
Aditya Krishna Menon, Charles Elkan; University of California San Diego

The link prediction problem

Link prediction via matrix factorization

As mentioned earlier, a key challenge in link prediction is the class
imbalance problem: the majority of node-pairs do not link with each other. As
a result, area under the ROC curve (AUC) is a standard performance
measure, as it is not influenced by relative size of classes. It measures the
number of concordant pairs of +'ve and -'ve examples under a scoring rule f:

?

?

?

?

In practice, only a fraction of a single SGD epoch is needed for convergence.

Given a graph G that is partially observed --
meaning each pair of nodes is either known to
have an edge, known to have no edge, or not
known to have an edge or not -- we wish to
predict whether or not edges exist for the
unknown status node pairs. Examples include
predicting whether a pair of proteins interact,
whether a pair of authors cite each others'
papers, and whether a pair of countries will go
to war with each other.

Link prediction can be cast as a dyadic
prediction problem, as we predict some label
(whether or not there is an edge) for a dyad or
pair of objects (nodes in the graph). A similar
problem is collaborative filtering, where a
popular solution is to learn latent features from
the data. We may use a similar approach for link
prediction: mathematically, we optimize some
loss on the observed links via

A latent feature approach

Classical models for link prediction are affinity scores such as Common-
Neighbours, Preferential-Attachment, the Katz measure, et cetera. These
methods are unsupervised, in that they are based on fixed functions of the
graph's topological information. Supervised methods have also been studied,
with popular choices being learning a classifier that combines multiple affinity
scores, and/or explicit features for nodes.

The de-facto mechanism to handle class imbalance is to undersample the
data by throwing away some of the node pairs that do not link, which
necessarily loses information.

Challenges for a link prediction method

There are three basic challenges for a link prediction method:

* Linking behaviour can be influenced by both the topological structure of the
observed graph (embedded in the adjacency matrix), as well as measured
characteristics of the nodes (presented in the form of explicit features). A
model should use both types of information to maximize predictive accuracy.

* In many applications of link prediction, there are far fewer links than non-
links i.e. a class imbalance problem. For example, on a dataset of the US
electric power grid, there is 1 link formed for every 2000 non-links.

* Real-world networks have the order of millions of nodes, so models should
be highly scalable.

We finally compare using a
standard regression loss to
the ranking loss when
learning latent features. We
see that the ranking loss
performs at least as good
as the regression loss,
offering improvements
when the dataset is
especially imbalanced,
such as on the PowerGrid
dataset.

Experimental results

Overcoming imbalance by AUC maximization

This idea applies equally well when learning latent features (further
illustrating the flexibility of this approach). Instead of optimizing square- or
log-loss, we can learn latent features that maximize the AUC:

Classifiers such as logistic regression and SVMs optimize convex
approximations to the 0-1 error. The inadequacy of this metric for imbalanced
problems explains their susceptibility to class imbalance. However, note that
we can equally optimize a convex approximation to the AUC:

This can be optimized by SGD: for each update, we just pick a random pair
of positive and negative examples. By optimizing the AUC directly, we can
overcome the class imbalance issue.

Given node features and edge features , we may model:

Adding node and edge features

where L is a link function, such as , is a latent
feature for the ith node, and is a bias term for the ith node. The term
is a regularizer to prevent overfitting.

This model can be trained using stochastic gradient descent (SGD), and so
is highly scalable. It is also very expressive, capturing latent class methods as
a special case, and empirically outperforming affinity scores like Common-
Neighbours by virtue of being supervised. However, it is limited in two ways:
(i) it only exploits topological information, and (ii) it is not immune to the class
imbalance issue. We see now how to fix these problems.

The above suffers from the propensity problem: ignoring the influence of latent
and edge-features, we would get the same ranking over all nodes. A better
alternative is to allow for interactions bewteen the node features, in a model
known as bilinear regression [Gabriel, Biometrika '98]:

We can now learn latent features in addition to the weights on the explicit
features. In practice, it may be necessary to factorize also, since
otherwise we may need to learn too many parameters.

We ran experiments on six link prediction datasets, from a range of domains:
computational biology (Prot-Prot and Metabolic), coauthorship (NIPS and
Condmat), political science (Conflict) and general engineering (PowerGrid).

We next evaluate the relative
benefits of latent and explicit
features. We use unilinear
and bilinear regression on the
explicit features, and the
exact link propagation
method (ELP) of [Kashima et
al, SDM '09]. On several
datasets, explicit features are
more predictive than latent
features alone. The combined
latent+explicit feature model
achieves the best of both
worlds. We note also that
bilinear regression offers
significant improvement over
the unilinear variant.

?

?

Experimental setup

All datasets except Condmat and PowerGrid possess some form of side-
information. We report AUC as our performance metric.

We first compare supervised
latent features to
unsupervised affinity scores.
We use the Adamic-Adar,
Preferential-Attachment,
and the Katz measure. Our
latent feature approach
outperforms these methods
(Fig 1), and especially offers
improvement when only a
few links are observed in the
training data (Fig 2).

{akmenon, elkan}@ucsd.edu

Figure 1: Latent features outperform popular unsupervised scores.

Figure 2: Unsupervised scores underperform with fewer training dyads.

Figure 3: Combining latent and explicit features can improve performance.

Figure 4: Ranking loss can significantly improve performance when data is
very imbalanced.

This models the affinity for a pair of nodes as a linear combination of their
affinity in latent and explicit feature space. We can equivalently think of the
latent features as providing a residual fit on the scores for a supervised
learning technique such as logistic regression on the explicit features,
corresponding to a sigmoidal link function.

