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Abstract—In this work, we perform an investigation into using
the Slepian, rather than the traditionally used spherical har-
monic, basis for the reconstruction of the head-related transfer
function (HRTF) on the sphere. Measurements of the HRTF are
unavailable over the south polar cap which tends to result in large
reconstruction errors when using the spherical harmonic basis.
While the spherical harmonic basis is well-suited to applications
where data is taken over the whole sphere, it is not a natural basis
when considering a region on the sphere. The Slepian basis is a
set of functions which are optimally concentrated and orthogonal
within a region, unlike the spherical harmonic basis. We demon-
strate through numerical experiments on randomly generated
data and synthetic HRTF measurements that reconstruction of
the HRTF in the Slepian basis is significantly more accurate at
sample locations, the reconstruction error is up to 11 orders of
magnitude smaller, as well as other locations on the sphere, both
within and outside of the region where measurements are taken,
than in the spherical harmonic basis. We also briefly investigate
truncation of the Slepian basis as a means of denoising the HRTF
measurements and find that this reduces the reconstruction error.
Our analysis suggests that the Slepian basis allows more accurate
reconstruction than the spherical harmonic basis.

Index Terms—sampling; unit sphere; Slepian functions; spec-
tral analysis; head-related transfer function (HRTF) measure-
ments.

I. INTRODUCTION

The head-related transfer function (HRTF) is an acoustic

transfer function which measures how sound waves are altered

by a listener’s head and torso before reaching the eardrum

[1]–[3]. HRTFs are unique for an individual; knowledge of a

listener’s HRTF allows for synthesis of sound which appears to

be coming from any chosen direction using binaural signals.

HRTF measurements are normally taken in the audible fre-

quency range ([0.2, 20] kHz) using microphones (or speakers)

arranged at a constant distance from a subject on a sphere [4]–

[6]. The HRTF at a particular frequency and constant distance

from the listener is a signal on the sphere. It is therefore

common for the HRTF to be reconstruction from a finite

number of measurements, where the number of measurements

should be as small as possible to minimise acquisition time

and cost [7], by expansion in the spherical harmonic basis [1],

[2], [4], [8], [9], where spherical harmonics are the archetype

set of complete basis functions orthonormal over the sphere.

One of the major issues in HRTF reconstruction is that due

to ground reflections and limitations of the sampling apparatus,

measurements are unavailable in the south polar cap region (at

co-latitudes greater than about 140◦ ≈ 0.8π radians) [3]–[6].

When samples are unavailable over part of the sphere, large

errors occur when reconstructing the HRTF in the spherical

harmonic basis [7], [8]. This is because spherical harmonics

are not a natural basis for the region; they are not orthogonal

over any region of the sphere other than the whole sphere [10].

A similar problem, called the polar gap, occurs in geophysics

where measurements are only available in the latitudinal belt

(no measurements are available at either the North or South

pole) [11], [12]. Slepian functions, another complete set of

basis functions on the sphere which are not only orthonormal

on the whole sphere but also orthogonal over a given region

of the sphere, have been used to solve the polar gap problem

with greater reconstruction accuracy than was obtained using

spherical harmonics [10].

A. Contributions

In this work we perform a preliminary investigation into

using the Slepian basis, rather than the spherical harmonic

basis, to reconstruct HRTFs on the sphere when measurements

are unavailable over the south polar cap. In particular, we

present a HRTF reconstruction method using the Slepian basis

and evaluate this method against reconstruction in the spherical

harmonic basis using numerical experiments, using both ran-

domly generated data and synthetic HRTF measurements. At

sample locations, the Slepian basis achieves a reconstruction

error up to 11 orders of magnitude smaller than the spherical



harmonic basis. The Slepian basis also achieves a smaller or

equal reconstruction error over the whole sphere for synthetic

measurements with and without additive noise.

The necessary mathematical background required to under-

stand this work are contained in Section II. The proposed re-

construction method is presented in Section III. In Section IV,

we evaluate the proposed scheme against reconstruction in

the spherical harmonic basis. Finally, concluding remarks are

made in Section V.

