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Abstract Depression is a severe mental health disorder with high societal costs. Current
clinical practice depends almost exclusively on self-report and clinical opinion, risking a
range of subjective biases. The long-term goal of our research is to develop assistive tech-
nologies to support clinicians and sufferers in the diagnosis and monitoring of treatment
progress in a timely and easily accessible format. In the first phase, we aim to develop a
diagnostic aid using affective sensing approaches. This paper describes the progress to date
and proposes a novel multimodal framework comprising of audio-video fusion for depres-
sion diagnosis. We exploit the proposition that the auditory and visual human communica-
tion complement each other, which is well-known in auditory-visual speech processing; we
investigate this hypothesis for depression analysis. For the video data analysis, intra-facial
muscle movements and the movements of the head and shoulders are analysed by computing
spatio-temporal interest points. In addition, various audio features (fundamental frequency
f0, loudness, intensity and mel-frequency cepstral coefficients) are computed. Next, a bag
of visual features and a bag of audio features are generated separately. In this study, we
compare fusion methods at feature level, score level and decision level. Experiments are per-
formed on an age and gender matched clinical dataset of 30 patients and 30 healthy controls.
The results from the multimodal experiments show the proposed framework’s effectiveness
in depression analysis.
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1 Introduction

Affect, meaning emotions and mood, is an essential, integral part of human perception and
communication. As research in the last two decades has shown, emotions and the display of
affect play an essential role not only in cognitive functions such as rational decision making,
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perception and learning, but also in interpersonal communication [33]. Affective sensing –
the sensing of affective states – plays a key role in emerging transformational uses of IT,
such as healthcare, security and next generation user interfaces. Recent advances in affective
sensing, e.g. automatic face tracking in videos, measuring facial activity, recognition of
facial expressions, analysis of affective speech characteristics and physiological effects that
occur as a result of affective state changes, paired with the decreasing cost and increasing
power of computing, have led to an arsenal of prototypical affective sensing tools now at
our finger tips. We can employ these to tackle higher problems, e.g. supporting clinicians in
the diagnosis of mental health disorders.

Depression is one of the most common and disabling mental disorders, and has a major
impact on society. The landmark WHO 2004 Global Burden of Disease report by Mathers
et al.[24] quantified depression as the leading cause of disability worldwide (an estimated
154 million sufferers). The lifetime risk for depression is reported to be at least 15% [19].
People of all ages suffer from depression, which is also a major risk factor for suicide.
Fortunately, depression can be ameliorated through the provision of suitable objective tech-
nology for diagnosing depression to health professionals and patients [34]. Disturbances in
the expression of affect reflect changes in mood and interpersonal style, and are arguably
a key index of a current depressive episode. This leads directly to impaired interpersonal
functioning, causing a range of interpersonal disabilities, functioning in the workforce, ab-
senteeism and difficulties with a range of everyday tasks (such as shopping). Whilst these
are a constant source of distress in affected subjects, the economic impact of mental health
disorders through direct and indirect costs has long been underestimated. Despite its severity
and high prevalence, there currently exist no laboratory-based measures of illness expres-
sion, course and recovery. This compromises optimal patient care, compounding the burden
of disability. As healthcare costs increase worldwide, the provision of effective health mon-
itoring systems and diagnostic aids is highly important. Affective sensing technology can
and will play a major role in this. With the advancement of affective sensing and machine
learning, computer aided diagnosis can and will play a major role in providing an objective
assessment.

In a close collaboration of computer scientists and psychologists, we aim to develop
multimodal assistive technologies that support clinicians during the diagnosis, and both clin-
icians and sufferers in the monitoring of treatment progress. The development of an objec-
tive diagnostic measure for a leading cause of disability worldwide would represent a major
diagnostic breakthrough with significant future medical possibilities. The proposed multi-
modal approach will underpin a new generation of objective laboratory-style markers of
illness expression. In the first phase, we investigate multimodal affective sensing technolo-
gies, in particular face and voice analysis techniques, for a prototypical system that is tested
at the Black Dog Institute – a clinical research institute focussing on depression and other
mental health disorders – in Sydney, Australia, and at the Queensland Institute of Medical
Research, Australia. In the medium term, we plan to translate the developed approaches into
an assistive laptop system, so that clinicians and patients can assess response to treatment in
a timely and easily accessible format. In the long term, we hope to assist patients with de-
pression to monitor the progress of their illness in a similar way that a patient with diabetes
monitors their blood sugar levels with a small portable device, e.g. a smartphone. In mental
healthcare, our approach also lends itself to expansion into other disorders (schizophrenia,
autism, bipolar disorder), where laboratory-style diagnoses are also lacking.

