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Abstract

Question answering systems have been the focus of widespread research. ey have
the potential to make ënding information even easier than with modern search en-
gines. Successful question answering systems have to overcome several hurdles. A
knowledge representation language has to be chosen that is ìexible to represent the
majority of information in the source corpus, while still allowing for tractable ex-
traction and inference. A robust method for translating free-form sentences from
the source corpus to the knowledge representation language is needed, along with a
method for translating questions into queries over the knowledge base.

is report describes a question answering system that uses triples (subject-predicate-
object 3-tuples) as a knowledge representation language. A method for extracting
triples from paragraphs of text using a series of simpliëcation passes is described. A
basic logic based query language is also described, along with a method for translating
these queries to efficient SQL queries over a database. An accompanying method
for translating questions using a top-down search of subsets of this query space is
detailed. e method makes use of only shallow syntactic processing and is notable
as a tractable application of an exhaustive, uninformed search.

Tests of the system on a small scale are shown with promising results, 35% of questions
being answered by one of the top 5 returned answers.
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Introduction

Natural language question answering is a discipline of machine learning concerned
with the direct answering of questions posed in natural language. is report will
focus on questions asked in English. Most people are familiar with document retrieval
systems of some kind. ese have come into widespread usage; web search engines
being the primary example. Typical document retrieval systems perform little to no
natural language processing of the question, often performing keyword like matches.
In comparison, a question answering system returns an exact answer to the users query,
typically a single word or phrase. A successful question answering system reduces
the time and effort required for the user to ënd their answer. However, question
answering systems are still an area of active research, and even tasked with the problem
of extracting a 250 character snippet of text containing the answer (a much simpler
problem), current state of the art systems can only answer 70% of posed questions
(Dang, Kelly, and Lin, 2007).

is report describes a question answering system built over a triple knowledge base.
Typical document retrieval systems and some question answering systems store infor-
mation as plain text, as this best facilities keyword searches. An alternate approach
is to store the corpus in a processed form, one which attempts to attach semantics
to fragments of text to enable more powerful retrieval mechanisms. e system de-
scribed in this report uses triples as the knowledge representation language. Triples
(some times referred to as triplets) are 3-tuples of information, consisting of a subject,
a predicate and an object. e intended interpretation is that the subject is acting
on the object in a way described by the predicate. Typical triplets have noun phrases
as the subject and object and verb phrases as the predicate, although often adjectives
make meaningful objects, usually when the predicate is the copula be. Some examples
of triples are:

( amazon rainforest , be , forest )
( appalachian trail , traverse , maine )
( eurostar train , get , 22000 passengers each day )
In practical triple extraction systems parentheses and commas can not be part of
triples, so no quoting of the triple components is necessary. Text is usually normalized
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including a reduction to lowercase, as is the case in these examples.

In the worst case, answering a question requires deep background knowledge and
reasoning capabilities outside the reach of current natural language processing tech-
nologies. is can occur in questions whose answers are equivocal in nature, or in
questions which can not be adequately be answered with a single phrase. A typical
example of such is:

In what country did the game of croquet originate?
Attempting to answer this question from information extracted from the Wikipedia
page for croquet would be difficult as several sentences suggest possible conìicting
answers:

e evidence suggests that the rules of the modern game of croquet arrived from
Ireland ...
e ërst explanation is that the ancestral game was introduced to Britain from France
...

Some questions which seem reasonably straight forward actually require some amount
of deduction to be answered. Consider the following question:

How old is Kevin Rudd’s wife?

Answering this question from a text such as the following requires the combining of
two separate facts, as there is no direct answer.

erese Rein (born 17 July 1958) is an Australian businesswoman and the wife of the
26th Prime Minister of Australia, Kevin Rudd.

e above sentence contains 5 recognizable facts, of which 2 are required to answer
this question. is sort of density of information in sentences is normal for ency-
clopedic text. is also highlights the complexities of converting a text corpus into a
usable knowledge base. Natural language is often ambiguous, and can require context
outside what can be gleaned from a sentence by sentence window.

Because of these difficulties, the system described in this report is focused on answer-
ing questions which have unequivocal, single phrase or word answers. is sort of
question is referred to as a factoid question. Questions of this type are widely used
for comparison & evaluation of question answering systems (Voorhees and Harman,
2000).
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Background

In this section, the natural language processing technologies that were used are de-
scribed, along with two ontologies that were used for query expansion and triple sim-
pliëcation. e triple representation is made precise, and the differences from existing
triple representations are discussed. is provides the foundation for which the triple
extraction heuristics build on. A logical query language for querying triple knowledge
bases is deëned, with structure in the form of a partial ordering relation, so statements
about queries being more or less general then each other are well deëned. is will
allow the formulation of a top down search strategy in the next section, in which the
children of a node are all less general then their parent.

