
Mechanisation of PDA and Grammar Equivalence for
Context-Free Languages

Aditi Barthwal1 and Michael Norrish2,1

1 Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA

Michael.Norrish@nicta.com.au

Abstract. We provide a formalisation of the theory of pushdown automata (PDAs)
using the HOL4 theorem prover. It illustrates how provers such as HOL can be
used for mechanising complicated proofs, but also how intensive such a process
can turn out to be. The proofs blow up in size in way difficult topredict from
examining original textbook presentations. Even a meticulous text proof has “in-
tuitive” leaps that need to be identified and formalised.

1 Introduction

A context-free grammar provides a simple and precise mechanism for describing the
methods by which phrases in languages are built from smallerblocks, capturing the
“block structure” of sentences in a natural way. The simplicity of the formalism makes
it amenable to rigorous mathematical study. Context-free grammars are also simple
enough to allow the construction of efficient parsing algorithms using pushdown au-
tomata (PDAs). These “predicting machines” use knowledge about their stack contents
to determine whether and how a given string can be generated by the grammar. For ex-
ample, PDAs can be used to to build efficient parsers for LR grammars, some of which
theory we have already mechanised [1].

This paper describes the formalisation of CFGs (Section 2) and PDAs (Section 3)
using HOL4 [4], following Hopcroft & Ullman [2]. The formalisation of this theory is
not only interesting in its own right, but also gives insightinto the kind of manipulations
required to port a pen-and-paper proof to a theorem prover. The mechanisation proves
to be an ideal case study of how intuitive textbook proofs canblow up in size, and how
details can change during formalisation. The crux of the paper is in Sections 4 and 5,
describing the mechanisation of the result that the two formalisms are equivalent in
power.

The theory outlined in this paper is part of the crucial groundwork for bigger re-
sults such as the SLR parser generation cited above. The theorems, even though well-
established in the field, become novel for the way they have tobe “reproven” in a
theorem prover. Proofs must be recast to be concrete enough for the prover: patching
deductive gaps which are easily grasped in a text proof, but beyond the automatic ca-
pabilities of the tool. The library of proofs, techniques and notations developed here
provides the basis from which further work on verified language theory can proceed at
a quickened pace.

2 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using thefollowing type defini-
tions:

symbol = NTS of ’nts | TS of ’ts
rule = rule of ’nts => (’nts, ’ts) symbol list
grammar = G of (’nts, ’ts) rule list => ’nts

(The=> arrow indicates curried arguments to an algebraic type’s constructor. Thus, the
rule constructor is a curried function taking a value of type’nts (the symbol at the
head of the rule), a list of symbols (giving the rule’s right-hand side), and returning an
(’nts,’ts) rule .)

Thus, a rule pairs a value of type’nts with a symbol list. Similarly, a grammar
consists of a list of rules and a value giving the start symbol. Traditional presentations
of grammars often include separate sets corresponding to the grammar’s terminals and
non-terminals. It’s easy to derive these sets from the grammar’s rules and start symbol,
so we shall occasionally write a grammarG as a tuple(V, T, P, S) in the proofs to
come. Here,V is the list of non-terminals,T is the list of terminals,P is the list of
productions andS is the start symbol.

Definition 1. A list of symbols (orsentential form) s derivest in a single step ifs is of
the formαAγ, t is of the formαβγ, and ifA → β is one of the rules in the grammar.
In HOL:

derives g lsl rsl ⇐⇒
∃ s1 s2 rhs lhs.
(s1 ++ [NTS lhs] ++ s2 = lsl) ∧ (s1 ++ rhs ++ s2 = rsl) ∧
rule lhs rhs ∈ rules g

(The infix++ denotes list concatenation. Theǫ denotes membership.)