The aim of this study is to investigate the utility of affective sensing methods for au-
tomated depression analysis, which can assist clinicians in depression diagnosis and moni-
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toring. The proposed framework is based on extracting audio-video features and comparing
various fusion approaches at different stages.

2 Related Work

Inferring emotions from facial expression analysis is a well-researched problem [31,41].
Over the past two decades, various geometric, texture, static and temporal visual descriptors
have been proposed for various expression analysis related problems (e.g. [41,23,3,42]).
Emotion analysis methods can be broadly divided into three categories based on the type of
feature descriptor used. Shape feature based methods such as [3,9] are based on facial ge-
ometry only. The second class are the appearance features based emotion analysis methods
[42,10,11], which are based on analysing the skin texture. The third category are the hybrid
methods [23], which used both shape and appearance features. [42] show that appearance
based features are more effective in emotion analysis as they are able to capture subtle facial
movements, which are difficult to capture otherwise using shape based features.

This knowledge can also be used for depression analysis and it is, therefore, no surprise
that computer-based depression analysis research to date has been drawing inspirations from
this mature research field [7]. Various audio and video-based methods have been proposed
in the past, of which we can only list some here. In one of the first seminal works for auto-
matic depression analysis, Cohn et al. [7] explored the relationship between Facial Action
Coding System (FACS)-based facial and vocal features and clinical depression detection.
They learnt subject-dependent Active Appearance Models (AAM) [12,35] to automatically
track facial features. The shape and appearance features after AAM fitting are further used to
compute parameters such as the occurrence of so called FACS Action Units (AU, associated
with depression), mean duration, ratio of onset to total duration and ratio of offset to onset
phase. However, the audio and video features were not fused. To the best of our knowledge,
our proposed framework is the first multimodal attempt at depression analysis.

According to Ellgring’s hypothesis [13], depression leads to a remarkable drop in fa-
cial activity, while facial activity increases with the improvement of subjective well-being.
Considering Ellgring’s hypothesis as a starting point, McIntyre et al. [25] analysed the facial
response of the subjects when shown a short video clip. Like Cohn et al. [7], subject-specific
AAMs were learned and shape features were computed from every fifth video frame. The
shape features were combined and classified at the frame level by the means of Support
Vector Machine (SVM). However, facial activity is dynamic in nature. It has been shown
in the literature that temporal facial dynamics provide more information than using static
information only [2].

A limitation of both [7] and [25] is their use of subject-specific AAM models. For a new
subject, a new AAM model needs to be trained, which is both complex and time consuming.
In contrast, the video analysis in our proposed framework is subject-independent. It has
been shown in the literature that temporal texture features perform better than geometric
features only for dynamic facial expression analysis [42]. Simple temporal features, such
as mean duration of AUs [7], have been used. However, in this paper, sophisticated spatio-
temporal descriptors (Local Binary Patterns on Three Orthogonal Planes (LBP-TOP) and
Space-Time Interest Points (STIP), see Section 4.1), which have been successfully used for
incorporating temporal information in earlier facial expression recognition approaches [42],
have been applied.

In our recent work for automatic depression recognition, [17] a vision-based frame-
work is proposed which is based on analysing facial dynamics using LBP-TOP and body
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movements using STIP in a Bag-of-Words (BoW) framework. Various classifiers were also
compared on these features. In this paper, a similar vision-based pipeline is used. In our an-
other work [18], a thorough comparison of the discriminative power of facial dynamics and
the remaining body parts for depression detection is provided. Further, a histogram of head
movements is proposed and results show that head movements alone are a powerful cue for
depression detection.

In general emotion recognition from speech information, Mel-scale Frequency Cepstral
Coefficients (MFCC) are considered one of the more relevant features [4]. For example,
MFCCs were investigated in [8], who found that the classification results were statistically
significant for detecting depression. The MFCCs are a compact representation of the short-
time power spectrum of speech after weighting the frequency scale in accordance with the
frequency sensitivity of human hearing. Pitch features, which have been widely investigated
in the literature for prosody analysis, show a lower range of fundamental frequency f0 in
depressed subjects [28,29,20,14], which increases after treatment [30]. The lower range of
f0 indicates monotone speech [26] and its low variance indicates a lack of normal expression
in depressed subjects [27]. f0 estimation, often also referred to as pitch detection, has been a
popular approach used in speech processing in general and lately for speech-based emotion
recognition. f0 is the lowest frequency of a periodic waveform. Several methods are used to
estimate the f0 values, mostly based on the Auto-Correlation Function (ACF). In this paper,
f0-raw is used as it results in better depression recognition [1].