The Language Pipeline

A Triple based question answering system needs to preprocess its corpus into a triple
knowledge base. is involves the application of a variety of natural language process-
ing techniques. To achieve this, most natural language processing systems are built
around a processing pipeline design. Typically documents start as plain text, and are
feed through the stages of the pipeline, with each stage preforming some kind of syn-
tactic or semantic analysis. Most of the stages are common between systems, and
high quality libraries exist to perform these functions. e following are the process-
ing stages used in this system for processing of an input corpus before triple extraction
starts:

1. Sentence Extraction involves ënding which of the sentence delimiting punc-
tuation characters are being used to separate sentences, and which are being
used for other purposes such as ending abbreviations. Sophisticated sentence
extractors also handle sentence punctuation occurring inside of quotations, and
other corner cases. e processing of a few sentences will be shown to illustrate
this and other steps of the language pipeline:
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Malcolm X (born Malcolm Little; May 19, 1925 – February 21, 1965) was
an African-American Muslim minister, public speaker, and human rights ac-
tivist. To his admirers, he was a courageous advocate for the rights of African
Americans.
Following sentence extraction:
1) Malcolm X (born Malcolm Little; May 19, 1925 – February 21, 1965) was
an African-American Muslim minister, public speaker, and human rights ac-
tivist.
2)To his admirers, he was a courageous advocate for the rights of African Amer-
icans.

2. Tokenisation & Part Of Speech Tagging Of Words. Part of speech tagging is
the task of identifying the grammatical tag of each word. e notation usually
used for this involves placing the POS tag after each word, separated by a for-
ward slash. e most common POS tags are included as part of Table 1. e
above sentences with POS tagging are:
1) Malcolm/NNP X/NNP -LRB-/-LRB- born/VBN Malcolm/NNP Lit-
tle/NNP ;/: May/NNP 19/CD ,/, 1925/CD –/: February/NNP 21/CD
,/, 1965/CD -RRB-/-RRB- was/VBD an/DT African-American/NNP Mus-
lim/NNP minister/NN ,/, public/JJ speaker/NN ,/, and/CC human/JJ
rights/NNS activist/NN ./.
2) To/TO his/PRP$ admirers/NNS ,/, he/PRP was/VBD a/DT coura-
geous/JJ advocate/NN for/IN the/DT rights/NNS of /IN African/NNP
Americans/NNPS ./.

3. Named Entity Recognition is a pass that identiëes blocks of sequential words
that form a entity. Entities are locations, persons, organizations, times, quan-
tities, monetary values, percentages and the like. Most named entity systems
also tag each entity with its type, although that information is not used in the
system described here. e entities identiëed in the example text are:
Malcolm X; Malcolm Little; May 19, 1925; February 21, 1965; African-
American Muslim minister; public speaker; human rights activist; his; he;
courageous advocate; the rights; African Americans.

4. Coreference Resolution attempts to identify the target of words that reference
entities in a sentence. Common instances of references include personal pro-
nouns (e.g. he, she, it), nick names or short names (e.g. e president, Obama,
Barack Obama all refer to the same person at the time of writing), or more gen-
eral anaphoric noun phrases. e reference the country, in the context of an
article about Australia, would be an example of this more general case. By far
the most common case is that of personal pronouns, identiëed with the POS
tag PRP (see Table 1). e system described in this report just replaces these
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references with the target entity, although a more robust system would keep the
original coreference as well. e second sentence translates to the following un-
der basic anaphora resolution (Note that no attempt to get correct plurality of
the inserted entity is made, as plurality distinctions are removed in a later stage):
To Malcolm X admirers, Malcolm X was a courageous advocate for the rights
of African Americans.

5. Full Parsing is the forming of parse trees showing attachments and phrasal
structure. e full parse tree for the ërst of the example sentences is:

(ROOT
(S

(NP
(NP (NNP Malcolm) (NNP X))
(PRN (-LRB- -LRB-)

(VP (VBN born)
(NP

(NP (NNP Malcolm) (NNP Little))
(: ;)
(NP (NNP May) (CD 19) (, ,) (CD 1925))
(: --))

(NP (NNP February) (CD 21) (, ,) (CD 1965)))
(-RRB- -RRB-)))

(VP (VBD was)
(NP

(NP (DT an) (NNP African-American) (NNP Muslim) (NN minister))
(, ,)
(NP (JJ public) (NN speaker))
(, ,)
(CC and)
(NP (JJ human) (NNS rights) (NN activist))))

(. .)))

is parse tree is written in Penn Treebank (Bies, Ferguson, Katz, Macintyre,
Tredinnick, Kim, Marcinkiewicz, and Schasberger, 1995) style, using a lisp like
notation. e tags uses are explained in Table 1. Nesting level is denoted with
tabs. e basic NP-VP phrase structure is evident, nested beneath S at the same
level as the full stop. Named entities typically appear as noun phrases in parse
trees if correctly parsed.

e system described in this report uses the Stanford parser (Klein and Manning,
2003) for 1, 2 and 5 and the BART coreference toolkit (Versley, Ponzetto, Poesio,
Eidelman, Jern, Smith, Yang, and Moschitti, 2008) for 3 and 4. e triple extractor
works directly on the parse trees output from step 5.
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tag meaning

ADJP Adjective Phrase
ADVP Adverb Phrase
CC Coordinating conjunction
CD Number
DT Determiner

FRAG Fragment
IN Preposition or subordinating conjunction
JJ Adjective

LRB Left Parenthesis
NN Noun, singular or mass
NNP Proper noun, singular
NNPS Proper noun, plural
NNS Noun, plural
NP Noun Phrase
PP Prepositional Phrase