II. NOTATION AND PROPERTIES

In this section, we present the relevant mathematical back-

ground for signals defined on the sphere, in particular the

HRTF, and their spectral domain representation in both the

spherical harmonic and Slepian bases to clarify concepts and

notation used in this work.

A. Signals on the Sphere and Spherical Harmonics

A point on the unit sphere S
2 , u ∈ R

3 : ||u|| = 1 can

be represented in terms of spherical coordinates as u(θ, φ) =
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R

3. Where co-latitude θ ∈
[0, π] is the angle from the positive z-axis and longitude φ ∈
[0, 2π) is the angle from the positive x-axis in the x-y plane.

The space of square integrable complex functions on S
2 of

the form f(θ, φ) form a Hilbert space, denoted by L2(S2),
equipped with the inner product [13]

〈f, g〉 ,

∫

S2

f(θ, φ)g(θ, φ) ds, (1)

where (·) is the complex conjugate and ds = sin θ dθ dφ is

the differential area element on the sphere. The norm ‖f‖ ,

〈f, f〉1/2 is induced by the inner product (1); functions with

finite induced norm are referred to as signals on the sphere.

Spherical harmonic functions (spherical harmonics for

short) are a commonly used set of complete basis functions

that are orthonormal over the whole sphere. Complex spherical

harmonics Y m
ℓ (θ, φ) for integer degree ℓ ≥ 0 and order

|m| ≤ ℓ are defined as [13], [14]

Y m
ℓ (θ, φ) ,

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ, (2)

where Pm
ℓ (·) are the associated Legendre functions. Any

signal on the sphere can be expanded in terms of spherical

harmonic functions as

f(θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

(f)mℓ Y m
ℓ (θ, φ), (3)

where (f)mℓ denotes the spherical harmonic coefficient of

degree ℓ and order m, which form the spectral domain

representation of the signal and are given by

(f)mℓ ,

∫

S2

f(θ, φ)Y m
ℓ (θ, φ) ds. (4)

If the signal f ∈ L2(S2) is band-limited at degree L, with

(f)mℓ = 0 ∀ ℓ ≥ L, |m| ≤ ℓ, then the summation over degree

ℓ in (3) is truncated at L−1. The set of all band-limited signals

forms a subspace of L2(S2), denoted by HL.

B. Slepian Functions

Another complete set of basis functions which are orthonor-

mal over the whole sphere are the Slepian functions on the

sphere [11], [13], [15]. Slepian functions arise as the solution

to the problem, first considered in one-dimension by Slepian

and Pollak [16], of finding functions that are band-limited and

maximally concentrated within a closed region (or spatially

limited and optimally concentrated within some band-limit).

Here we briefly present the Slepian problem on the sphere

and refer the reader to [15] for a more comprehensive review.

To find signals band-limited at degree L, that is g(θ, φ) ∈
HL, and spatially concentrated in a closed region on the sphere

R, we need to maximise the energy concentration ratio

λ =

∫
R
|g(θ, φ)|2ds∫

S2
|g(θ, φ)|2ds

. (5)

This leads to the eigenvalue problem [15]

L−1∑

ℓ′=0

ℓ′∑

m′=−ℓ′

Dm,m′

ℓ,ℓ′ (g)m
′

ℓ′ = λ(g)mℓ , (6)

where (g)mℓ are the coefficients of the Slepian functions in the

spherical harmonic basis and

Dm,m′

ℓ,ℓ′ =

∫

R

Y m
ℓ (θ, φ)Y m′

ℓ′ (θ, φ)ds. (7)

The solution to the eigenvalue problem in (6) gives L2

band-limited eigenfunctions which form the Slepian basis. The

eigenvalue 0 < λ < 1 associated with each eigenfunction is a

measure of the concentration of the eigenfunction in R. The

largest eigenvalue λ1 corresponds to the eigenfunction g1(θ, φ)
that is most concentrated in R, while the smallest eigenvalue

λL2 corresponds to the eigenfunction gL2(θ, φ) that is most

concentrated in R, where R is the complement region on the

sphere R = S
2\R. The eigenvalues tend to be either close to

zero or one (either concentrated in R or R); finding functions

maximally concentrated in R is equivalent to solving (6) and

reversing the order of eigenfunctions. For the case where R

is azimuthal symmetric, Dm,m′

ℓ,ℓ′ has an analytical expression

and can be computed exactly [10].

