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Continuous Confidence Map Based Normalisation:
While continuous head pose normalisation is not the goal
of this paper, we demonstrate as a proof of concept that it is
possible to extend the current method for continuous head
pose normalisation. For dealing with faces in videos [1],
continuous head pose normalisation is required. [2] argue
that the appearance of a part does not changes with a subtle
pose change, therefore a detector for part i in pose angle p
can be shared for the same part i for a pose angle p + δ.
Further experiments in [2] showed that sharing based mod-
els and independent model have comparable performance.
However, sharing based models are faster upto ten times
as compared to the independent models [2]. The confi-
dence maps based methods (CM-HPNPS and CM-HPNPI )
can be extended from discrete to continuous by sharing
part-specific regression models R, which are shared among
neighboring pose angles.

For a video V with n frames, the first frame’s head pose
p and frontal reconstructed points are computed using Al-
gorithm 2 (Same Algorithm 2 in main paper). For the con-
secutive frames, the part-wise regression models specific to
the pose computed for first frame are used for normalisa-
tion (Algorithm 3). If the current frame’s head pose p + δ
has a large difference from the current p, it may lead to a
poor facial landmark reconstruction (based on low Score∗f ,

Algorithm 1: Continuous head pose normalisation
Require: Video V .

p, L∗f = Algorithm2(V1, p) {For the first frame}
for i← 2 to lenght(V ) do
Scorep, L

∗
f = Algorithm3(Vi, p)

if L∗f == null then
p, L∗f = Algorithm2(Vi, p) {Update head pose
p}

end if
end for

Algorithm 2: Pose Invariant Confidence Map Regres-
sion

Input: Frame I
Output: Pose p and frontal parts configurations L∗f
for pose p ∈ P do

Scorep, L
p
f = Algorithm3(I, p)

end
L∗f = Lp

f for the largest Scorep return p with the
largest Scorep

which if less than a threshold will discard the reconstruc-
tion). Based on this the current frame’s head pose p and
normalised frontal points are re-computed using 2 and the
new value of head pose p is used for upcoming frames. Al-
gorithm 1 defines the process.
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Algorithm 3: Frontal Virtual Points Reconstruction us-
ing Pose-Specific Confidence Map Regression (Same
as Algorithm 1 in the main paper)

Input: Image I and pose p
Output: Score′ and L∗f
for part i ∈ V do

Compute part wise confidence maps,
Cp

i = θ(I, i, p) (Eq. 5)
Divide Cp

i into k blocks B
B = {Bp

1B
p
2 ....B

p
k}

for a = 1 : k do
Reconstruct Bf

a ← Bp
a using corresponding

model fromRi

end
Rejoin reconstructed blocks
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i ← {B
f
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end
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Compute frontal Shapef (L) and maximise Score′

(Eq. 6)
L∗f = maxL(Score

′(I, L, p)


