Response prediction using collaborative filtering with hierarchies and side-information

Aditya Krishna Menon¹ Krishna-Prasad Chitrapura² Sachin Garg² Deepak Agarwal³ Nagaraj Kota²

¹UC San Diego
²Yahoo! Labs Bangalore
³Yahoo! Research Santa Clara

KDD ’11, August 22, 2011
Outline

1. Background: response prediction
2. A latent feature approach to response prediction
3. Combining latent and explicit features
4. Exploiting hierarchical information
5. Experimental results
The response prediction problem

- Basic workflow in computational advertising:
 Content publisher (e.g. Yahoo!) receives bids from advertisers:

- Amount paid on some action e.g. ad is clicked, conversion, ...
The response prediction problem

- Basic workflow in computational advertising:
 - Compute expected revenue using clickthrough rate (CTR):
 \[\text{Y} \times \Pr[\text{Click|Display}] \times \Pr[\text{Click|Display}] \times \Pr[\text{Click|Display}] \]

- Assuming pay-per-click model
The response prediction problem

- **Basic workflow in computational advertising:**
 - Ads are sort by expected revenue, best ad is chosen

\[
Y \propto \Pr[\text{Click}|\text{Display}] \times \Pr[\text{Click}|\text{Display}] \times \Pr[\text{Click}|\text{Display}]
\]

- **Response prediction:** Estimate the CTR for each candidate ad
Approaches to estimating the CTR

- Maximum likelihood estimate (MLE) is straightforward:

 \[
 \hat{Pr}[\text{Click}|\text{Display}; (\text{Page}, \text{Ad})] = \frac{\text{# of clicks in historical data}}{\text{# of displays in historical data}}
 \]

 ▶ Few displays → too noisy, not displayed → undefined
 ▶ Can apply statistical smoothing [Agarwal et al., 2009]

- Logistic regression on page and ad features [Richardson et al., 2007]

- LMMH [Agarwal et al., 2010], a log-linear model with hierarchical corrections, is state-of-the-art
This work

- We take a collaborative filtering approach to response prediction
 - “Recommending” ads to pages based on past history
 - Learns latent features for pages and ads
- Key ingredient is exploiting hierarchical structure
 - Ties together pages and ads in latent space
 - Overcomes extreme sparsity of datasets
- Experimental results demonstrate state-of-the-art performance
Outline

1. Background: response prediction
2. A latent feature approach to response prediction
3. Combining latent and explicit features
4. Exploiting hierarchical information
5. Experimental results
Response prediction as matrix completion

- Response prediction has a natural interpretation as **matrix completion**:

<table>
<thead>
<tr>
<th></th>
<th>pepsi</th>
<th>Nike</th>
<th>SONY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.5</td>
<td>1.0</td>
<td>?</td>
</tr>
<tr>
<td>CNN</td>
<td>?</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>f</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Cells are historical CTRs of ads on pages; many cells “missing”
- Wish to **fill in** missing entries, but also **smoothen** existing ones
Connection to movie recommendation

This is reminiscent of the movie recommendation problem:

- Cells are ratings of movies by users; many cells “missing”
- Very active research area following Netflix prize
Recommending movies with latent features

- A popular approach is to learn latent features from the data:
 - User i represented by $\alpha_i \in \mathbb{R}^k$, movie j by $\beta_j \in \mathbb{R}^k$
 - Ratings modelled as (user, movie) affinity in this latent space

- For a matrix X with observed cells \mathcal{O}, we optimize
 \[
 \min_{\alpha, \beta} \sum_{(i,j) \in \mathcal{O}} \ell(X_{ij}, \alpha_i^T \beta_j) + \Omega(\alpha, \beta).
 \]
 - Loss $\ell = \text{square-loss, hinge-loss, ...}$
 - Regularizer $\Omega = \ell_2$ penalization typically
Why try latent features for response prediction?