Slepian functions have several desirable properties; not only

are the orthonormal over the whole sphere, they are also

orthogonal over the region R, that is
∫

S2

gα(θ, φ)gβ(θ, φ)ds = δαβ , (8)

∫

R

gα(θ, φ)gβ(θ, φ)ds = λαδαβ . (9)

Spherical harmonics, in comparison, are not orthogonal over

R. As the Slepian basis is complete, for f(θ, φ) ∈ HL [15],



f(θ, φ) can be expanded in terms of Slepian functions as

f(θ, φ) =
L2∑

n=1

(f)ngn(θ, φ), (10)

where (f)n denotes the Slepian coefficients given by

(f)n ,

∫

S2

f(θ, φ)gn(θ, φ) ds, (11)

and gn(θ, φ) is the Slepian function corresponding to eigen-

value λn. Over the region R, f(θ, φ) can be well-approximated

as the summation of only the Slepian functions with λ ≈ 1
[15] with

f(θ, φ) ≈
N∑

n=1

(f)ngn(θ, φ), (12)

where N denotes the number of eigenfunctions optimally

concentrated in R. This enables a more sparse representation

of f(θ, φ).

C. Head Related Transfer Function

The HRTF at a fixed distance from the listener and

wavenumber k = 2πf/c, denoted by h(θ, φ; k) where c is

the speed of sound [5], is a signal on the sphere. h(θ, φ; k) is

commonly expanded in terms of spherical harmonics [7], [8]

and is assumed to be band-limited at degree L(k) with

h(θ, φ; k) =

L(k)−1∑

ℓ=0

ℓ∑

m=−ℓ

(h)mℓ (k)Y m
ℓ (θ, φ). (13)

The following equation is used to approximate the band-limit

L(k) for a particular wavenumber (frequency) [5], [7]

L(k) ≈
⌈eks

2

⌉
+ 1 =

⌈eπsf
c

⌉
+ 1, (14)

where s is the scattering object size (typically taken to

be the radius of the human head). The largest band-limit,

corresponding to the maximum audible frequency f = 20 kHz

(with s = 0.09 m), is L(k) = 47 [5], [7].

The spherical harmonic coefficients (h)mℓ (k) can be calcu-

lated from a finite number of measurements M by writing

(13) as a system of linear equations [8]. For a particular

wavenumber k1

h
M = Y

M
L hL (15)

where Y
M
L is the M × L2-dimensional matrix containing

spherical harmonic functions evaluated at the sample locations

Y
M
L ,




Y 0

0 (θ1, φ1) Y −1

1
(θ1, φ1) · · · Y L−1

L−1
(θ1, φ1)

Y 0

0 (θ2, φ2) Y −1

1
(θ2, φ2) · · · Y L−1

L−1
(θ2, φ2)

...
...

. . .
...

Y 0

0 (θM , φM ) Y −1

1
(θM , φM ) · · · Y L−1

L−1
(θM , φM )


 ,

(16)

1For the rest of the paper we drop the reference to wavenumber k and
simply write L(k) ≡ L.

where hL is the vector of length L2 containing the HRTF

coefficients up to degree L− 1

hL =
[
(h)00, (h)

−1
1 , . . . , (h)L−1

L−1

]T
, (17)

and measurements are contained in a vector hM of length M ,

h
M =

[
h(θ1, φ1), h(θ2, φ2), . . . , h(θM , φM )

]T
. (18)

The spherical harmonic coefficients (h)mℓ (k) contained in hL

can then be found by inverting Y
M
L in (15). This requires

at least M ≥ L2 samples which is the number of spherical

harmonic coefficients and the number of degrees of freedom

in the system of linear equations. In addition, the sample

locations should be chosen such that YM
L is well-conditioned.