There is convincing evidence that sadness and depression are associated with a decrease
in loudness [37], showing lower loudness values for depressed subjects. Since the loud-
ness is intimately related to sound intensity, both features are investigated (see Section 4.2).
Sound intensity I is measured as the sum over a short time frame of the squared signal
values. Loudness L is directly related to sound intensity, describing the magnitude of the
auditory sound intensity sensation. A gain in performance is reported by [38] in speech-
based emotion recognition by fusing several acoustic features as compared to single features
only. Therefore, the effect of fusing individual audio features is also investigated in this pa-
per. Pitch, intensity, loudness and MFCC are experimented on as audio features (Section
4.2).The results discussed in the experiment section confirm the finding of [38].

Researchers have also explored various multimodal approaches for improved affect
recognition. Zeng et al. [41] presented a thorough survey on existing approaches and out-
lined some of the challenges. In one of the works by Busso el al. [5], they describe a mul-
timodal framework and show that the fusion of facial expression with speech information
performs better than unimodal systems for emotion recognition. A comparison of various
fusion methods for multimodal emotion analysis is presented in [22]. They also show that
multimodal information provides more discriminative information for various classification
problems, which serves as an inspiration for our study here. This paper explores the fusion
of audio and video features for depression analysis.

The contributions of this paper are as follows:

– We propose a multimodal fusion framework for affective sensing, which is evaluated
on the real-world example of developing assistive technologies for depression diagnosis
and monitoring.

– We show the increase in performance for depression detection when multiple signals are
used as compared to unimodal signals only.

– We compute STIP-based visual descriptors on upper body videos and compare their
performance with intra-face based visual descriptors (i.e. without the upper body).
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– In order to handle the large amount of interest points generated from the upper body
videos in the depression dataset, a key interest point selection method is proposed for
learning a Bag-of-Words model.

– LBP-TOP is computed on subsequences in a piece-wise manner so as to compute spatio-
temporal words for learning the visual BoW model.

– An audio BoW model is learned form the audio features (pitch, intensity, loudness and
MFCCs).

– This paper explores various approaches (feature, score and decision fusion) for the fu-
sion of audio and video features for depression analysis and compares the performance
with that of audio and video features alone.

– Finally, this study compares the performance of these methods with that of a Support
Vector Machine (SVM) added as second-stage classifier on the output of the individual
classifiers.

3 Data Collection

The clinical database used in this study was collected at the Black Dog Institute, a clinical
research institute focussing on mood disorders, including depression and bipolar disorder.1

60 subjects (30 males and 30 females) with an age range of 19 − 72yr participated. Sub-
jects included 30 healthy controls (mean age 33.9 ± 13.6yr) as well as 30 patients (mean
age 44.3 ± 12.4yr) who had been diagnosed with severe depression (but no other mental
disorders or co-morbid conditions).

Participants in the Black Dog research program first complete a computerised mood as-
sessment program (MAP), which generates diagnostic decisions and a profile of personality,
co-morbid conditions such as anxiety disorders, current functioning assessments, as well as
current and past treatments, and a section on the aetiology of their depressive episode (e.g.
family history; stressful life events). Following the MAP, the participants undergo a struc-
tured interview (MINI) that assesses current and past depression as well as hypo(manic)
episodes and psychosis (both current and past) as per the Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV). If they are currently depressed and are deemed eligible for
the ongoing study (unipolar depression and no history of psychosis), they will also be rated
on the CORE measure of psycho-motor disturbance [32]. In the present study, only severely
depressed patients (HAMD > 15) were included. The recordings were made after their ini-
tial diagnosis and before the start of any treatment. Control subjects were carefully selected
to have no history of mental illness and to broadly match the depressed subjects in age and
gender.

The experimental paradigm contains several parts similar to [25]: (a) watching movie
clips, (b) watching and rating International Affective Picture System (IAPS) pictures, (c)
reading sentences containing affective content, and (d) an interview between the partici-
pants and a research assistant. In this study, we are interested in analysing the changes in
facial expressions, head and shoulder movements, and variations in speech pattern in re-
sponse to the interview questions. There are a total of eight groups of questions asked in the
interview in order to induce emotions in the participants. Questions are designed to arouse
both positive and negative emotions, for instance ideographic questions such as, “Can you
recall some recent good news you had and how did that make you feel?” and “Can you
recall news of bad or negative nature and how did you feel about it?”. The length of the

1 http://www.blackdoginstitute.org.au/
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Fig. 1 Flow of the proposed system: Audio and video data are processed individually and respective features
are computed. All audio features are combined in a Bag of Audio Features (BoA), while video features are
combined in a Bag of Visual Features (BoV). Different fusion methods are then experimented on.

video recordings of the interviews lies in the range of 208−1672s. In an ideal situation, one
would wish to have a larger dataset. However, this project is part of an ongoing study and
more data is being collected. Similar limitations with the sample size have been reported by
Ozdas et al. [30] and Moore et al. [27].