We write (derives g) ∗ sf 1 sf 2 to indicate thatsf 2 is derived fromsf 1 in
zero or more steps, also writtensf 1 ⇒∗ sf 2 (where the grammarg is assumed). This is
concretely represented using what we call derivation lists. If an arbitrary binary relation
R holds on adjacent elements ofl which hasx as its first element andy as its last
element, then this is writtenR ⊢ l � x → y. In the context of grammars,R relates
sentential forms. Later we will use the same notation to relate derivations in a PDA.
Using the concrete notation has simplified automating the proofs of many theorems.
We will also use the rightmost derivation relation,rderives , and its closure.

Definition 2. Thelanguageof a grammar consists of all the words (lists of only termi-
nal symbols) that can be derived from the start symbol.

language g =
{ tsl | (derives g) ∗ [NTS (startSym g)] tsl ∧ isWord tsl }

3 Pushdown Automata

The PDA is modelled as a record containing the start state (start or q0), the start-
ing stack symbol (ssSym or Z0), list of final states (final or F) and the next state
transitions (final or δ).

pda = <| start : ’state; ssSym : ’ssym; final : ’state list;
next : (’isym, ’ssym, ’state) trans list |>

The input alphabets (Σ), stack alphabets (Γ) and the states for the PDA (Q) can be
easily extracted from the above information. In the proofs,we will refer to a PDAM as
the tuple(Q, Σ, Γ, δ, q0, Z0, F) for easy access to the components. We have used lists
instead of sets to avoid unncessary finiteness constraints in our proofs.

The trans type implements a single transition. A transition is a tupleof an ‘op-
tional’ input symbol, a stack symbol and a state, and the nextstate along with the stack
symbols (possibly none) to be added onto the current stack. Thetrans type describes
a transition in the PDA’s state machine. Thenext field of the record is a list of such
transitions.

trans = (’isym option # ’ssym # ’state) # (’state # ’ssym list)

In HOL, a PDA transition in machineM is expressed using a binary relation on
“instantaneous descriptions” of the tape, the machine’s stack, and its internal state. We
write M ⊢ (q, iα, s) → (q′, i′, s′) to mean that in stateq, looking at inputi with stack
s, m can transition to stateq′, with the input becomingi′ and the stack becomings′.
The inputi′ is either the same asiα (referred to as anǫ move) or is equal toα. Here,
consuming the input symboli corresponds toSOME iand ignoring the input symbol
is NONEin thetrans type.

Using the concrete derivation list notation, we writeID M ⊢ ℓ � x → y to mean
that the listℓ is a sequence of valid instantaneous descriptions for machineM , starting
with descriptionx and ending withy. Transitions are not possible in the state where the
stack is empty and onlyǫ moves are possible in the state where the input is empty. In
this paper, we will consider the language “accepted by emptystack” (laes):3

Definition 3 (Language accepted “by empty stack”).

laes (M) = { w | M ⊢ (q0, w, Z0) →
∗ (p, ǫ, ǫ) for some p in Q}

To be consistent with the notation in Hopcroft and Ullman, predicatelaes is referred
to asN(M) in the proofs to follow. When the acceptance is by empty stack, the set of
final states is irrelevant, so we usually let the list of final states be empty.

In the remainder of the paper we focus on the equivalence of PDAs and CFGs. Con-
structing a PDA for a CFG is a straightforward process so instead we devote much of
the space to explaining the construction of a CFG from PDA andits equivalence proof.
In order to illustrate the huge gap between a textbookvs.theorem prover formalisation,
we try to follow Hopcroft and Ullman as closely as possible. As in the book, for the
construction of a PDA from a CFG, we assume the grammar is in Greibach normal
form.

3 In the background mechanisation we have proved that this language is equivalent to the other
standard notion: “accepted by final state”.