The HRTF can then be reconstructed at any location on the

sphere from it coefficients using (13).

III. PROPOSED HRTF RECONSTRUCTION METHOD

We propose the reconstruction of the HRTF from its mea-

surements using the Slepian, rather than spherical harmonic,

basis. The HRTF can be expanded in the Slepian basis as

h(θ, φ; k) =
L2∑

n=1

(h)ngn(θ, φ), (19)

where (h)n are the Slepian coefficients of the HRTF. (19) can

be written as a system of linear equations with

h
M = G

M
L h̃L (20)

where G
M
L is the M × L2-dimensional matrix containing

Slepian functions evaluated at the M sample locations

G
M
L ,




g1(θ1, φ1) g2(θ1, φ1) · · · gL2(θ1, φ1)

g1(θ2, φ2) g2(θ2, φ2) · · · gL2(θ2, φ2)
...

...
. . .

...
g1(θM , φM ) g2(θM , φM ) · · · gL2(θM , φM )


 , (21)

and h̃L is the vector of length L2 containing the Slepian

coefficients

h̃L =
[
(h)1, (h)2, . . . , (h)L2

]T
. (22)

In order to construct G
M
L , the Slepian functions must be

calculated and then evaluated at the M sample locations.

For the case where HRTF measurements are not available

over the south polar cap region of the sphere, the region

of concentration R is the part of the sphere where θ < θc,

where θc is the maximum co-latitude that measurements can

be obtained at; typically θc = 0.8π radians that is R , {0 ≤
θ ≤ θc, 0 ≤ φ < 2π} ⊂ S

2. We find the Slepian functions for

the region R and for band-limit L by solving the eigenfunction

equation (6)2. Finally, the Slepian coefficients can be found by

inverting G
M
L , from which the HRTF can be reconstructed by

expansion in the Slepian basis.

We summarise the proposed reconstruction method :

2We use matlab code written by Simons et al. available at
https://zenodo.org/record/15704#.VZEHJfmqqko.



1) Obtain M measurements of the HRTF on the sphere and

store these in the vector hM .

2) Calculate Slepian functions gn(θ, φ) for the region R and

the band-limit L for the HRTF wavenumber (frequency)

being analysed.

3) Create the matrix G
M
L (21) by evaluating gn(θ, φ) at the

M sample locations.

4) Calculate the HRTF coefficients in the Slepian basis (h)n
by solving the system of linear equations (20).

5) From (h)n, the HRTF h(θ, φ; k) can be reconstructed

over the whole sphere by expansion in the Slepian basis

using (19).

A. Sampling Scheme

Here we discuss the location of the M measurements; the

system of linear equations (20) can be solved accurately pro-

vided that the number of samples is M ≥ L2 and G
M
L is well-

conditioned. It is desirable that the number of measurements

taken be as small as possible in order to reduce the time and

cost of acquiring the samples [7]; we therefore tested some

of the existing sampling schemes on the sphere, that permit

samples not being taken over θ > θc and only require L2

samples, for reconstruction of the HRTF in both the spherical

harmonic and Slepian bases. The reconstruction accuracy was

better using the Slepian basis for all schemes and the highest

accuracy was obtained, for both the Slepian and SH basis,

using the scheme recently proposed in [17]. The sampling

scheme [17] is designed to minimise the condition number of

matrices composed of sampled spherical harmonics. Designing

a sampling scheme which minimises the condition number of

a matrix composed of sampled Slepian function is an open

problem and should improve the reconstruction accuracy using

the Slepian basis further.

The HRTF sampling scheme recently proposed in [17]

denoted by S(L), is composed of L iso-latitude rings of

samples with 2i+1 samples in each ring, where i ∈ [0, L−1] is

the ring index. Rings of samples are then arranged in the region

R so that the condition number of the matrix to be inverted

in the calculation of the spherical harmonic coefficients is as

small as possible. An example of this scheme for a band-limit

of L = 8 is shown in Fig. 1.