4 Method

Given an input audio-video clipAV containingN video frames {V1,V2...VN} andM audio
frames {A1,A2...AM}, STIPs are computed on the video frames. Due to the relatively large
number of video frames, the number of interest points generated is very high. Therefore, key
interest point selection is applied in a two-level clustering phase for computing the bag of
video features. LBP-TOP features are computed piece-wise temporally to capture intra-face
movements. A visual dictionary is learnt from these spatio-temporal LBP-TOP based words.
For the audio frames, multiple features (f0-raw, intensity, loudness, MFCC) are computed.
Further clustering is applied on the combined audio features to create bag of audio features.
Three different types of fusion approaches are then experimented on (see Figure 1).

4.1 Video Features

Two descriptors are computed for capturing the visual spatial and temporal information.
The framework starts by computing the Viola-Jones object detector [40] for detecting a
face blob F , which is used as a seed for facial feature extraction. Chew et al. argue that
subject-specific AAM perform better than subject independent constrained local models
(CLM) [36], however the use of an efficient feature descriptor can compensate for the error
induced by subject-independent methods. Taking a similar approach, a pictorial structure
based approach [15] is used to extract 9 facial points, which describe the location of the left
and right corners of both eyes, the nose tip, the left and right corners of the nostrils, and
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Fig. 2 Video processing pipeline: STIPs are computed over the unaligned raw video frames. Key interest
points are detected by video level clustering. A BoW dictionary is learnt from the key interest points of all the
videos. Note that the STIPs capture head and shoulder movements along with the facial dynamics, as they are
applied to the entire video frame. Faces are then detected and aligned. For capturing the intra-face motion,
the LBP-TOP descriptor is computed in a piece-wise manner over sub clips and a BoW is learnt.

the left and right corners of the mouth. This approach is based on part-based models and
has been applied successfully to facial feature localisation [15]. Part-specific detectors are
applied to the facial blob and the facial parts are localised using dynamic programming on
the response of the part specific detectors. The power of pictorial structures stem from its
representation of an object (face in this case) as an undirected graph, which has recently
been shown performing better than AAM and CLM [43] in both subject dependent and
independent settings. For aligning the faces, an affine transform based on these points is
computed. Figure 2 describes the visual processing pipeline.

4.1.1 Space-Time Interest Points

In recent years, the STIP concept [21] has found much attention in computer vision and
video analysis research. It successfully detects useful and meaningful interest points in
videos by extending the idea of the Harris spatial interest point detector to local structures in
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the spatio-temporal domain. Salient points are detected where image values have sufficient
local variation in both the space and time dimensions. Two histograms, the Histogram of
Gradients (HOG) and the Histogram of Flow (HOF), are calculated around an interest point
in a fixed sized spatial and temporal window. These volumes around the interest point are
used to learn visual dictionaries and have shown robust performance for computer vision
and video analysis problems such as human action recognition [21]. The video frames in
our dataset typically contain the upper body of the subjects as well as the head. Therefore,
it is worthwhile to investigate the movement patterns of all upper body parts. The STIPs
reflect the spatio-temporal changes, which account for movements inside the facial area and
elsewhere (e.g. hands, shoulders and head movements).

Key-Interest Point Selection: To reduce the complexity due to the large number of
frames, a keyframe selection method was used for emotion analysis by [10]. The authors
apply clustering over aligned facial landmark points computed using the Constrained Lo-
cal Model approach [36]. The cluster centres’ nearest neigbour frames are chosen as the
keyframes. The video clips in the depression dataset are relatively long and there is a large
amount of motion due to the presence of the upper body in the frame, so that a key-interest
point selection scheme is advisable.

A video V gives K interest points. A total of 4.8 × 107 interest points are computed
from the 60 video clips. This is both computationally and memory wise non-trivial, as a
leave-one-subject-out protocol is followed in the experiments. To reduce the feature set size,
inspired by [10], the K-Means algorithm is employed to each V . K interest points give Kc

cluster centres. These K key-interest points are then the representative interest points of a
video sample. The value Kc is chosen empirically.