4 Constructing a PDA for a CFG

LetG = (V, T, P, S) be a context-free grammar in Greibach normal form generatingL.
We construct machineM such thatM = (q, T, V, δ, q, S, φ), whereδ(q, a, A) contains
(q, γ) wheneverA → aγ is in P . Every production in a grammar that is in GNF has to
be of the formA → aα, wherea is a terminal symbol andα is a string (possibly empty)
of non-terminal symbols (isGnf). The automaton for the grammar is constructed by
creating transitions from the grammar productions,A → aα that read the head symbol
of the RHS (a) and push the remaining RHS (α) on to the stack. The terminals are
interpreted as the input symbols and the non-terminals are the stack symbols for the
PDA.

trans q (rule l r) = ((SOME (HD r),NTS l , q), q ,TL r)

grammar2pda g q =
(let ts = MAP (trans q) (rules g) in

<|start := q ; ssSym := NTS (startSym g); next := ts ;
final := []|>)

(HereHDreturns the first element in the list andTL returns the remaining list. Function
MAPapplies a given function to each element of a list.)

The PDAM simulates leftmost derivations ofG. SinceG is in Greibach normal
form, each sentential form in a leftmost derivation consists of a string of terminalsx
followed by a string of variablesα. M stores the suffixα of the left sentential form on
its stack after processing the prefixx. Formally we show that

S
l
⇒∗ xα by a leftmost derivation if and only if(q, x, A) →∗

M (q, ǫ, α) (1)

This turns out to be straightforward process in HOL and is done by representing the
grammar and the machine derivations using derivation lists. Let dl represent the gram-
mar derivation fromS to xα anddl′ represent the derivation from(q, x, A) to (q, ǫ, α)
in the machine. Then an induction ondl gives us the “if” portion of (1) and induction
ondl′ gives us the “only if” portion of (1). Thus, we can conclude the following,

HOL Theorem 1
∀ g . isGnf g ⇒ ∃m . x ∈ language g ⇐⇒ x ∈ laes m

5 Constructing a CFG from a PDA

The CFG for a PDA is constructed by encoding every possible transition step in the
PDA as a rule in the grammar. The LHS of each production encodes the starting and
final state of the transition while the RHS encodes the contents of the stack in the final
state.

Let M be the PDA(Q, δ, q0, Z0, φ) andΣ andΓ the derived input and stack alpha-
bets, respectively. We constructG = (V, Σ, P, S) such thatV is a set containing the
new symbolS and objects of the form[q, A, p]; for q andp in Q, andA in Γ .

The productionsP are of the following form: (Rule 1) S → [q0, Z0, q] for each
q in Q; and (Rule 2) [q, A, qm+1] → a[q1, B1, q2][q2, B2, q3]...[qm, Bm, qm+1] for
eachq, q1, q2, ..., qm+1 in Q, eacha in Σ ∪ {ǫ}, andA, B1, B2, ..., Bm in Γ , such that
δ(q, a, A) contains(q1, B1B2...Bm) (if m = 0, then the production is[q, A, q1] → a).
The variables and productions ofG have been defined so that a leftmost derivation in
G of a sentencex is a simulation of the PDAM when fed the inputx. In particular, the
variables that appear in any step of a leftmost derivation inG correspond to the symbols
on the stack ofM at a time whenM has seen as much of the input as the grammar has
already generated.

From text to automated text: For Rule 1 we only have to ensure that the stateq is in
Q. On the other hand, there are multiple constraints underlying the statement ofRule 2
which will need to be isolated for mechanisation and are summarised below.

C2.1 The statesq, q1 andp belong inQ (a similar statement for terminals and non-
terminals can be ignored since they are derived);

C2.3 the corresponding machine transition is based on the valuesof a andm and steps
from stateq to some stateq1 replacingA with B1...Bm;

C2.3 the possibilties of generating the different grammar rulesbased on whethera = ǫ,
m = 0 or a is a terminal symbol;

C2.4 if m > 1 i.e.more than one nonterminal exists on the RHS of the rule then
C2.4.1 α is composed of only nonterminals;
C2.4.2 a nonterminal is an object of the form[q, A, p] for PDA from-stateq and

to-statep, and stack symbolA;
C2.4.3 the from-state of the first object isq1 and the to-state of the last object is

qm+1;
C2.4.4 the to-state and from-state of adjacent nonterminals must be the same;
C2.4.5 the states encoded in the nonterminals must belong toQ.

