sampling scheme.
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A. Numerical Accuracy

The following experiment is conducted to evaluate the
numerical accuracy of the SHT associated with the proposed
sampling scheme and the effect of rotation of the signal on
the numerical accuracy.

A band-limited antipodally symmetric test signal ft is
synthesised in the spectral domain by generating spherical
harmonic coefficients (ft)

m
` for 0 < ` < L, ` even, |m| ≤ `

with real and imaginary parts uniformly distributed in the
interval [−1, 1]. The test signal ft is then obtained in the
spatial domain over the proposed sampling grid S(L) using
the inverse SHT, followed by the SHT to get the spherical
harmonic coefficients of the reconstructed signal, (fr)

m
` . For

each band-limit 1 ≤ L ≤ 25 (band-limits of interest in dMRI),
we repeat the experiment 10 times and record the average
value of the mean reconstruction error Emean, given by

Emean ,
1

L2

L−1∑
`=0

∑̀
m=−`

|(ft)m` − (fr)
m
` |. (13)

In order to analyse the effect of rotation on the accuracy of
the SHT for proposed sampling schemes, we also conduct the
same experiment on rotated versions of the test signal ft. The
rotation is applied by choosing Euler angles (α, β, γ) from
uniform distributions, where α, γ ∈ [0, 2π) and β ∈ [0, π],
and then applying to the test ft using the zyz convention [8].

We also conduct the same experiments for the spatial
antipodal sampling scheme. We plot the average value of
Emean for the proposed scheme and spatial antipodal sampling
scheme for different rotations of the test signal in Fig. 2. It is
evident that the reconstruction error is smaller for proposed
scheme than the spatial antipodal sampling scheme for all
1 ≤ L ≤ 25. It can also be observed that the reconstruction
error is practically rotationally invariant for both schemes, as
the order of magnitude of Emean does not change depending
the angle of rotation.

B. Computational and Storage Efficiency

The asymptotic computational complexity to compute the
SHT for both the proposed and spatial antipodal sampling
schemes is same, that is, O(L4), which can reduced to O(L3)
if we pre-compute the PmL matrices [12], [13]. However, the
proposed scheme is, in practise, more efficient as it does
not compute the odd degree spherical harmonic coefficients,
resulting in the FFT being computed (L+ 1)/2 rather than L
times. Furthermore, the matrix PmL has a smaller dimensional-
ity (PmL is largest for m = 0 with P0

L of size (L+1)/2 rather
than L), which enables fast computation of matrix inversion
involved in solving the system of linear equations given in
(11).

We calculated the computation time in seconds, denoted
by τ , to carry out the SHT for the proposed and spatial
antipodal sampling schemes. The time taken to compute the
SHT of the complex band-limited test signal ft is recorded and
averaged over 1000 test signals. The experiment is performed
using MATLAB running on a machine equipped with 3.4 GHz
Intel Core i7 processor and 8 GB of RAM. We found that
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Fig. 2: Mean reconstruction error Emean, given in (13), plotted
in solid (black) and dashed (red) lines for the proposed
sampling scheme and scheme in [13], respectively, for the
original (without marker) test signal ft and 4 rotated ver-
sions (indicated by markers) of the test signal and for band-
limits 1 ≤ L ≤ 25 . The rotation angles in radians are
in the form of Euler angles (α, β, γ), as displayed in the
legend, where the rotation is applied using the zyz rotation
convention [8].

the SHT associated with proposed scheme requires slightly
less computation time, showing that while it has the same
asymptotic computational complexity, it is more efficient in
practise. The SHT has to be carried out for every voxel in
an image; for an average sized male brain of 1260cm3 with
imaging done at a spatial resolution of 1.25mm with L = 11
(NO = 66, a typical number of samples for dMRI) [21], [22]
the cumulative time for calculating the SHT once for every
voxel is 1520 seconds for the proposed scheme and 1660
seconds for the spatial antipodal scheme. For large databases
of subjects, such as the Human Connectome Project composed
of 1200 subjects [22], the difference in computation time is
significant.

Furthermore, the proposed scheme requires only L(L+1)/2
rather than L2 spherical harmonics to be computed, therefore
reduces the storage space required to store the spherical har-
monic representation of the diffusion signal by approximately
half.

V. CONCLUSIONS

We have developed a sampling scheme on the sphere for the
reconstruction of the diffusion signal in dMRI that exploits
the antipodal symmetry property of the diffusion signal in
the spectral domain to attain an optimal number of samples.
A sampling scheme that exploits the antipodal symmetry
property of the diffusion signal in the spatial domain is the
only other scheme that allows accurate reconstruction of the
diffusion signal with the optimal number of samples. We
have shown that the proposed sampling performs better than
the spatial antipodal sampling scheme for the application
of diffusion signal reconstruction in dMRI; the proposed
sampling scheme will allow for more accurate diffusion signal
reconstruction, as well as decreased processing time and
storage requirements.
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