4.1.2 Local Binary Patterns Three Orthogonal Planes

Recently, Local Binary Patterns (LBP) have become popular in computer vision. Their
power stems from their simple formulation and dense texture information. For computing
the intra-face muscle movements in subjects, we computed a temporal variant of LBP, LBP-
TOP [42]. It considers patterns in three orthogonal planes: XY , XT and Y T , and concate-
nates the pattern co-occurrences in these three directions. The local binary pattern part of
the LBP-TOP descriptor assigns binary labels to pixels by thresholding the neighborhood
pixels with the central value. Therefore, for a centre pixel Op of an orthogonal plane O and
its neighbouring pixels Ni, a decimal value d is assigned

d =

XY,XT,Y T∑
O

∑
p

k∑
i=1

2i−1I(Op, Ni) . (1)

In dynamic facial expression analysis, the apex frame shows the peak intensity of an
expression. The XY plane in LBP-TOP ideally should be the apex frame of the video. How-
ever, given the complex nature of the videos in the depression dataset, it is non-trivial to
label the apex frames. To overcome this limitation, rather than computing LBP-TOP on the
video in a temporally holistic manner, the descriptor is computed temporally ‘piece-wise’.
These piece-wise LBP-TOP units form spatio-temporal words for the BoW dictionary. For-
mally, for a video V of length l, uniformly timed sub-clips are segmented of length t. The
LBP-TOP descriptor is computed on these sub-clips individually. Therefore, there are l/t
sub-clips and their corresponding LBP-TOP based spatio-temporal descriptors dl/t.
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Fig. 3 Flow of the speech processing subsystem to extract audio features: Intensity, Loudness, f0 and MFCC.

4.2 Audio Features

Investigations of depressed speech by psychologists have found several distinguishable prosodic
features (see Section 2). Four different audio features – Fundamental frequency f0, loud-
ness, intensity and Mel-frequency cepstral coefficients – are computed in this study. Figure
3 presents the audio processing subsystem.

Each subject’s speech data is first segmented into frames. The frame size is set to 25ms,
with 10ms overlap between two adjacent frames. As a result, there will be high frequency
noise at the beginning and the end of each frame. To reduce this boundary effect, a Hamming
window is applied to each frame

wHam[n] = 0.54 + 0.46cos
(2πn)

N − 1
(2)

whereN is the number of samples per frame, and n = 1 · · ·N . After applying a Fast Fourier
Transform (FFT) on each frame, the magnitudes and phases are computed. Intensity is cal-
culated as the mean of the squared frame multiplied by a Hamming window, while loudness
is computed from intensity as

L = (
I

I0
)0.3 (3)

where I is the intensity and I0 = 0.000001. To extract f0, the auto-correlation function
(ACF) and the cepstrum are computed. The ACF is calculated by squaring the magnitude
spectrum and applying an inverse FFT. The cepstrum is computed by applying a log function
to the magnitude spectra. The difference between f0 and f0-raw is that with f0-raw, there is
no thresholding, i.e. there is no forcing to 0 in unvoiced frames. To generate the MFCC, the
Mel-spectrum is computed by applying overlapping triangular filters equidistantly on the
Mel-frequency scale

Mel(f) = 1127ln(1 +
f

700
) (4)

to the FFT magnitude spectrum.
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4.3 Bag of Words

The Bag of Words approach, originally developed in the natural language processing do-
main, has been successfully applied to image analysis [21] and depression analysis [17].
It represents documents based on the unordered word frequency. The power of the BoW
framework stems from its tolerance to variation in the appearance of objects. Recently, [39]
compared different BoW approaches for facial expression recognition as compared to object
recognition. The authors achieved state-of-the-art performance for facial expression analy-
sis.

In the problem described in this paper, a video clip (set of video frames) and an audio
clip (set of audio frames) are documents in the BoW sense. The BoW computed from the
videos are termed Bag of Visual (BoV) features and the BoW computed on the audio features
are called Bag of Audio (BoA) features. BoA are computed for f0-raw, intensity, loudness
and MFCC individually and also on selected combinations. The performance of these are
computed and the best performing is used further for fusion. BoV are computed separately
for LBP-TOP and STIP. For STIP, BoV are computed on the cluster centres of interest points
of each video. This two-level clustering helps in dealing with the high number of interest
points generated by the STIP. The size of the codebooks is decided empirically. The use
of BoW gives two advantages in the framework. The interviews are of different duration,
depending on how much the subject was saying. The use of codebooks makes it simpler
to deal with such samples of different length. Secondly, BoW are computed for audio and
video independently, which overcomes the problem of different sampling rates in the two
modalities. This simplifies feature fusion.