Whether we use a functional approach or a relational one, thesuccinctness of the
above definition is hard to capture in HOL. Using relations wecan avoid concretely
computing every possible rule in the grammar and thus work ata higher level of ab-
straction. The extent of details to follow are characteristic of mechanising such a proof.
The relationpda2grammar captures the restrictions on the rules for the grammar cor-
responding to a PDA.

pda2grammar m g ⇐⇒
(q ∈ states m ⇐⇒

rule (startSym g) [NTS (m .start, m .ssSym, q)] ∈ rules g) ∧
∀ r . r ∈ rules g ⇐⇒ p2gtrans m r

The first conjuct of the relation corresponds toRule 1 and the second conjunct
(p2gtrans) ensures that each rule conforms withRule 2. As already mentioned,
Rule 2 turns out to be more complicated to mechanise due to the amount of detail
hidden behind the concise notation.

Thep2gtrans predicate (see Figure 1) enforces the conditionsC2.1, C2.2, C2.3
(the three possibilities for the rule,A → ǫ; A → a, wherea is a terminal symbol and

p2gtrans m (rule l ntsl) ⇐⇒
∃ isymo ssym q q ′ p mrhs .

(l = (q , ssym , p)) ∧ q ∈ states m ∧ q ′ ∈ states m ∧
p ∈ states m ∧ ((isymo, ssym , q), q ′, mrhs) ∈ m .next ∧
((ntsl = []) ∧ (isymo = NONE) ∧ (q ′ = p) ∧ (mrhs = []) ∨

(∃ ts . (ntsl = [TS ts]) ∧ (isymo = SOME (TS ts)) ∧ (q ′ = p) ∧
(mrhs = [])) ∨

∃ h t . ((ntsl = h:: t) ∧ t 6= []) ∧
((∃ ts . (h = TS ts) ∧ (isymo = SOME (TS ts)) ∧

(MAP transSym t = mrhs) ∧ ntslCond m (q ′, p, mrhs) t) ∨
(isymo = NONE) ∧ (MAP transSym ntsl = mrhs) ∧
ntslCond m (q ′, p, mrhs) ntsl))

Fig. 1.Definition of p2gtrans .

A → aα) and the structure of the RHS of the rule which is based on the number of
components in it (remaining three-way disjunction).

For the third type of production (more than one nonterminali.e.m > 1), condition
ntslCond capturesC2.4. It enforces thatntsl (α in C2.4.1) has only nonterminals,
[q, A, p] is interpreted as a non-terminal symbol andq (frmState) andp (toState)
belong in the states of the PDA (C2.4.2), the conditions onq′ andql that reflectsC2.4.3
condition onq1 andqm+1 respectively,C2.4.4using relationadj andC2.4.5using the
last conjunct.

ntslCond m (q ′, ql , mrhs) ntsl ⇐⇒
EVERY isNonTmnlSym ntsl ∧
(∀ e1 e2 p s. (ntsl = p ++ [e1 ; e2] ++ s) ⇒ adj e1 e2) ∧
(frmState (HD ntsl) = q ′) ∧ (toState (LAST ntsl) = ql) ∧
(∀ e. e ∈ ntsl ⇒ toState e ∈ states m ∧ frmState e ∈ states m)

(The; is used to separate elements in a list andLAST returns the last element in a list.)
The constraints described above reflect exactly the information corresponding to

the two criteria for the grammar rules. On the other hand, it is clear that the automated
definition looks and is far more complex to digest. Concrete information that is eas-
ily gleaned by a human reader from abstract concepts has to beexplicitly stated in a
theorem prover.

Now that we have a CFG for our machine we can plunge ahead to prove the follow-
ing.

Theorem 1. If L is N(M) for some PDAM , thenL is a context-free language.