PRN Parenthetical
PRP Personal pronoun
RRB Right Parenthesis

S simple declarative clause
SBAR Clause introduced by a subordinating conjunction

SBARQ Direct question
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
VP Verb Phrase

WDT Wh-determiner
WHADJP Wh-adjective Phrase
WHAVP Wh-adverb Phrase
WHNP Wh-noun Phrase
WHPP Wh-prepositional Phrase

WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table 1: Penn Treebank tags used by Stanford parser (Bies et al., 1995).
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Ontological Sources

Wordnet

Wordnet (Fellbaum, 1998) is a lexical database of English, cataloging the inter-dependencies
between words. It can be of use in the post processing of triples, as its database of mor-
phological roots can be used to bring words into a canonical form. For example, the
following two triples have the same semantics, but this is not captured by the triple
representation until each word is replaced with its morphological root.

( John , was born, 14 July )
( John, be bear, 14 July )
In this case was is the past tense of the bare inënitive be, and similarly born is the past
tense of the bare inënitive bear.

Words that Wordnet can not identify the roots for are left as is. Bringing words to
their morphological root removes tense and plurality distinctions, reducing words
to their inënitive form when possible. Using morphological roots in this way, or
other semantically aware word simpliëcation techniques is known as lemmatisation,
as opposed to stemming (Lovins, 1968), an approach which just simpliëes words based
on their structure (i.e. removal of preëxes and suffixes). A stemmer would reduce all
of the following words to operate (Manning, Raghaven, and Schutze, 2008):

operate operating operates operation operative operatives operational

Stemming would not be able to reduce the above triples to the same form however.
Stemming often gives better results for search term processing in an information re-
trieval context (Hollink, Kamps, Monz, and de Rijke, 2003). However, it was found
in the context of this triple processing task that stemming would result in less human
readable triples. Stemming produced stems which were not valid words more often
than lemmatisation did.

Wordnet is also used for query expansion. is involves replacing query words with
a set of synonymous words in the hopes that it will increase recall. For example,
Wordnet ënds for the word surname the synonyms last name and family name. An
expanded query using those synonyms would return better results, as all three forms
are in common use. e only downside with using synonym sets (synsets) in this
way is that a synset is associated with a words meaning, and for words that can have
several meanings it is not clear which of the associated synsets should be used. Using
all associated synsets would increase recall at the expense of accuracy. e system
described in this report uses the synset associated with the most common meaning of
a word.
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Wikipedia Redirects

While lemmatisation is effective for most language constructs, other techniques have
to be used for canonicalising entities such as names, places, times and dates. During
the coreference resolution stage of the language pipeline, it is useful to replace all oc-
currences that are found to be coreferential with a canonical form of the referred to
entity. Recent research has found Wikipedia structure and text to be a useful source of
ontologies (Syed, Finin, and Joshi, 2008, Nakayama, 2008). One such resource avail-
able is the Wikipedia redirect data. Wikipedia contains a large number of redirects,
which send a user who enters a search term to a page that covers the entered search
term. ese each redirect can be treated as a synonym or hypernym relation. If there
is a redirect from phrase a to b, then a is a synonym or hypernym of b. Furthermore b
is typically the most canonical form of the entity referred to (is is Wikipedia policy,
see wik). Some examples are:

duluth hs → duluth high school
ramer → ramer, tennessee
the dirty knobs → mike campbell
marius cristian negrea → marius negrea
volvo 142 s → volvo 140 series
bucheon fc → bucheon sk
monacacy battleëeld → monocacy national battleëeld
saypan → saipan
One of these examples also illustrates a pitfall of this technique. e dirty knobs is
not a direct reference to mike campbell, but rather a band which he is a part of (a
meronym). Wikipedia redirects are sometimes used to link a narrow topic to a article
for a more general topic which also discusses it, usually if the narrow topic doesn’t
have its down Wikipedia page.

Triples with Modifiers

As described before, triples are 3-tuples of subject-predicate-object information. is
is a simpliëcation however, as realistic triple knowledge bases need to store modi-
ëers (or adjuncts) of the three components. e most common approach is to store
both word and phrase modiëers ordered as attachments to the part of the triple it is
modifying, including sub-attachments. An example of this is:
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Figure 1: Triple from Rusu, Dali, Fortuna, Grobelnik, and Mladenic, 2007.

e problem with this additional modiëer structure is that it becomes more difficult
to search over than a simple triple, and it becomes more fragile with regard to mis-
parsed attachments. Incorrect attachment of modiëers is still a common problem
with modern parsers, so some level of robustness is desirable.

e approach used here has a coarser structure for attachments. Modifying words
are included in the part of the triple they modify (i.e rare, black would be included
in the subject of the triple above as rare black squirrel), whereas phrasal modiëers are
handled differently. Phrasal modiëer attachments are made to the triple, not to the
parts of the triple. Furthermore, no nesting is allowed. Phrasal modiëers are attached
in a n-1 relationship with triples, and can only modify triples as opposed to the more
general case with triples and other modiëers. e same sentence as Figure 1 using this
triple formulation is:

Figure 2: Triple form used by the system described in this report.