- State-of-the-art method for movie recommendation
 - Reason to think it can be successful for response prediction also
- Data is allowed to “speak for itself”
 - Historical information mined to determine influential factors
- Flexible, analogues to supervised learning
 - Easy to incorporate explicit features, domain knowledge
Modelling raw CTR matrix with latent features is not sensible
 - Ignores the *confidence* in the individual cells

Instead, split each cell into # of displays and # of clicks:

<table>
<thead>
<tr>
<th></th>
<th>pepsi</th>
<th></th>
<th>SONY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.5</td>
<td>1.0</td>
<td>?</td>
</tr>
<tr>
<td>CNN</td>
<td>?</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>f</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Response prediction via latent features - I

- Modelling raw CTR matrix with latent features is not sensible
 - Ignores the confidence in the individual cells
- Instead, split each cell into # of displays and # of clicks:
 - Click = +ve example, non-click = -ve example
 - Now focus on modelling entries in each cell
Important to learn meaningful probabilities
 ▶ Discrimination of click versus not-click is insufficient

For page p and ad a, we may use a sigmoidal model for the individual CTRs:

$$
\hat{P}_{pa} = \Pr[\text{Click}|\text{Display}; (p, a)] = \frac{\exp(\alpha_p^T \beta_a)}{1 + \exp(\alpha_p^T \beta_a)}
$$

▶ $\alpha_p, \beta_a \in \mathbb{R}^k$ are the latent feature vectors for pages and ads
▶ Corresponds to a logistic loss function [Agarwal and Chen, 2009, Menon and Elkan, 2010, Yang et al., 2011]
Confidence weighted objective

- We use the sigmoidal model on each cell entry
 - Treats them as independent training examples
- Now maximize conditional log-likelihood:

$$\min_{\alpha, \beta} \sum_{(p, a) \in \mathcal{O}} C_{pa} \log \hat{P}_{pa}(\alpha, \beta) + (D_{pa} - C_{pa}) \log(1 - \hat{P}_{pa}(\alpha, \beta)) +$$

$$\frac{\lambda_\alpha}{2} \|\alpha\|_F^2 + \frac{\lambda_\beta}{2} \|\beta\|_F^2$$

where $C = \#$ of clicks, $D = \#$ of displays

- Terms in objective are confidence weighted
- Estimates will be meaningful probabilities
Outline

1. Background: response prediction
2. A latent feature approach to response prediction
3. Combining latent and explicit features
4. Exploiting hierarchical information
5. Experimental results
Incorporating explicit features

- We’d like latent features to complement, rather than replace, explicit features
 - For response prediction, explicit features quite predictive
 - Makes sense to use this information
- Incorporate features \(s_{pa} \in \mathbb{R}^d \) for the (page, ad) pair \((p, a)\) via
 \[
 \hat{P}_{pa} = \sigma(w^T s_{pa} + \alpha_p^T \beta_a)
 = \sigma([w; 1]^T [s_{pa}; \alpha_p^T \beta_a])
 \]
- Alternating optimization of \((\alpha, \beta)\) and \(w\) works well
 - Predictions from factorization \(\rightarrow\) additional features into logistic regression
An issue of confidence

- **Rewrite objective as**

 \[
 \min_{\alpha, \beta, w} - \sum_{(p,a) \in O} D_{pa} \left(M_{pa} \log \hat{P}_{pa}(\alpha, \beta, w) + (1 - M_{pa}) \log(1 - \hat{P}_{pa}(\alpha, \beta, w)) \right)
 \]

 \[
 \frac{\lambda_\alpha}{2} \|\alpha\|_F^2 + \frac{\lambda_\beta}{2} \|\beta\|_F^2 + \frac{\lambda_w}{2} \|w\|_2^2
 \]

 where \(M_{pa} := C_{pa}/D_{pa} \) is the MLE for the CTR

- **Issue**: \(M_{pa} \) is noisy \(\rightarrow \) confidence weighting is inaccurate
 - Ideally want to use true probability \(P_{pa} \) itself
An iterative heuristic

- After learning model, replace M_{pa} with model prediction, and re-learn with new confidence weighting
 - Can iterate until convergence
- Can be used as part of latent/explicit feature interplay:

```
Confidence weighted factorization

Additional input features

Logistic regression

Updated confidences
```
Outline

1. Background: response prediction
2. A latent feature approach to response prediction
3. Combining latent and explicit features
4. Exploiting hierarchical information
5. Experimental results
Hierarchical structure to response prediction data

- Webpages and ads may be arranged into hierarchies:

 ![Hierarchical Structure Diagram]

 - Hierarchy encodes correlations in CTRs
 - e.g. Two ads by same advertiser \rightarrow similar CTRs
 - Highly structured form of side-information

 - Successfully used in previous work [Agarwal et al., 2010]
 - How to exploit this information in our model?
Intuition: “similar” webpages/ads should have similar latent vectors

Each node in the hierarchy is given its own latent vector

▶ We will **tie parameters** based on links in hierarchy
▶ Achieved in three simple steps
Principle 1: Hierarchical regularization

- Each node’s latent vector should equal its parent’s, in expectation:

 \[\alpha_p \sim \mathcal{N}(\alpha_{\text{Parent}(p)}, \sigma^2 I) \]

- With a MAP estimate of the parameters, this corresponds to the regularizer

 \[\Omega(\alpha) = \sum_{p, p'} S_{pp'} \| \alpha_p - \alpha_{p'} \|^2_2 \]

where \(S_{pp'} \) is a parent indicator matrix

- Latent vectors constrained to be similar to parents
- Induces correlation amongst siblings in hierarchy
Principle 2: Agglomerative fitting

- Can create meaningful priors by making parent nodes’ vectors predictive of data:
 - Associate with each node clicks/views that are the sums of its children’s clicks/views
 - Then consider an augmented matrix of all publisher and ad nodes, with appropriate clicks and views
Principle 2: Agglomerative fitting

- We treat the aggregated data as just another response prediction dataset
 - Learn latent features for parent nodes on this data
 - Estimates will be more reliable than those of children
- Once estimated, these vectors serve as prior in hierarchical regularizer
 - Children’s vectors are shrunk towards “agglomerated vector”
Principle 3: Residual fitting

- Augment prediction to include **bias terms** for nodes along the path from root to leaf:

\[
\hat{P}_{pa} = \sigma(\alpha_p^T \beta_a + \alpha_p^T \beta_{\text{Parent}(a)} + \alpha_{\text{Parent}(p)}^T \beta_{\text{Parent}(a)} + \ldots)
\]

- Treats the hierarchy as a series of **categorical features**

- Can be viewed as decomposition of the latent vectors:

\[
\tilde{\alpha}_p = \sum_{u \in \text{Path}(p)} \alpha_u
\]

\[
\tilde{\beta}_a = \sum_{v \in \text{Path}(a)} \beta_v
\]
The final model

Our final model has the following ingredients:

- Confidence weighting of the objective
- Logistic loss to estimate meaningful probabilities
- Incorporation of explicit features
 - Iterative heuristic for improving confidence weighting
- Tying together of latent features via hierarchy

Optimization can be done in alternating manner

- Fix α and optimize for β, and vice-versa
- Optimization for each β_j can be done in parallel
 - Individual optimization via stochastic gradient descent
Outline

1. Background: response prediction
2. A latent feature approach to response prediction
3. Combining latent and explicit features
4. Exploiting hierarchical information
5. Experimental results
Experimental setup

- We compare the latent feature approach to three methods:
 - Generalized linear model (GLM) on explicit features
 - Logistic regression with cross-features [Richardson et al., 2007]
 - Hierarchical log-linear model (LMMH) [Agarwal et al., 2010]

- Comparison is on three Yahoo! ad datasets:
 - Click: (90B, 3B) (train, test) pairs
 - Post-view conversions (PVC): (7B, 250M) (train, test) pairs
 - Post-click conversions (PCC): (500M, 20M) (train, test) pairs

- Report % improvement in Bernoulli log-likelihood over GLM
 - Measure of quality of probabilities
Results on Click

- Learning predictive latent features challenging due to sparsity
 - Using biases from hierarchy improves performance significantly
- With hierarchical tying, outperforms existing methods
- With explicit features, our model has clear lift over LMMH
 - Value in combining complementary information in the two

\[\text{CWF} = \text{Confidence weighted factorization}\]

\[\text{Hybrid} = \text{CWF} + \text{All hierarchical components}\]

\[\text{Hybrid+LogReg} = \text{With explicit features}\]

\[\text{Hybrid+LogReg++} = \text{With iterative heuristic}\]
Results on PVC and PCC

- Our combined model gives the best results on these datasets also
- Explicit features again important for best performance
 - Latent features alone are only competitive with LMMH
- On PCC, iterative heuristic helps outperform LMMH
 - Reliability of confidence weighting is important
Value of iterative confidence reweighting

- Trick of iteratively recomputing confidence-weighting by model prediction gives useful performance boost
 - Generally, log-likelihood improves after each such iteration
Latent and explicit features

- Ideally, predictions should be \sim MLE when $\#$ of displays is large
- With latent features, model converges to MLE faster
 - Variance of logistic regression model, which uses explicit features only, is significantly reduced

(a) Explicit features only

(b) Latent + explicit features
Conclusions

- Response prediction can be approached from a collaborative filtering perspective
- Learning latent features for pages and ads gives state-of-the-art performance
- Some adaptation required for success in this domain
 - Had to use confidence weighting scheme
 - Iteratively refined the confidences
 - Incorporating explicit features gives important boost to lifts
 - Hierarchical information helps overcome data sparsity
References I