To show thatL(G) = N(M), we prove by induction on the number of steps in a
derivation ofG or the number of moves ofM that

(q, x, A) →∗

M (p, ǫ, ǫ) iff [q, A, p]
l
⇒∗

G x . (2)

5.1 Proof of the “if” portion of (2)

First we show by induction oni that if (q, x, A) →i (p, ǫ, ǫ), then[q, A, p] ⇒∗ x.

HOL Theorem 2
ID m ⊢ dl � (q , x ,[A]) → (p,[],[]) ∧ isWord x ∧
pda2grammar m g ⇒ (derives g) ∗ [NTS (q , A, p)] x

Proof. The proof is based on induction on the length ofdl . The crux of the proof
is breaking down the derivation such that a single stack symbol gets popped off after
reading some (possibly empty) input.

Let x = aγ and(q, aγ, A) → (q1, γ, B1B2...Bn) →i−1 (p, ǫ, ǫ). The single
step is easily derived based on how the rules are constructed. For thei − 1 steps, the
induction hypothesis can be applied as long as the derivations involve a single symbol
on the stack. The stringγ can be writtenγ = γ1γ2...γn whereγi has the effect of
poppingBj from the stack, possibly after a long sequence of moves. NotethatB1 need
not be thenth stack symbol from the bottom during the entire timeγ1 is being read by
M . In general,Bj remains on the stack unchanged whileγ1, γ2...γj−1 is read. There
exist statesq2, q3, ..., qn+1, whereqn+1 = p, such that(qj , γj, Bj) →∗ (qj , ǫ, ǫ)
by fewer thani moves (qj is the state entered when the stack first becomes as short
asn − j + 1). These observations are easily assumed by Hopcroft and Ullman or for
that matter any human reader. The more concrete construction for mechanisation is as
follows.

Filling in the gaps: For a derivation of the form,(q1, γ, B1B2...Bn) →i (p, ǫ, ǫ), this
is asserted in HOL by constructing a list of objects(q0, γj, Bj , qn) (combination of the
object’s from-state, input, stack symbols and to-state), such that(q0, γj, Bj) →i (qn, ǫ),
wherei > 0, γj is input symbols reading which stack symbolBj gets popped off from
the stack resulting in the transition from stateq0 to qn. The from-state of the first object
in the list isq1 and the to-state of the last object isp. Also, for each adjacent object
e1, e2, the to-state ofe1 is the same as the from-state ofe2. This process of popping off
theBj stack symbol turns out to be a lengthy one and is reflected in the proof statement
of HOL Theorem 3.

To be able to prove this, it is neccessary to provide the assertion that each derivation
in the PDA can be divided into two parts, such that the first part (list dl0) corresponds
to readingn input symbols to pop off the top stack symbol. This is our HOL Theorem
4.

The proof of above is based on another HOL theorem that if(q, γη, αβ) →i (q′, η, β)
then we can conclude(q, γ, α) →i (q′, ǫ, ǫ) (proved in HOL). This is a good example
of a proof where most of the reasoning is “obvious” to the reader. This when trans-
lated into a theorem prover results in a cascading structurewhere one has to provide the
proofs for steps that are considered “trivial”. The gaps outlined here are just the start of
the bridging process between the text proofs and the mechanised proofs.

Proof resumed: Once these gaps have been taken care of, we can apply the inductive
hypothesis to get

[qj , Bj , qj+1]
l
⇒∗ γj for 1 ≤ j ≤ n. (3)

HOL Theorem 3
ID p ⊢ dl � (q , inp, stk) → (qf ,[],[]) ⇒
∃ l . (inp = FLAT (MAP inp l)) ∧ (stk = MAP stk l) ∧

(∀ e. e ∈ MAP tost l ⇒ e ∈ states p) ∧
(∀ e. e ∈ MAP frmst l ⇒ e ∈ states p) ∧
(∀ h t . (l = h:: t) ⇒ (frmst h = q) ∧ (stk h = HD stk) ∧

(tost (LAST l) = qf)) ∧
∀ e1 e2 pfx sfx . (l = pfx ++ [e1 ; e2] ++ sfx) ⇒

(frmst e2 = tost e1) ∧
∀ e. e ∈ l ⇒ ∃m . m < | dl | ∧

NRC (ID p) m (frmst e,inp e,[stk e]) (tost e,[],[])

(RelationNRC R m x y is the RTC closure ofR fromx to y in m steps.)