Notice that the head of the modifying phrase has been separated from the body of
the phrase. Modiëers are stored this way so as to allow searching over the two parts
separately. e words a and has in the above triple do not provide useful information,
and are removed as stop-words during triple post processing.

A Simple Logical Query Language

is report uses a logical formulation of triple based knowledge. is allows the tech-
niques and notation of logic to be used to describe the translation and evaluation
of queries. Consider the triple form described above. We can represent this in the
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predicate calculus using two logical predicates, T and M (for triple and modiëer re-
spectively), where T takes 4 arguments (identiëer, subject, predicate, object) and M
takes 3 (identiëer, head, phrase). e ërst component of T and M is the triple iden-
tiëer used for showing the attachments. A modiëer is attached to a triple if its ërst
component is the triple’s identiëer. e form of the identiëer is immaterial, but in
practice integral numbers are used. e constants of this logical formulation are gen-
eral strings. So using this notation for the triple in Figure 2, the following is a true
statement given our knowledge base:

∃t. T (t, ”a rare black squirrel”, ”has become”, ”a regular visitor”)
∧M(t, ”to”, ”a suburban garden”)

e identiëer is existentially quantiëed as its actual value is not important, only that
an identiëer exists that links together the two logical predicates.

Querying over such a knowledge base is just ënding all models that satisfy a given
logical expression. To make query evaluation practical and translatable to queries
on relational databases, it is convenient to only allow a subset of all possible logical
expressions as queries. For the purpose of this report we deëne a simple logical query
as one which:

• Consists of a disjunction of conjunctions of predicates. e disjunction is al-
lowed to contain a single set of conjunctions.

• Each argument of the predicate is a String or variable.

Quantiëers are not necessary for this sort of querying, although they could be used as a
form of projection if they were allowed. is is a more restricted version of disjunctive
normal form where negation of variables is disallowed. Other than the quantiëer, the
logical statement above is a query in this form.

θ-subsumption and the Structure of the Simple
Logic Query Space

In Inductive Logic Programming (ILP), a hypothesis space of logic programs is for-
mulated in much the way the simple logic query space is deëned above. Like in ILP,
the space is purposefully restricted so as to make searching of the space possible. is
restriction is known as the language bias (Lavrac and Dzeroski, 1994). To make top
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down searching of the simple logic query space feasible, a structure in the form of
a partial ordering needs to be introduced. One such structure is the concept of θ-
subsumption:

Substitution A substitution θ = {x1 = T1, ...., xk = Tk} is a function from variables
to sets of terms. e application Wθ of a substitution θ to a logical expression
W is a obtained by taking a disjunction of copies of W , formed by taking for
each (t1, ..., tk) ∈ T1 × ... × Tk a copy with occurrences of each variable xj

replaced by tj .

θ-subsumption Let c and c′ be two clauses. Expression c θ-subsumes c′ if there exists
a substitution θsuch that cθ ⊆ c′(i.e the top level clauses are a subset).

is is a more general deënition of a substitution then what is usually used (For ex-
ample in Lavrac and Dzeroski (1994)), as terms rather then term sets are usually used.
For single element sets appearing in substitutions, the set notation will be omitted in
this report for notational convenience.

e partial ordering this induces coincides with making queries more general (or con-
versely more speciëc). For instance, a clause c is at least a general as a clause c′if c
θ-subsumes c′, and it is more general if the converse is not true. In ILP the terminol-
ogy generalisation and specialisation is used. A more general query will always return
more results, and the results returned will be a super-set of those from the less general
query. e system discussed in this report focuses on specialization.
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Figure 3: System architecture.
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Approach

Triple Extraction

Triple extraction is done with a heuristic approach. Parse trees pass through a series of
simpliëcations, each of which may split trees in some way or attach triple modiëers to
a list of such modiëers carried as meta-data with a tree. At the end of the simpliëcation
passes there will be some number of trees, each of which is expected to follow the
NP-VP-NP pattern (where either NP is optional). e modiëers that were attached
to each tree are then attached to the associated triple. is process is detailed in
Algorithm 1 (see appendix A for pseudo-code of the individual passes).

SplitCoordinatingConjunctions

e Split Coordinating Conjunctions step is designed to simplify sentences making
heavy use of conjunctions. As long as the parse tree is nested correctly, it will break
sentences expressing the same fact about a list of things, into several sentences, each
about one fact. For example, it successfully splits the following:

William Henry Seward was a Governor of New York and the United States Secretary of
State under Abraham Lincoln and Andrew Johnson.

into:
William Henry Seward was a Governor of New York under Abraham Lincoln.
William Henry Seward was a Governor of New York under Andrew Johnson.
William Henry Seward was the United States Secretary of State under Abraham Lincoln.
William Henry Seward was the United States Secretary of State under Andrew Johnson.
is sort of splitting can cause problems with dates, times, names or more general
collocations which involve conjunctions. Part of the named entity extractor’s function
is to detect these cases, so if it is functioning correctly conjunctions inside of entities
will not be split.
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Algorithm 1 Triple extractor core. See appendix A for code for passes.

