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Modelling Uncertainties in the System

Solution
Each communication channel between the system to diagnose
and the monitoring system is modelled as a component of the
system

Problems
A single buffer for one observation on a component that
can emit k different observations requires k states: the size
of the global model is multiplied by k for only one buffer!

We usually have information about delays between
emissions and receptions of observations: do we have to
use timed automata?

We do not want to diagnose the communication channels
(otherwise, they would be part of the system)



Partially Ordered Sets

Partial Order
A partially ordered set is a pair 〈E ,≺〉 so that:

∀e ∈ E , e ⊀ e

∀e1 ∈ E , ∀e2 ∈ E , e1 ≺ e2 ⇒ e2 ⊀ e1

∀e1 ∈ E , ∀e2 ∈ E , ∀e3 ∈ E , e1 ≺ e2 ∧ e2 ≺ e3 ⇒ e1 ≺ e3

Pencolé et al.
The observations are a partial order set.

A state of the diagnosis automaton is a pair 〈s, o〉 where s
is a possible state of the system and o is a possible prefix
of a sequence compatible with the observations



Example
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Possible Sequences
〈o1, o1, o2, o1, o3〉

〈o1, o2, o1, o1, o3〉

〈o2, o1, o1, o1, o3〉
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Lamperti and Zanella’s Index Space

Deals both with partial order and uncertain observations

Observations
The observation (without s) is a partially ordered set of
observation fragments
An observation fragment N has a subset of O ∪ {∅}:

if e ∈ N, then e is one of the observable events that
possibly generated the observation fragment
if ∅ ∈ N, then possibly no observable event generated the
observation fragment
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Diagnosis

A Silent Closure of s is the sub automaton that can be
reached from the state s with unobservable transitions

A Diagnosis State is a pair 〈s,I〉 where s is a system state
and I is an index
There is a transition from 〈s,I〉 to 〈s′,I ′〉 labeled by e if

there exists a state s′′ in the silent closure of s so that there
is a transition from s′′ to s′ labeled by e, and
there is a transition from I to I ′ labeled by e on the index
space

Moreover, with each state is associated a diagnosis (a set
of sets of fault modes)



Observation Automaton

OBS = 〈Q, E , T , I, F 〉

Each trajectory on OBS ending in a state F is a possible
sequence of emitted observations consistent with the
observations received
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Automata Synchronisation

Let A1 = 〈Q1, E1, T1, I1, F1〉 and A2 = 〈Q2, E2, T2, I2, F2〉 be two
automata. The synchronisation A1 ⊗ A2 is an automaton
A = 〈Q, E , T , I, F 〉 so that:

Q = Q1 × Q2

E = E1 ∪ E2

T = {〈〈s1, s2〉, e, 〈s′

1, s′

2〉〉 |

(e ∈ E1 ∧ 〈s1, e, s′

1〉 ∈ T1) ∨ (e /∈ E1 ∧ s1 = s′

1)∧
(e ∈ E2 ∧ 〈s2, e, s′

2〉 ∈ T2) ∨ (e /∈ E2 ∧ s2 = s′

2)

}

I = I1 × I2
F = F1 × F2



Diagnosis by Observation Automaton

MOD is an automaton that models the system (all the
states are final)

OBS is the observation automaton

the diagnosis automaton is defined by MOD ⊗ OBS

When the diagnosis automaton is computed, the diagnosis can
be easily retrieved