HOL Theorem 4
ID p ⊢ dl � (q , inp, stk) → (qf ,[],[]) ⇒
∃ dl0 q0 i0 s0 spfx . ID p ⊢ dl0 � (q , inp, stk) → (q0 , i0 , s0) ∧

(| s0 | = | stk | - 1) ∧
(∀ q ′ i ′ s ′. (q ′, i ′, s ′) ∈ FRONTdl0 ⇒ | stk | ≤ | s ′|) ∧
((∃ dl1 . ID p ⊢ dl1 � (q0 , i0 , s0) → (qf ,[],[]) ∧

| dl1 | < | dl | ∧ | dl0 | < | dl |) ∨
((q0 , i0 , s0) = (qf ,[],[])))

(PredicateFRONT l returns the listl minus the last element.)

This leads to,a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1]
l
⇒∗x.

Since(q, aγ, A) → (q1, γ, B1B2...Bn), we know that

[q, A, p]
l
⇒ a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1], so finally we can conclude

that[q, A, p]
l
⇒∗ aγ1γ2...γn = x.

The overall structure of the proof follows Hopcroft and Ullman but for each asser-
tion made in the book, we have to provide concrete proofs before we can proceed any
further. These proofs were quite involved, only a small subset of which has been shown
above due to space restrictions.

5.2 Proof of the “only if” portion of (2)

Now suppose[q, A, p] ⇒i x. We show by induction oni that(q, x, A) →∗ (p, ǫ, ǫ).

HOL Theorem 5
derives g ⊢ dl � [NTS (q , A, p)] → x ⇒ isWord x ⇒
pda2grammar m g ⇒
(ID m) ∗ (q , x ,[A]) (p,[],[])

Proof. The basis,i = 1, is immediate, since[q, A, p] → x must be a production ofG
and thereforeδ(q, x, A) must contain(p, ǫ). Notex is ǫ or in Σ here. In the inductive

step, there are three cases to be considered. The first is the trivial case,[q, A, p] ⇒ a,
wherea is a terminal. Thus,x = a andδ(q, a, A) must contain(p, ǫ). The other two
possibilities are,[q, A, p] ⇒ a[q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x, whereqn+1 = p

or [q, A, p] ⇒ [q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x, whereqn+1 = p. The latter case
can be considered a specialisation of the first one such thata = ǫ. Thenx can be written
asx = ax1x2...xn, where[qj , Bj , qj+1] ⇒

∗ xj for 1 ≤ j ≤ n and possiblya = ǫ.
This has to be formally asserted in HOL. Letα be of lengthn. If α ⇒ m β, thenα

can be divided inton parts,α = α1α2...αn andβ = β1β2...βn, such thatαi ⇒ i βi in
i ≤ m steps.

HOL Theorem 6
derives g ⊢ dl � x y ⇒
∃ l . (x = MAP FST l) ∧ (y = FLAT (MAP SND l)) ∧

∀ a b. (a, b) ∈ l ⇒ ∃ dl ′. | dl ′| ≤ | dl | ∧ derives g ⊢ dl ′ � [a] b

(TheFLAT function returns the elements of (nested) lists,SND returns the second ele-
ment of a pair.)

InsertingBj+1...Bn at the bottom of each stack in the above sequence of ID’s gives
us,

(qj , xj , BjBj+1...Bn) →∗ (qj+1, ǫ, Bj+1...Bn). (4)

The first step in the derivation ofx from [q, A, p] gives us,

(q, x, A) → (q1, x1x2...xn, B1B2...Bn) (5)

is a legal move ofM . From this move and (4) forj = 1, 2, ..., n, (q, x, A) →∗ (p, ǫ, ǫ)
follows. In Hopcroft and Ullman, the above two equations suffice to deduce the result
we are interested in.