5 Fusion

As discussed in the introduction (Section 1), depression analysis has been primarily lim-
ited to single channel/modal information. Multimodal analysis is a general extension. Three
standard fusion techniques are investigated.

5.1 Feature Fusion

This is the simplest form of fusion. Raw features computed from the different modalities are
concatenated to form a single feature vector. Despite the simplicity, feature fusion results
in a performance increase compared to the performance of single modalities (see Section
6 for details). However, the downside of feature fusion is that it suffers from the curse of
dimensionality. As more modalities are joined, this increases the dimension of the feature
vectors. To overcome this issue, Principal Component Analysis (PCA) is applied to the
combined features and then the classification is performed.

5.2 Score Fusion

In score level fusion, different scores such as probability estimates, likelihoods, etc. are
combined, before making a classification decision. There are several popular methods for
score fusion. In this paper, two techniques – score fusion by weighted sum and by learning a
new SVM classifier on the scores – are investigated. The distance from the SVM hyperplane
is calculated and used as a score.
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5.3 Decision Fusion

In decision fusion, multiple classifiers are trained on different feature sets. The output of
these classifiers is used to infer the final class result. Various techniques are used for decision
fusion: weighted voting, algebraic combination rules and operators [22]. In this paper, the
AND and OR operators are used to fuse the decisions from the separate audio and video
SVM classifiers. Furthermore, we also experiment with decision fusion by learning a new,
second-stage SVM classifier.

6 Experiments and Results

The original spatial resolution of the video frames was 800 × 600 pixels. The videos were
downsampled to 320 × 240 pixels for computational efficiency. For STIP, the Harris 3D
interest point detector was used. The spatial window size for computing HOG was set to
3 and the temporal window size for HOF to 9. Two values, K = 2500 and K = 5000,
were experimented on for the number of clusters. LBP-TOP was computed for two different
sub-clip sizes, t = 6s and t = 1s. Moreover, the codebook Cs for BoV was computed on
clusters from each video clip. The codebook Cl for BoV was computed on different LBP-
TOP configurations. Various codebook sizes in the range of 200 − 750 were experimented
with Cs and Cl of BoV. From here on, STIP1 means STIP with level-one cluster size
K = 2500 and STIP2 refers to STIP with level-one cluster size K = 5000. For LBP-TOP,
LBP1 is the configuration with clip length t = 6s and LBP2 with clip length t = 1s.

Furthermore, experiments combining codebooks Cs and Cl for all different codebook
sizes, 200 − 750 were also performed. The four possible descriptor combinations analysed
were STIP1 + LBP1, STIP1 + LBP2, STIP2 + LBP1 and STIP2 + LBP2. Some
of the combinations such as STIP1 + LBP1, where the Cs and Cl size was 200, result in
a good increase to the individual feature performance, resulting in an accuracy of 81.7%,
whereas the maximum accuracy given by individual video features was 76.7% from STIP1
and STIP2 as shown in Table 1(a).

For computing the audio descriptors, the publicly available open-source software “openS-
MILE” [16] was used to extract low-level voice features from the subject speech labelled
intervals. The spontaneous speech from the dataset interview was manually labelled to ex-
tract pure subject speech, i.e. to remove voice inactive regions. The frame size was set to
25ms at a shift of 10ms and using a Hamming window. The number of MFCC coefficients
used for the experiments was 13, where the deltas were not included. f0 was calculated using
ACF, where f0-raw was calculated without threshold (i.e. without forcing to 0) in unvoiced
segments.

BoA were learned for all the individual audio features and various codebook sizes were
experimented. As reported in Table 1(a), the best detection accuracy obtained from the in-
dividual audio features was 75%. To further increase the performance using audio features
only, other configurations for BoA were experimented, first by combining all the four audio
features together: f0+I+L+M and then in the second case leaving out MFCC and combining
the other three audio features, f0+I+L. For both of these codebooks, again different cluster
sizes were tried and chosen empirically. The combined BoA, specifically f0+I+L, performed
reasonably better than the individual ones, giving an accuracy of 83.3%.

Table 1(a) presents the classification performance of bag of features computed on in-
dividual features. Out of all, STIP1 and STIP2 performed the best, giving an accuracy
of 76.8%. Here, the values of level-one cluster centres were K = 2500 and K = 5000
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Table 1 Performance of the system at various stages.

(a) Comparison of classification accuracies for individual video and audio features. Here, STIP1 - Level One clusters
C = 2500, STIP2 - Level One clusters C = 5000, LBP1 - LBP-TOP with clip length t = 6s, LBP2 - LBP-TOP with
clip length t = 1s.

