Motivation: text processing

In Programming by Example, a user describes a task by providing an example of its operation. We'll focus on text processing tasks, such as:

\[
\begin{align*}
X & \quad y \\
A \text{ Hopkins} & \quad A \text{ Pacino (1)} \\
A \text{ Pacino} & \quad A \text{ Pacino (1)} \\
T \text{ Hanks} & \quad T \text{ Hanks (2)} \\
T \text{ Hanks} & \quad N \text{ Cage (1)}
\end{align*}
\]

which is meant to express the string transformation (or program)

\[
f(x) = \text{dedup(} \text{concat}(x, \ "\), \ \text{concat}(\ (\ (\ (\ "\), \ \text{count}(x, x), \)\)))\]

Q: Given \((x, y)\), can we learn \(f\)?

A: Given a library of subroutines – e.g. dedup, concat – we could search over compositions of them.

Catch:
- Naïve search is not scalable!
- How to rank all consistent \(f\)s?

Our approach

We propose an ML framework to speed up search \(f\) by:

- Representing a program as the derivation of some PCFG
- Defining clues that link features of \((x, y)\) to likely PCFG rules
- Learning each clue’s reliability, thus determining the PCFG probabilities

In the above example, the most likely grammar probabilities could be e.g.:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST-split(x,DELIM)</td>
<td>0.3</td>
</tr>
<tr>
<td>LIST-concat(CAT,CAT,CAT)</td>
<td>0.3</td>
</tr>
<tr>
<td>LIST-dedup(LIST)</td>
<td>0.2</td>
</tr>
<tr>
<td>LIST-count(LIST,LIST)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

With these probabilities in hand, we search over programs in order of how their grammar probability i.e. the most probable consistent \(f\) is chosen.

PCFG representation

We define a PCFG where each rule corresponds to a particular subroutine. A program is a trace under the PCFG, viz. composition of rules (i.e. subroutines). The probability of a program for a given input \(z = (x, y)\) thus depends on the probabilities of its constituent rules:

\[
Pr[f|z; \theta] = \prod_{r \in R_f} Pr[r|z; \theta]
\]

Clues

Clues connect features of the input to the grammar rules they suggest may be useful. This injects domain knowledge into the problem.

Formally, a clue is a function that takes as input the example \((x, y)\), and returns a subset of grammar rules.

Probability model

We use a log-linear model for the PCFG probabilities. The model posits that the probability of a grammar rule is proportional to the reliability of all clues that suggest that rule.

\[
Pr[r|z; \theta] \propto \exp \left(\sum_{i: r \in c_i(z)} \theta_i \right)
\]

The parameters \(\theta\) are estimated by maximizing the log-likelihood of the training data.

System usage

Once the system is trained, we may apply it to a new input \((x, y)\) as follows:

1. Evaluate each clue on \((x, y)\).
2. Using the probability model, assign probabilities to the grammar rules.
3. Enumerate over programs in decreasing order of probability, and return the first consistent with \((x, y)\).

Experimental setup

We developed a prototype of our learning approach, based on a library of around 100 base subroutines and around 100 clues.

We evaluated the learning method on a corpus of 280 examples, largely based on queries from Excel help forums. Sample cases:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Ant\t1A St. 900113</td>
<td>June the 28th 2010</td>
</tr>
<tr>
<td>28/6/2010</td>
<td>case 612: return Australia;</td>
</tr>
<tr>
<td>612 Australia</td>
<td></td>
</tr>
</tbody>
</table>

Experimental results

Learning dramatically lowers the error rate and inference time compared to naïve search.

Further, learning is able to learn more nested function compositions than the naïve search.