Unfortunately, the sequence of reasoning here is too coarse-grained for HOL4 to
handle. The intermediate steps need to be explicitly statedfor the proof to work out
using a theorem prover. These steps can be further elaborated as follows4. By our in-
duction hypothesis,

(qj , xj , Bj) →∗ (qj+1, ǫ, ǫ). (6)

Now consider the first step, if we insertx2...xn after inputx1 andB2...Bn at the bottom
of each stack, we see that

(q1, x1...xn, B1...Bn) →∗ (p, ǫ, ǫ). (7)

Another fact that needs to be asserted explicitly is reasoning for (7).
This is done by proving the affect of inserting input/stack symbols on the PDA

transitions. Now from the first step, (5) and (7),(q, x, A) →∗ (p, ǫ, ǫ) follows.

Equation (2) withq = q0 andA = Z0 says[q0, Z0, p] ⇒∗ x iff (q0, x, Z0) →∗ (p, ǫ, ǫ).
This observation, together withRule 1 of the construction ofG, says thatS ⇒∗ x if
and only if(q0, x, Z0) →∗ (p, ǫ, ǫ) for some statep. That is,x is in L(G) if and only
if x is in N(M) and we have

4 Their HOL versions can be found as part of the source code

HOL Theorem 7
pda2grammar m g ∧ isWord x ⇒

(derives g) ∗ [NTS (q , A, p)] x ⇐⇒ (ID m) ∗ (q , x ,[A]) (p,[],[])

To avoid the above being vacuous, we additionally prove the following:

HOL Theorem 8
∀m . ∃ g . pda2grammar m g

6 Related work and conclusions

In the field of language theory, Nipkow [3] provided a verifiedand executable lexical
analyzer generator. This work is the closest in nature to themechanisation we have
done.

A human reader is not concerned with issues such as finitenessof sets which have
to be dealt with explicitly in a theorem prover. The form of definitions (relationsvs.
functions) has a huge impact on the size of the proof as well asthe ease of automation.
These do not necessarily overlap. A number of what we call “gap” proofs have been
omitted due to space restrictions. These “gaps” cover the deductive steps that get omit-
ted in a textbook proof and the intermediate results needed because of the particular
mechanisation technique. Formalisation of a theory results in tools, techniques and an
infrastructure that forms the basis of verifying tools based on the theory for example
parsers, compilers, etc. Working in a well understood domain is useful in understand-
ing the immense deviations that automation usually resultsin. More often than not the
techniques for dealing with a particular problem in a domainare hard to generalise. The
only solution in such cases is to have an extensive library atone’s call.

The mechanised theory of PDAs is∼9000 lines and includes various closure prop-
erties of CFGs such as union, substitution and inverse homomorphism. It took 6 months
to complete the work which includes over 600 lemmas/theorems. HOL sources for the
work are available athttp://users.rsise.anu.edu.au/ ˜ aditi/ .

References

1. Aditi Barthwal and Michael Norrish. Verified, executableparsing. In Giuseppe Castagna,
editor,Programming Languages and Systems: 18th European Symposium on Programming,
volume 5502 ofLecture Notes in Computer Science, pages 160–174. Springer, March 2009.

2. John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Ma., USA, 1979.

3. Tobias Nipkow. Verified lexical analysis. In J. Grundy andM. Newey, editors,Proceedings of
the 11th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’98),
pages 1–15, Canberra, Australia, 1998. Springer-Verlag LNCS 1479.

4. Konrad Slind and Michael Norrish. A brief overview of HOL4. In O. A. Mohamed, C. Muñoz,
and S. Tahar, editors,Theorem Proving in Higher Order Logics, volume 5170 ofLNCS, pages
28–32. Springer, 2008. See also the HOL website athttp://hol.sourceforge.net .