IV. EVALUATION OF PROPOSED RECONSTRUCTION

METHOD

Here we evaluate the accuracy of the proposed method pre-

sented in Section III of using the Slepian basis, rather than the

spherical harmonic basis, for the reconstruction of the HRTF

on the sphere, with measurements obtained using the sampling

scheme S(L) with R , {0 ≤ θ ≤ θc, 0 ≤ φ < 2π}. First

we perform a numerical experiment on randomly generated

data to determine the reconstruction accuracy of both bases at

sample locations. Then we use a synthetic HRTF model as a

ground truth to compare the reconstruction accuracy over the

whole sphere for noise free measurements and measurements

corrupted by noise. We use the spherical head model [18]

to obtain synthetic HRTF data with and without noise added

(a) (b)

Fig. 1: Sampling arrangement proposed in [17] for measuring

a signal on the sphere band-limited at L = 8 over the region

θ ≤ θc, θc = 0.8π a) north pole view and b) south pole view.

with the following parameters: head radius a = 0.09 m with

measurements taken over a sphere at a distance of r = 1
m from the head. This model also requires a threshold level

at which the spherical Hankel functions are calculated to be

specified; we set the threshold at 10−15 (machine precision).

A. Analysis of Reconstruction at Sample Locations

We first compare the reconstruction accuracy obtained using

the Slepian and spherical harmonic bases on a randomly

generated band-limited signal. The purpose of this experiment

is to compare the reconstruction accuracy when there is no

truncation error present (although the HRTF is assumed to be

band-limited there is actually a small amount of energy present

at higher frequencies [5], [17]).

We carry out the following experiment for band-limits in

the range 8 ≤ L ≤ 64: a complex valued band-limited test

signal fT ∈ HL with real and imaginary parts randomly

chosen from a uniform distribution on the interval [−1, 1] is

generated over S(L). The signal is then reconstructed in the

Slepian basis, adopting the method described in Section III, or

in the spherical harmonic basis, as described in Section II-C, to

obtain the reconstructed signal fR on S(L). The maximum re-

construction error Emax and mean reconstruction error Emean

taken over the sample locations S(L) are defined as

Emax , max |fT(θ, φ)− fR(θ, φ)|, (23)

Emean ,
1

L2

∑

(θ,φ)

|fT(θ, φ)− fR(θ, φ)|. (24)

We repeat this experiment 10 times and calculate the average

values for the maximum and mean error between the original

and reconstructed signal.

Fig. 2 shows the maximum and mean reconstruction error,

Emax and Emean, obtained using the Slepian and spherical

harmonic bases. The reconstruction errors Emax and Emean

in the Slepian basis is much smaller than in the spherical

harmonic basis for all band-limits 8 ≤ L ≤ 64. Reconstruction

of fT in the Slepian basis is up to 11 orders of magnitude more

accurate than in the spherical harmonic basis; at band-limit

L = 48, (corresponding to the maximum audible frequency of

f=20 kHz) the Slepian basis has Emean on the order of 10−14,
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Fig. 2: Reconstruction error at sample locations: plots of the

maximum error Emax and the mean error Emean, respectively

given in (23) and (24), obtained using the Slepian and spherical

harmonic (SH) basis for band-limits 8 ≤ L ≤ 64.

while Emean is on the order of 10−3 for the spherical harmonic

basis. The difference in reconstruction error is related to the

spherical harmonics not being a natural basis for the region R,

whereas the Slepian functions are designed based on R and

are orthogonal over R.