Individual Feature f0-raw Loud. Inten. MFCC STIP1 STIP2 LBP1 LBP2
Accuracy 70.0% 73.3% 75.0% 63.3% 76.7% 76.7% 70.0% 66.7%

(b) Computed audio and video features were combined separately. Best audio and video only
combinations are presented here. In the notation Feature N, N refers to the codebook size.

Audio Feature Audio Only Video Feature Video Only
Combined Accuracy Combined Accuracy

A1; f0+I+L 200 83.3% V1; STIP1 200+LBP1 200 81.7%
A2; f0+I+L 500 83.3% V2; STIP1 200+LBP2 750 78.8%
A3; f0+I+L 750 83.3% V3; STIP1 750+LBP2 500 78.8%

A4; f0+I+L+M 500 78.3% V4; STIP1 750+LBP2 750 80.0%

(c) Audio-Video Fusion Results: Top five classification accuracy for different fusion methods for various parameters
of the features. Here, W.Sum - Weighted Sum, W.Prod. - Weighted Product, Concat. - Concatenated

A-V Feature Score Fusion Decision Fusion
Combination Fusion

Concat. PCA W.Sum W.Prod. SVM AND OR SVM
A1+V2 81.7% 91.7% 85.0% 85.0% 86.7% 68.3% 93.3% 86.7%
A2+V3 81.7% 80.0% 86.7% 86.7% 88.3% 66.7% 95.0% 91.7%
A3+V1 85.0% 86.7% 85.0% 85.0% 86.7% 71.7% 93.3% 91.7%
A1+V4 81.7% 80.0% 85.0% 85.0% 85.0% 70.0% 93.3% 88.3%
A2+V2 81.7% 86.7% 85.0% 85.0% 85.0% 66.7% 95.0% 88.3%

for STIP1 and STIP2, respectively. The size of codebook Cs1 = 500 for STIP1 and
Cs2 = 200 for STIP2. The increase in the size of K did not increase the performance as
expected. It can be argued that the discriminating ability of the descriptor is well covered
with K = 2500; anything more does not add to the discriminability.

For classification, a non-linear SVM [6] was used. The parameters were
searched using an extensive grid search. A leave-one-subject-out experiment method-
ology was used for all of the classifications. From here on, individual classifiers
means the SVM model trained for BoA (f0/I/L/MFCC/f0+I+L/f0+I+L+M) or BoV
(STIP1/STIP2/LBP1/LBP2/STIP+LBP) individually.

Figure 4 shows the effect of changing codebook size of BoA with different fusion meth-
ods. For a clear comparison, the fusion of different configurations of BoA is shown for one
selected BoV combination, i.e. V1. The choice of this visual configuration is based on the
highest performance of this STIP and LBP-TOP combination. Figure 4 (a) clearly shows the
performance increase due to PCA-based dimensionality reduction in feature fusion. Figure
4 (b) shows the difference in performance due to score fusion. In Figure 4 (c), SVM and
OR based decision fusion clearly perform better than AND based decision fusion. Figure 5
shows the fusion of an audio codebook A3 with different combinations of various sizes of
Cs and Cl. The observations are consistent with the graphs in Figure 4.

Table 1(c) describes the top five results for fusion methods on various descriptor pa-
rameters and Table 2 describes the confusion matrix for the best configuration of different
fusion methods. For feature fusion, different combinations of BoA and BoV were created.
As discussed earlier, the high dimensionality of the feature vector is a drawback of the fea-
ture fusion technique. Therefore, PCA was applied to the combined features and 98% of the
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Table 2 Confusion Matrix for the best results for different fusion methods shown in Table 1(c)

(a) Feature Fusion (PCA)

Patients Controls
(Predicted) (Predicted)

Patients 25 5
(Actual)
Controls 30 0
(Actual)

(b) Score Fusion (SVM)

Patients Controls
(Predicted) (Predicted)

Patients 25 5
(Actual)
Controls 28 2
(Actual)

(c) Decision Fusion (SVM)

Patients Controls
(Predicted) (Predicted)

Patients 26 4
(Actual)
Controls 29 1
(Actual)

variance was kept. A further SVM was trained on the new reduced dimensionality features.
As expected, applying PCA post feature fusion increased the performance of the system.
Moreover, the performance of the classifier trained on feature fused samples was higher than
the performance of classifiers trained on individual feature based BoA or BoV. As shown
in Table 1(b), the best accuracies for individual feature based BoA and BoV are 83.3% and
81.7%, respectively, whereas combining audio and video features via feature fusion boosts
the accuracy to 91.7% (see Table 1(c)). To statistically validate the difference between the
fused and individual features, a t-test was performed. Various individual features are com-
pared with one combination, i.e. V3+A2, for α = 0.01. The average p-value for the cohort
of STIP1 500 was 0.0006, LBP 500 was 0.00007 and f0+I+L 500 was 0.00001.

