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Exploiting hierarchical information

A collaborative filtering approach

Conclusions

Background: response prediction

In computational advertising, a content publisher (e.g. CNN, AOL, et cetera) is approached by several advertisers who 
wish for their ad(s) to be displayed. The advertisers bid for a display on the publisher's page by offering some amount of 
money if the publisher displays their ad, and some action is performed. We'll assume here that the action is the ad being 
clicked by a user. The publisher decides which ads to show by conducting an auction based on expected revenue. This 
requires finding the clickthrough rate (CTR) of each ad, which is the probability of the ad being clicked.

Response prediction is the problem of estimating this clickthrough rate for an ad when shown on a publisher page. The 
straightforward approach to doing so is using the maximum likelihood estimate, viz the empirical probability of an ad being 
clicked based on historical data. This is generally very noisy, since most ads are displayed only a few (or zero) times on a 
given page. An alternative is to use classical supervised learning techniques, such as logistic regression, on explicit 
features for publishers and ads.

This work asks the question: can we use ideas from collaborative filtering, a technique of recommending items (e.g. 
movies, books) to users, to aid in response prediction? The connection between the two problems is evident: pages are 
"users", ads are "items", and a page's "rating" for an ad is the ad's clickthrough rate:
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Experimental results

Response prediction can be attacked using ideas from collaborative filtering. However, the extreme sparsity of data requires 
domain-specific adapation. By exploiting hierarchical information about publishers and advertisements, and incorporating 
explicit information about the same, we show how latent features can give state-of-the-art results for response prediction on 
real world ad datasets.

We ran experiments on three real-world Yahoo! ad datasets: PVC (post-view click), PCC (post-click conversion), and Click 
(ad-click). We compared to logistic regression using cross-products of explicit features, and the state-of-the-art LMMH 
method. There are ~(90B, 3B) (train, test) records for Click, ~(7B, 250M) for PVC, and ~(500M, 20M) for PCC. The three 
datasets also include interaction features for the user involved in each interaction (e.g.\ the age and gender of the user that 
clicks on an ad, how recently the ad was shown to the user, et cetera).

 

Second, we are interested in meaningful probabilities of ratings, and not just a good ranking. So, we need to directly 
model the probability of ad j being clicked when displayed on page i. Following from the above, we have a table where 
each cell comprises multiple positive and negative examples. We will then model                              

We will specifically look to import a popular approach to collaborative filtering based on learning latent features for users 
and movies. The basic idea is that users and movies live in some latent space, and that ratings measure affinity in this 
space. If the set of observed ratings is      , and          is the rating user i gives movie j, then we learn latent features     ,       
via the regularized objective

With this basic model in place, we now study two important extensions to the factorization model in turn: how to 
incorporate side-information, and how to incorporate hierarchies. The resulting model will be shown to have superior 
performance to both LMMH and the feature-based methods.

We study log-log plots of the ratio of predictions of our final model and the logistic regression model to the test set CTR, 
ordered by increasing number of views on the training set. There are two striking characteristics in the plots: first, our model 
has significantly less variance than the logistic regression model, which shows that its factorization component captures 
most of the structure in the data through latent features. Second, our model converges much quicker to the true CTR than 
logistic regression. This shows that our model can successfully smoothen at a much greater degree of sparsity in the 
training data, corresponding to dyads with a few number of views.

Hierarchical regularization: Our first idea is to let every node in the hierarchy possess its own latent vector, and use this 
to construct priors that constrain the latent vectors. We specify the prior for each latent vector so that it behaves like its 
parent node's in expectation. The natural choice is to modify the mean of the Gaussian prior used in       regularization 
from zero to that of the parent vector: 

Agglomerative fitting: Above, the latent vectors for non-leaf nodes only appear in the regularizer, and hence are only 
indirectly affected by the click and view data. To do this, we use the hierarchy to agglomerate the click/view data across 
many pages and ads, and try to predict this data using the appropriate latent vectors. For example, for a (page, campaign) 
pair (i, c), we agglomerate the clicks/views for all children of c when shown on page i. We model the resulting data using the 
vectors       and        . This will learn a sensible prior for the children's latent vectors.