B. HRTF Reconstruction Analysis

In order to evaluate the numerical accuracy of the proposed

scheme in the reconstruction of the HRTF over the whole

sphere, not just at locations where measurements have been

obtained, we conduct the following experiment. For a given

frequency f (corresponding to wavenumber k), synthetic mea-

surements of the HRTF h(θ, φ; k) are obtained from the spheri-

cal head model [18] over S(L). The HRTF is the reconstructed

over a high resolution equiangular grid (consisting of 197192

points) in the Slepian (Section III) and spherical harmonic

(Section II-C) bases . For both the HRTF signal reconstructed

using the Slepian basis and the HRTF reconstructed using the

spherical harmonic basis, we compute the error ER(θ, φ; k)
between the reconstructed HRTF hR(θ, φ; k) and the analytical

value of the HRTF hA(θ, φ; k) obtained from the spherical

head model, given by

ER(θ, φ; k) , |hA(θ, φ; k)− hR(θ, φ; k)|. (25)

When this experiment is performed on synthetic HRTF data

with band-limit L(k) calculated using the formula (14); the

same reconstruction error is obtained using the Slepian or

spherical harmonic basis. It was shown in [17] that there

is significant energy in the spherical head model HRTF for

spherical harmonic degrees above the band-limit given by this

formula. Increasing the band-limit of the HRTF reduces the

truncation error, allowing for a difference in the reconstruction

error ER(θ, φ; k) to be observed between the two bases.

The reconstruction error ER(θ, φ; k) for an audible fre-

quency of f = 5 kHz and band-limit L = 28 (as was used in

(a)

(b)

Fig. 3: Reconstruction error over the whole sphere:

ER(θ, φ; k), given by (25), of the HRTF on the sphere at f = 5
kHz using a band-limit of L = 28 for the a) Slepian and b)

spherical harmonics basis.

[17]) is plotted in Fig. 3(a) for the Slepian basis and Fig. 3(b)

for the spherical harmonic basis. ER(θ, φ; k) is significantly

smaller at all locations on the sphere, both inside and outside

of the sampled region R, for hR(θ, φ; k) reconstructed in the

Slepian basis compared with reconstruction in the spherical

harmonic basis. The error ER(θ, φ; k) is also plotted for of

f = 15 kHz and L = 47 in Fig. 4(a) for the Slepian basis

and Fig. 4(b) for the spherical harmonic basis. ER(θ, φ; k) is

significantly smaller in the region R for the Slepian basis and

similar in R for reconstruction in both basis.

C. Noisy HRTF Reconstruction Analysis

It is important to evaluate if the Slepian basis allows for

robust reconstruction in the presence of noise; here we perform

preliminary investigations into using the Slepian basis for

reconstruction when additive noise is present. In geophysics,

the Slepian basis is truncated as a means of filtering the noise

[10]; we apply this method to HRTF measurements.

To study the effect of noise, we carry out a following



(a)

(b)

Fig. 4: Reconstruction error over the whole sphere:

ER(θ, φ; k), given by (25), of the HRTF on the sphere at

f = 15 kHz using a band-limit of L = 47 for the a) Slepian

and b) spherical harmonics basis.

experiment: samples of the HRTF h(θ, φ; k), given by the

spherical head model and taken over the audible frequency

range with complex Gaussian noise of a constant variance

added to each measurement, are obtained using S(L). The

samples containing noise hN (θ, φ; k) are then used recon-

struct the HRTF, in both the Slepian and spherical harmonic

bases, on a high resolution equiangular grid (197192 points)

hR(θ, φ; k). The reconstruction error ER(θ, φ; k) given in (25)

between the reconstructed HRTF hR(θ, φ; k) and the analytical

value of the HRTF (without noise) hA(θ, φ; k) obtained from

the spherical head model is then calculated for reconstruction

in both the Slepian and spherical harmonic basis.

We show results for a small amount of noise added to

measurements (with variance corresponding to a signal-to-

noise ration of 40 dB). Reconstruction in the Slepian and

spherical harmonics gives very similar results for ER(θ, φ; k).
We truncate the Slepian basis in order to reduce ER(θ, φ; k);
we present results with only a small degree of truncation (with

the 10 Slepian functions that are the least concentrated in R

(a)

(b)

Fig. 5: Reconstruction error in the presence of noise:

ER(θ, φ; k), given by (25), of the HRTF on the sphere at f = 5
kHz for band-limit L = 28 kHz a) spherical harmonic and b)

truncated Slepian basis.

removed). Choosing an optimal truncation degree based on

signal-to-noise ratio and comparing truncation of the Slepian

basis to regularised least-squares is considered future work.