For score fusion, the distances from the SVM hyperplane were computed for all the
individual BoA and BoV. To fuse the scores, the weighted sum and weighted product was
computed. Acknowledging that better weights optimisation may increase the recognition
rate, our method is simply a linear search for the best weights, which gave a maximum
accuracy rate of 86.7% in both cases. Also, a SVM classifier is trained on the scores of
individual BoA and BoV, which gave a higher classification accuracy of 88.3%.

For decision fusion, the classification outputs from classifiers trained individually on
BoA and BoV were combined via the AND and OR operators. In the AND operation, the
final positive is based on the evidence of presence of positives from the classification ac-
curacies of all the individual classifiers. The maximum classification achieved by using this
fusion technique was 71.7%. This means that both the individual classifiers have a consensus
on at least 71.7% of the samples. For the OR operator, which shows a correct recognition
if at least one modality classifies a subject correctly, the maximum accuracy wss 95.0%.
However, a word of caution is in order here. The OR fusion inherently runs the risk of cre-
ating a larger number of false positives than the other fusion methods, as no consensus of
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the individual classifiers is required and all classifiers are treated as having equal weight,
with the acceptance threshold being such that a positive recognition in one classifier leads to
a positive recognition overall, which is a comparatively low acceptance threshold. In other
words, OR fusion assumes equal confidence in both classifiers, which may not be a true
reflection of the real world. Feedback from psychologists indicates that they would not rely
just on an OR fusion approach in the real world. Furthermore, an SVM classifier on top of
the decision of the individual classifiers was learned. The maximum accuracy achieved is
91.7%, which shows that training classifiers via decision fusion gives robust performance
for depression classification.

The best performance from all three fusion methods was 91.7%. There is an absolute
increase of 8.4% over audio-only and 10% - 12.9% over video-only classification. The in-
crease in system performance using different fusion methods is consistent with the results
discussed by [22] for fusion-based multimodal emotion analysis.

7 Conclusions and Future Work

Depression is a severe mental health disorder with a high individual and societal cost. The
study described in this paper proposes a multimodal framework for automatic depression
analysis. The STIP detector is computed on the image frames and HOG and HOF histograms
are calculated around the interest points in a spatio-temporal window. Further, in order to
decrease the number of interest points, clustering is applied at the video level. The cluster
centres from each video are used to train a BoV feature codebook. LBP-TOP is computed on
sub-sequences in a piece-wise manner on aligned faces to analyse facial dynamics. More-
over, a separate BoV codebook is learned from it. For audio analysis, f0-raw, intensity, loud-
ness and MFCC are computed and BoA features are derived from the fusion of these audio
features. Audio-video fusion at three levels has been investigated: feature level, score level
and decision level. The experimental results show that fusing audio and video channels is
effective for training a depression classifier that can assist clinicians. As part of future work,
extracting subject speech will be made fully automatic using the bag of words framework.

The study presented here forms part of the first phase of our ongoing research to de-
velop a robust and objective diagnostic aid to support clinicians in their diagnosis of clinical
depression, as current diagnosis suffers from a range of subjective biases. In this ongoing
work, we investigate different modalities, features and classification approaches and ex-
perimentally validate them with our clinical partners. In the second phase, we will further
clinically test the best performing diagnosis approaches in a prototypical assistive laptop
system equipped with a video camera and microphone. In the third phase, we will explore
how the affective sensing approaches can be implemented on smartphones and other mo-
bile technology platforms, such as tablet computers, to assist doctors and patients in the
monitoring of treatment progress, which requires robustness to a large variety of environ-
mental conditions, such as different levels of illumination, occlusion and acoustic noise. We
firmly believe that only a multimodal framework can truly deliver the robustness required
for real-world applications.
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Fig. 4 The three graphs show the accuracy of the system and the effect of choosing different codebook sizes
of BoA while fusing it with a selected BoV codebook combination STIP1 200+LBP1 200 for different fusion
methods: a) Feature Fusion, b) Score Fusion, c) Decision Fusion.
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Fig. 5 The three graphs show the accuracy of the system and the effect of choosing different combinations
of Cs and Cl, while fusing with a selected audio feature f0+I+L 750 for different fusion methods: a) Feature
Fusion, b) Score Fusion, c) Decision Fusion.
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