Residual fitting: We modify this prediction itself based on the hierarchy. Specifically, for the pair (i, j), we use the prediction 
zzzzzzzzzzz , where      ,      modify the original vectors      ,      based on the hierarchy. A simple choice is the additive model

and similarly for      . Here, the fine-grained latent features for each page are modelled as corrections over coarser latent 
features of the ancestor nodes, which may be thought of as bias terms.
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Response prediction using collaborative filtering with hierarchies and side-information

where           consists of the explicit features for the cell (i, j). It is clear that our predictions will now be influenced by the 
side-information, with w measuring the relative importance of the explicit features over the latent features. To train this 
augmented model, note that it may be rewritten as:                                            

A key challenge in response prediction is the extreme sparsity of data: most ads are not shown on a particular 
publisher page, and even if they are, they are very rarely clicked. To get reliable estimates of clickthrough rates, we 
need to exploit special structure in the problem. It turns out that we often have available categorical information about 
pages and ads that construct a hierarchy over them. For example, we can think of ads as being clustered by their 
advertising campaign, campaigns as being clustered by their advertiser, and so on. We assume that this hierarchy 
induces correlations amongst the clickthrough rates, and wish to use this to learn a better model.

The question then is how to use this information to improve our model. We use three simple procedures:

Given the above model, a simple iterative procedure can be applied to further improve performance. Let us rewrite the 
confidence weighted factorization model as

If a cell has a small number of views, then              will be noisy. This means that our confidence weighting is itself noisy. 
Ideally, we would like to weight each entry by the true click probability; but of course, if we knew this, our learning would 
be complete. Yet this motivates the following EM-style procedure: we take the predictions from our factorization model, 
and use these in place of              in the above equation. We now re-learn our factorization model using these new 
confidences. We can iterate by feeding the results of the newly learned factorization into a logistic regression model, and 
use the resulting estimates as a fresh set of confidence weights.

The reduction to collaborative filtering is not unconditional. First, the 
"ratings" here have a notion of confidence: we are more confident 
about the CTR of an ad that has been clicked 50 times from 100 
displays than one clicked 1 time from 2 displays. To handle this, we will 
think of each cell as comprising a number of positive and negative 
ratings, corresponding to the clicks and views-but-not-clicks 
respectively. We will now pay more attention to cells with a large 
amount of historical data.

We learn MAP estimates for all latent vectors in the hierarchy, which corresponds to modifying the regularization term so 
that every latent vector is encouraged to be close to that of its parent node:

To see why the regularizer helps, suppose there are two siblings u,v with a common parent, and that node u has only a few 
views while node v has many views. For v, the dominating term in the objective will be the loss function, so its parameters 
will be optimized to be predictive for the CTR. For u, the regularizer will dominate and push its latent vector to be similar to 
the parent node. In turn, the parent is encouraged to be close to its children, and so u will ``borrow strength'' from v.

We find that the basic latent feature method underperforms due to the extreme sparsity of the datasets. Adding side-
information manages to improve performance, but LMMH still manages to outperform. However, finally combining with 
hierarchical information yields the best results on all datasets. Further, studying the lifts on the Click dataset after each 
application of both the factorization and logistic regression models, we note that we almost always improve the log-
likelihood at each iteration.

We trained our models using stochastic gradient descent (SGD), and used the MapReduce code from the Apache Mahout 
project to scale to the challenging sizes of the datasets. We parallelized the optimization by fixing the page latent features 
zzzz and then optimizing for the advertisement latent features       using SGD. This optimization of each individual        can 
be done in parallel.

Pages and ads possess explicit features other than just their unique identifiers, such as the content of the ad, its 
placement on the page, et cetera. In collaborative filtering, such features are known as side-information. To incorporate 
this information into the factorization model, we use a linear combination of the latent features and explicit features:

Incorporating side-information

For response prediction, the latent feature approach is very different to both maximum-likelihood estimation and 
prediction based on explicit features. A distinct advantage over the maximum-likelihood approach is that we can make 
sensible predictions even for cells that have limited historical data. The reason is that the latent vectors are estimated 
based on behaviour across all pages and ads. An advantage over logistic regression, say, is that we attempt to let the 
data "speak for itself" in terms of determining what characteristics of pages and/or ads influence clickthrough rates.

for some loss function     , such as square-loss, and regularizer       , such as                                       . Intuitively, we can 
think of the elements of          as being some latent characteristics of the user i, e.g. whether she likes indie-style movies, 
whether she likes movies with rich orchestration. The corresponding elements of        measure how strongly these 
features are represented in the movie j.

which is a logistic regression model where the factorization estimates               are treated as additional input features. This 
suggests a simple learning strategy: first, train the standard factorization model. Then, feed the features
zzzzzzzzzzzzzzzzzzz to a standard logistic regression model. The resulting solution predicts the click probability using 
both latent explicit information. 
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where            denotes the standard sigmoid function, which can be thought of as a matrix analogue to logistic regression. 
The vectors        ,       represent the latent features for page i and ad j respectively. We can now minimize negative log-
likelihood on our data under this model. Let         denote the number of clicks that ad j receives when shown on page i, 
and let        denote the number of views. We can learn latent features     ,      by minimizing:


