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The link prediction problem

Link prediction via matrix factorization

As mentioned earlier, a key challenge in link prediction is the class 
imbalance problem: the majority of node-pairs do not link with each other. As 
a result, area under the ROC curve (AUC) is a standard performance 
measure, as it is not influenced by relative size of classes. It measures the 
number of concordant pairs of +'ve and -'ve examples under a scoring rule f:
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In practice, only a fraction of a single SGD epoch is needed for convergence.

Given a graph G that is partially observed -- 
meaning each pair of nodes is either known to 
have an edge, known to have no edge, or not 
known to have an edge or not -- we wish to 
predict whether or not edges exist for the 
unknown status node pairs. Examples include 
predicting whether a pair of proteins interact,  
whether a pair of authors cite each others' 
papers, and whether a pair of countries will go 
to war with each other.

Link prediction can be cast as a dyadic 
prediction problem, as we predict some label 
(whether or not there is an edge) for a dyad or 
pair of objects (nodes in the graph). A similar 
problem is collaborative filtering, where a 
popular solution is to learn latent features from 
the data. We may use a similar approach for link 
prediction: mathematically, we optimize some 
loss     on the observed links      via

A latent feature approach

Classical models for link prediction are affinity scores such as Common-
Neighbours, Preferential-Attachment, the Katz measure, et cetera. These 
methods are unsupervised, in that they are based on fixed functions of the 
graph's topological information. Supervised methods have also been studied, 
with popular choices being learning a classifier that combines multiple affinity 
scores, and/or explicit features for nodes.

The de-facto mechanism to handle class imbalance is to undersample the 
data by throwing away some of the node pairs that do not link, which 
necessarily loses information.

Challenges for a link prediction method

There are three basic challenges for a link prediction method:

* Linking behaviour can be influenced by both the topological structure of the 
observed graph (embedded in the adjacency matrix), as well as measured 
characteristics of the nodes (presented in the form of explicit features). A 
model should use both types of information to maximize predictive accuracy.

* In many applications of link prediction, there are far fewer links than non-
links i.e. a class imbalance problem. For example, on a dataset of the US 
electric power grid, there is 1 link formed for every 2000 non-links.

* Real-world networks have the order of millions of nodes, so models should 
be highly scalable.

We finally compare using a 
standard regression loss to 
the ranking loss when 
learning latent features. We 
see that the ranking loss 
performs at least as good 
as the regression loss, 
offering improvements 
when the dataset is 
especially imbalanced, 
such as on the PowerGrid 
dataset.

Experimental results

Overcoming imbalance by AUC maximization

This idea applies equally well when learning latent features (further 
illustrating the flexibility of this approach). Instead of optimizing square- or 
log-loss, we can learn latent features that maximize the AUC:

Classifiers such as logistic regression and SVMs optimize convex 
approximations to the 0-1 error. The inadequacy of this metric for imbalanced 
problems explains their susceptibility to class imbalance. However, note that 
we can equally optimize a convex approximation to the AUC:

This can be optimized by SGD: for each update, we just pick a random pair 
of positive and negative examples. By optimizing the AUC directly, we can 
overcome the class imbalance issue.

Given node features               and edge features               , we may model:

Adding node and edge features

where L is a link function, such as                                     ,        is a latent 
feature for the ith node, and       is a bias term for the ith node. The       term 
is a regularizer to prevent overfitting.

This model can be trained using stochastic gradient descent (SGD), and so 
is highly scalable. It is also very expressive, capturing latent class methods as 
a special case, and empirically outperforming affinity scores like Common-
Neighbours by virtue of being supervised. However, it is limited in two ways: 
(i) it only exploits topological information, and (ii) it is not immune to the class 
imbalance issue. We see now how to fix these problems.

The above suffers from the propensity problem: ignoring the influence of latent 
and edge-features, we would get the same ranking over all nodes. A better 
alternative is to allow for interactions bewteen the node features, in a model 
known as bilinear regression [Gabriel, Biometrika '98]:

We can now learn latent features in addition to the weights on the explicit 
features. In practice, it may be necessary to factorize                      also, since 
otherwise we may need to learn too many parameters.

We ran experiments on six link prediction datasets, from a range of domains: 
computational biology (Prot-Prot and Metabolic), coauthorship (NIPS and 
Condmat), political science (Conflict) and general engineering (PowerGrid).

We next evaluate the relative 
benefits of latent and explicit 
features. We use unilinear 
and bilinear regression on the 
explicit features, and the 
exact link propagation 
method (ELP) of [Kashima et 
al, SDM '09]. On several 
datasets, explicit features are 
more predictive than latent 
features alone. The combined 
latent+explicit feature model 
achieves the best of both 
worlds. We note also that 
bilinear regression offers 
significant improvement over 
the unilinear variant.
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Experimental setup

All datasets except Condmat and PowerGrid possess some form of side-
information. We report AUC as our performance metric.

We first compare supervised 
latent features to 
unsupervised affinity scores. 
We use the Adamic-Adar, 
Preferential-Attachment, 
and the Katz measure. Our 
latent feature approach 
outperforms these methods 
(Fig 1), and especially offers 
improvement when only a 
few links are observed in the 
training data (Fig 2).
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Figure 1: Latent features outperform popular unsupervised scores.

Figure 2: Unsupervised scores underperform with fewer training dyads.

Figure 3: Combining latent and explicit features can improve performance.

Figure 4: Ranking loss can significantly improve performance when data is 
very imbalanced.

This models the affinity for a pair of nodes as a linear combination of their 
affinity in latent and explicit feature space. We can equivalently think of the 
latent features as providing a residual fit on the scores for a supervised 
learning technique such as logistic regression on the explicit features, 
corresponding to a sigmoidal link function.