Fig. 5 shows ER(θ, φ; k) for f = 5 kHz and L = 28 for the

a) spherical harmonic basis and b) truncated Slepian basis. In

Fig. 6 ER(θ, φ; k) is plotted for f = 15 kHz and L = 47
for the a) spherical harmonic basis and b) truncated Slepian

basis. ER(θ, φ; k) is slightly smaller inside of R and much

smaller in R for the truncated Slepian basis compared with

the spherical harmonic (and full Slepian basis) for both f = 5
kHz and f = 15 kHz. This is because the 10 least concentrated

Slepian functions in the region R contribute the least to h(θ, φ)
inside R and the contribute the most in R.

Our numerical analysis in this section shows better or

similar reconstruction performance obtained using the Slepian

basis for HRTF reconstruction, rather than the spherical har-

monic basis, over the whole sphere; at sample locations, in

the region R and in the polar cap R.



(a)

(b)

Fig. 6: Reconstruction error in the presence of noise:

ER(θ, φ; k), given by (25), of the HRTF on the sphere at

f = 15 kHz for band-limit L = 47 a) spherical harmonic

and b) truncated Slepian basis.

V. CONCLUSIONS

In this work, we have investigated the use of Slepian

functions for the reconstruction the HRTF on the sphere

when measurements are unavailable from the south polar cap,

rather than the traditionally used spherical harmonics. While

spherical harmonics are well suited to applications where data

is available over the whole sphere, they are not a natural basis

for modeling a region of the sphere. Slepian functions on

the other hand, are designed for the region and are not only

orthonormal over the whole sphere but orthogonal over the

region. We proposed a method of reconstructing the HRTF

using the Slepian basis. We demonstrated through numerical

experiments, on randomly generated data and synthetic HRTF

measurements, that reconstruction of the HRTF in the Slepian

basis is significantly more accurate at sample locations as well

as other locations on the sphere, both inside and outside the

region where measurements were obtained, than in the spher-

ical harmonic basis. We also briefly investigated truncation

of the Slepian basis when reconstruction was carried out on

noisy HRTF measurements, which we found decreased the

reconstruction error. Further investigation should be carried

out into finding an optimal truncation degree depending on

the signal-to-noise ratio and comparing the truncation in the

Slepian basis to regularised least-squares in the spherical har-

monic basis. From this investigation, we found that the Slepian

basis allows for more accurate reconstruction of the HRTF

than the spherical harmonic basis, though further investigation

into the open questions we have discussed is necessary.
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in Earth Sciences, F. Sansó and R. Rummel, Eds. Springer Berlin
Heidelberg, 1997, vol. 65, pp. 559–568.

[13] R. A. Kennedy and P. Sadeghi, Hilbert Space Methods in Signal

Processing. Cambridge, UK: Cambridge University Press, Mar. 2013.
[14] J. J. Sakurai, Modern Quantum Mechanics, 2nd ed. Reading, MA:

Addison Wesley Publishing Company, Inc., 1994.
[15] F. J. Simons, F. A. Dahlen, and M. A. Wieczorek, “Spatiospectral

concentration on a sphere,” SIAM Review, vol. 48, no. 3, pp. 504–536,
2006.

[16] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, fourier
analysis and uncertainty i,” Bell Syst. Tech. J., vol. 40, no. 1, pp. 43–63,
1961.

[17] A. P. Bates, Z. Khalid, and R. A. Kennedy, “Novel sampling scheme
on the sphere for head-related transfer function measurements,” IEEE

Trans. Acoust., Lang., Signal Process., vol. 23, no. 6, pp. 1068–1082,
Jun. 2015.

[18] R. O. Duda and W. L. Martens, “Range dependence of the response
of a spherical head model,” J. Acoust. Soc. Am., vol. 104, no. 5, pp.
3048–3058, Nov. 1998.