type TreeWithModifiers = Tree + List of triple modifers

val passes = [
SplitCoordinatingConjunctions,
ExtractDependentClauses,
ExtractAdjectivePhrases,
ExtractPrepositionalPhrases]

def (xs map f) = transform each element of list by applying f
def (xs flatMap f) = map then concat list of lists to single list

def extractTriples( t : TreeWithModifiers) = {
var results = [t]

for( pass <- passes ) {
results = results flatMap pass

}

return results map extractSimpleTriple
}

def extractSimpleTriple( t : TreeWithModifiers ) = {
var st = first NP or VP in a depth first search(DFS)
if st is not NP

st = null

vpt = first VP in a DFS
ot = first {NP,ADJP,JJ,JJR,JJS} under vpt in a DFS
pt = vpt with ot removed if its not null

Triple(st, pt, ot) + t's modifiers
}
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ExtractDependentClauses

e Stanford parser identiëes all clauses in a parse tree as one of S, SBARQ, FRAG,
or SINV. is pass excises each clause from the main parse tree into a new parse
tree, along with a clone of its subject phrase. Sentences with dependent clauses,
known as complex sentences in linguistics—as opposed to simple sentences with a
single clause—are common in encyclopedic text. A dependent clause is introduced
by either a subordinate conjunction (for adverbial clauses) or a relative pronoun (for
relative clauses), so those two cases have to be handled differently. is pass also ex-
tracts parenthesised phrases and clauses as they can be handled similarly, although not
all are technically dependent clauses. Adverbial clauses are extracted into modiëers,
whereas relative or parenthesised clauses are broken off into separate sentences.

Some examples of its use are:

Relative clause

Laughter erupted from Annamarie, who hiccuped for seven hours afterward.

into
Laughter erupted from Annamarie.
Annamarie hiccuped for seven hours afterward.

Parenthesised clause

Magna Carta (the Great Charter of Freedoms) is an English legal charter.

into
Magna Carta is an English legal charter.
Magna Carta be the Great Charter of Freedoms.

Adverbial Clause

John Smith died when he was young.

into
John Smith died.
with attached modiëer
(when, he was young)

ExtractAdjectivePhrases

Adjective phrases typically appear in sentences between one or two commas, and ap-
pear in the parse tree as nested under their subject. ey are common in encyclopedic
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text, and capturing them is an essential part of a robust triple extractor. is step
transforms the following:

e Statue of Liberty, dedicated in October 1886, commemorates the centennial of the
signing of the United States Declaration of Independence.

into
e Statue of Liberty dedicated in October 1886.
e Statue of Liberty commemorates the centennial of the signing of the United States
Declaration of Independence.

ExtractPrepositionalPhrases

Prepositional Phrases are the main type of adjunct that is converted into a triple modi-
ëer. ey are also easy to extract, as they appear as PP nodes in the parse tree. Because
the attachments of modiëers are ignored by this system, attachments don’t need to be
captured.

An example is:

e average distance from Earth to the Moon is 384403 kilometers.

into
e average distance is 384403 kilometers.
with attached modiëers
(from, Earth)
(to, the Moon)

Question Evaluation

is system does not use a direct translation approach to question answering. Con-
verting questions to a single logic query, or even a set of queries, is a fragile process.
Instead, a search of a restricted space of possible queries is performed. is space can
contain thousands of queries. While time consuming, this sort of method is poten-
tially more robust. Differences in question phrasing, scope or structure from potential
answers is handled in a way that requires only shallow syntactic analysis of questions.

16



Question Preprocessing

A question needs to be broken down into parts that are of the same sort of form as
the parts of a triple. Triples often contain multiword entities like Yiddish Policemen’s
Union. If this entity occurred in a question then attempting to match triples with
these individual words as the subject or object would fail unless a full text matching
search was used. e system described in this report performs exact matching, so it
is necessary to group the words of each entity together. e OpenNLP chunk parser
performs this function. A chunk parser (Abney, 1991) is a way to break sentences up
into conceptual units. Chunks typically contain one content word or a single entity,
plus its consecutive function and modiëer words. e idea is that the scope of each
chunk produced tends to match the content of parts of triples.

e chunks are then classiëed based off of the part of speech tag given to the last word
in the chunk. Noun or adjective chunks are given the class entity and all others are
classiëed as assoc. e idea behind these classes is that entity chunks can be uniëed
with the subject or object of a predicate or the body of a modiëer, whereas assoc
chunks can be uniëed with triple predicates or the head of modiëers. Chunks are
then processed by removing stop-words in entity chunks and each chunk is converted
to lowercase and lemmatised. Some example chunked questions are:

Question: How long does it take to travel from London to Paris via the Chunnel?
[ / A,    / A,  / A,  / E,  / A, 
/ E,  / A, / E]
Question: Who created the board game Pictionary?
[ / A,   / E,  / E]
Question: How long is the Appalachian Trail?
[ / A,  / A,   / E]
Question: What is the capital of Uganda?
[ / A,  / E,  / A,  / E]
Question: When was Kevin Rudd’s wife born?
[ / A,  / A,   / E,  / E,  / A]

Query Space Search

e formulation of the simple logic query language along with θ-subsumption allows
us to perform searches of the query space in a top down, systematic way via specialisa-
tion. e root node is some number of predicates and modiëers with all variables free,
and the search subspace is all logic queries θ-subsumed by this base query. Currently
the system performs two searches, starting with the following two base logic queries:

T (t, s, p, o) ∧ M(m,h, b)
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T (t0, s0, p0, o0) ∧ T (t1, s1, p1, o1) ∧ M(m,h, b)

e search space is ënite if the following restrictions are placed upon the search:

• Chunks are used in at most one assignment.

• Unnecessary assignments, such as duplications of existing assignments, are not
used.

e state of each node in the search is formulated as a substitution set θ. At the root
node this is θ = ∅. e successors of a node are found by augmenting the node’s θ
with possible assignments in turn. e search tree is limited in depth to the number
of variables, as each variable can only participate in the left hand side of a single
substitution. See Figure 4 for an example of substitution sets at nodes in a search tree.
e assignments are also restricted so that a chunk is only assigned to a variable of the
same class (with the two classes entity and assoc as above). is is effectively a unary
type relation, although it won’t be made explicit in the examples that follow. It is also
unnecessary to use any chunk in the query more then once, as the same effect can be
accomplished by using a variable to variable assignment.

Consider the following question:

Question: What is the capital of Uganda?
[ / A,  / E,  / A,  / E]

e path through the search tree that ënds the correct answer is illustrated in Figure
4.

e successors of a node are all specialisations of that node. e space searched using
this method forms a graph, which is called the reínement graph in ILP parlance. It is a
graph because there can be multiple paths to a node, generally those corresponding to
reorderings of θ. Because of this, it is possible to reduce the nodes searched by using
memorisation on visited nodes (a form of dynamic programming), by maintaining a
visited node set which new nodes are checked against.
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T (t, s, p, o) ∧ M(m,h, b)

θ = ∅

↓

T (t, s, p, ”capital”) ∧ M(m,h, b)

θ = {o = ”capital”}

↓

T (m, s, p, ”capital”) ∧ M(m,h, b)

θ = {o = ”capital”, t = m}

↓

T (m, s, p, ”capital”) ∧ M(m,h, ”uganda”)
θ = {o = ”capital”, t = m, b = ”uganda”}

↓

T (m, s, ”be”, ”capital”) ∧ M(m,h, ”uganda”)
θ = {o = ”capital”, t = m, b = ”uganda”,p = ”be”}

↓

T (m, s, ”be”, ”capital”) ∧ M(m, ”of”, ”uganda”)
θ = {o = ”capital”, t = m, b = ”uganda”,p = ”be”, h = ”of”}

Figure 4: An example search path
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Ranking Simple Logic Queries

e above method will examine every logic query in the restricted query space previ-
ously described. However, it gives no indication as to which query or queries are best
able to answer the user’s natural language question. In ILP logic programs are chosen
based off of their ability to correctly classify positive and negative training examples.
A similar approach is not possible with natural language queries, as the answer (the
positive example required) is not known. Instead a heuristic approach is needed. e
system described here uses information about the structure of the query as well as
the number of results returned when it is executed. Evaluating the number of results
returned at each node allows us to prune the search space as well, as it is unnecessary
to check the children of a node that returns no results (their result set will also be ∅ as
they must be a subset).

Interior nodes (those with children which return more than zero results) of the tree
are not considered for the set of candidate queries either. e intuition is that if the
answer to the natural language question is in an interior node then it is likely also
in the children of that node. If interior nodes were considered the set of candidate
queries would be too large, so this distinction is also made by necessity.

Algorithm 2 Ranking of simple logic queries.
Firstly, queries with identical result sets are merged together, with a occurrence count
kept to record how many were merged into each query.
Queries are then sorted in ascending order by the sum of the following, with the
highest ranked of each merged set chosen to represent that set:

• −1
2

times the number of results.

• 1 times the search depth.

• −4 times the number of predicates (this puts the 1 triple 1 modiëer queries on
equal footing with the 2 triple 1 modiëer ones).

• 1 times the number of occurrences.

e ranking algorithm is just a tuned heuristic. e idea is that good queries return
few results (hopefully just the original question’s answer), and that more heavily con-
strained queries tend to return less noise (so answers they give are more likely to be
good answers).
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Algorithm 3 SQL Database deënition (hsqldb syntax).

CREATE TABLE triple (
tid identity,
subject varchar(255),
predicate varchar(255),
object varchar(255))

CREATE TABLE modifier (
mid identity,
tid integer,
head varchar(255),
phrase varchar(255))

Efficient Simple Logic Query evaluation

Simple logic queries created from substitution sets can be translated into SQL in a
straightforward way, See algorithm 3.

Algorithm 4 Simple logical query with substitution set to SQL translation procedure.
Build up a SQL query as SELECT {selection} FROM {tables} WHERE {clauses} using
the following steps:

1. Create unique predicate names. Name the predicates that appear in the query
in the order they appear, with a distinction between triples and modiëers (e.g
t0, t1,m0,m1,m2).

2. Create unique variable names. Name the variables by the location in the pred-
icate they appear in, preëxed by the predicate name in the usual SQL way(e.g
t0.object). If a free variable appears in multiple predicates, only include the
ërst.

3. selection is a comma separated list of the names of each free variable.

4. tables is a comma separated list of the tables and predicate names in usual SQL
notation (e.g triple as t0, triple as t1, modiëer as m0 ...)

5. clauses is a AND-ed comma separated list, one item per set of assignments. An
assignment is mapped to SQL as a variable assignment. A set of assignments
is just a parenthesized expression of the individual assignments, separated by
ORs.
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For example:

T (x, y, z)

θ = {x = ”john”, y = ”visit”, z = {”east germany”, ”germany”}}

Translates to:
SELECT t0.subject, t0.predicate, t0.object
FROM triple as t0
WHERE
(t0.subject='john') AND
(t0.predicate='visit') AND
(t0.object='east germany' OR t0.object='germany')

A Side Note: Triple Queries & Inference

Consider a variation of the question discussed in the introduction:

When was Kevin Rudd’s wife born?

e answer was contained in the following snippet of text from a corpus:

erese Rein (born 17 July 1958) is an Australian businesswoman and the wife of the
26th Prime Minister of Australia, Kevin Rudd.

e two relevant facts in this sentence are

erese Rein is the wife of Kevin Rudd.

erese Rein was born on 17 July 1958.

To answer the question, these two facts need to be combined. Inference of this kind
could be preformed by deductive databases or logic programming systems if the facts
were stated in an appropriate way. e system just described does not perform this
sort of inference, although the effect is duplicated. If only two facts (represented by
individual triples) need to be combined, then the two triple, one modiëer query space
will contain a query that combines these two facts. Since a query involving a join is
typically more constrained then other queries, the result ranking algorithm will also
place it high in the results.
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Results

Corpus & Questions

e test corpus consisted of 20 documents, each on a different subject. e doc-
uments were selected so that each of the 20 questions had a document containing
information relevant to answering that question. e total corpus size was 7,916
words, totaling 44.3Kb, which results in 1612 triples and a 146Kb triplestore when it
is serialised to comma separated value format. e documents were chosen to contain
paragraphs representative of what a information retrieval system would select based
off of a keyword search. is selection was done by hand. If an information retrieval
system was used as a front end the conditions would be more favorable as only triples
over a single topic (rather then 20 topics) would need be used at a time. Paragraphs
were excepted from web pages appearing on the ërst page of a Google search for rele-
vant keywords from the questions, as well as the Wikipedia pages on the topics. e
triple extraction process took approximately 309 seconds, mostly due to the speed of
the Stanford parser. All timed runs were obtained on a 2.5GHz Core2 Duo machine,
with 2GB of RAM.

e questions were selected from the TREC8 (Voorhees and Harman, 2000) train-
ing question set. e ërst 20 questions were selected, with the exception of several
questions for which corpus documents could not be compiled. As a different corpus
than the one the questions were compiled for was being used, this was necessary. e
running times for answering each question are shown in Figure 5.

e system was also compared against a simple wh-word substitution question an-
swering system over the same triple database, which formed the baseline. wh-word
substitution is a primitive form of direct translation to queries and it was not expected
to do well.
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Answer Evaluation

e system was conëgured to output the combined results for each of the leaf queries
it found, displayed in the order the queries were ranked. Each question was checked
against the results to determine 3 things:

1. Did the answer occur in the results anywhere?

2. Did the answer occur in the top 5 results?

3. Did the answer occur in the top 20 results?

Table 2 gives these results. Of the 20 questions, 10 were answered, and 7 had the
answer in the top 5 results. In all 7 of these cases, it was found that the correct answer
was clear from the results (i.e results ranking above the correct one were of the wrong
type). e average number of results displayed was 32.6, with standard deviation
23.7, being displayed as a result of an average of 19.2 leaf queries per question. e
average running time for 1 triple 1 modiëer queries was 3.38 seconds, whereas the
average total running time was 15.2 seconds.

e baseline system was able to answer 3 of the 20 questions. It managed to answer
the two subjectively easiest questions (numbers 19&20), as well as question 13.
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Figure 5: Running times in seconds for the 20 test questions. 1 modiëer 1 triple
queries shown as subset of time in gray.

n chunks stime time depth searched leafs results had answer top5 top20
1 7 6281 46250 5 6990 75 69
2 5 3531 6985 5 396 10 8
3 12 13125 19735 5 3336 21 28
4 5 1641 1704 5 142 3 13 X X X
5 13 6641 24532 6 5084 53 39 X X X
6 10 1860 3969 6 1235 12 18
7 4 1688 5375 4 525 17 44
8 5 3328 26328 6 1833 23 23
9 8 7094 113500 6 6669 24 51 X X
10 8 2968 9172 5 1115 25 33 X X
11 3 1062 2109 4 494 19 59
12 3 140 156 1 14 0 0
13 8 4907 20844 6 2595 34 89 X X X
14 3 1422 1454 4 92 4 6
15 3 891 891 4 66 4 20 X X X
16 3 1250 1390 4 86 4 12
17 4 2547 31219 6 852 17 44 X X
18 5 2375 2391 5 111 2 4 X X X
19 4 2188 25938 6 660 17 48 X X X
20 4 2562 28578 6 1095 19 43 X X X

Table 2: Information on the runs for the 20 questions. stime is running time for the
1 triple 1 modiëer query search, time is the total search time.
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n Question
1 What date in 1989 did East Germany open the Berlin Wall?
2 What is the shape of a porpoises’ tooth?
3 What is the number of bison thought to have been living in North America

when Columbus landed in 1492?
4 e Faroes are a part of what northern European country?
5 e symptoms of Parkinson’s disease are linked to the demise

of cells in what area of the brain?
6 What hotel was used for a setting of the Agatha Christie novel,

”And en ere Were None”?
7 What year was the Magna Carta signed?
8 Who was Lincoln’s Secretary of State?
9 How long does it take to ìy from Paris to New York in a Concorde?
10 How many lives were lost in the Pan Am crash in Lockerbie, Scotland?
11 What is the world’s population?
12 Which atlantic hurricane had the highest recorded wind speeds?
13 How long does it take to travel from London to Paris via the Chunnel?
14 Who created the board game Pictionary?
15 How long is the Appalachian Trail?
16 What was Malcolm X’s original surname?
17 What is the capital of the United States?
18 How tall is the Statue of Liberty?
19 What is the capital of Uganda?
20 What is the capital of Wisconsin?

Table 3: Mixed topic corpus questions.
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Discussion & Future Work

One interesting outcome of the testing is the success of the result ranking algorithm.
Given that it involves no semantic analysis of the question, the fact that 7 out of 10
times it places the correct answer in the top 5 is quite remarkable. Unfortunately, in
most of the cases the correct answer was not ërst. A comparison with the answers
placed before the correct answer suggests that the correct answer would be clear to a
user if they were given a list of the top 5 answers. is suggests that questions and
answers need to be analysed for type information. For example, a question that is
asking for a place name would only be shown answers that a named entity extractor
found were place names. Practical question type analysis systems have shown accuracy
above 98% (Li and Roth, 2002), so the success of such a method would depend almost
entirely on the accuracy of the named entity extractor used.

Machine Learning approaches to result ranking are widely used in other question
answering systems and would likely be a good ët here as well. Result ranking of triple
queries is a signiëcantly different problem from directly ranking answers, and is an
interesting avenue for future research. e success of the heuristic method used here,
which relies only on triple query structure, suggests that the extra information in the
triple queries would allow for better ranking.

Although no empirical evaluation of the triple extractor was performed directly, some
notable deëciencies became apparent over the course of development of the system.
e main disadvantage of a pipeline system is the compounding of errors. Each stage
of the system has an error rate associated with it, and when the errors of each stage
are multiplied, it is found in practice that few sentences are analysied correctly by all
stages. One of the advantages of the triple knowledge representation is a robustness to
these errors. However, errors in named entity extraction and coreference resolution
were found to contribute to many incorrect triples. e use of a full coreference
system was probably unnecessary, most of the cases where coreference was useful an
anaphora resolution system would have provided the same beneët. Parse errors were
also a common problem, although this was mostly alleviated by the use of the top 3
parse trees for each sentence, rather then just the most likely. e increase in recall
this provided was found to outweigh the noise it introduced in the results.
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e natural next step in evaluating the system discussed would involve integrating it
with an information retrieval system, so that larger corpora could be used. is would
allow a direct comparison against other research question answering systems using the
TREC guidelines (Dang et al., 2007). Rather then preforming logical queries over
the entire triple database, which would be prohibitively large for the TREC corpora,
queries could only be preformed over triples associated with the top 20-50 documents
returned by the information retrieval system. If this was done on a per question basis
it would keep the search tractable.

e largest contributing factor to the speed of the current algorithm was the need to
evaluate each query during the query space search to determine if any results were
returned. e full query was run at each node, but the results were only used to
determine if the query had zero results or not. A system using a customized query
for this purpose would be much faster, likely by a factor of 10 or more. A caching
strategy for intermediate queries could reduce this even further. Rather than search
the entire subspace, a heuristic search could be used such as a beam search. It is not
clear what heuristics would be effective, or indeed if a heuristic would work at all.

e baseline system achieved 15% accuracy. Since it is a method of direct translation
from questions to logical queries, it was expected to return the correct answer or no
answer at all. is was the case, in fact no results were returned at all for questions
that it did not answer correctly. As far as question answering systems go, it was very
primitive. Unfortunately, the author was unable to ënd any other question answering
systems over triple knowledge bases for which binaries or source code was available.

28



Related Work

e triple knowledge representation has its root in linguistics, where the subject-
predicate-object terminology comes from. e ërst account of the importance of these
three components and how they are a universal attribute of languages was in Green-
berg (1963). Triples were used as a knowledge representation language in some early
expert systems, particularly in medical applications (Warner, Olmsted, and Ruther-
ford, 1972). Although more expressive knowledge formulations have been more suc-
cessful such as description logics (Baader, Calvanese, McGuinness, Nardi, and Patel-
Schneider, 2003). Triples have since made a resurgence in user annotated meta-data,
particularly in the form of the Resource Description Framework (rdf, 2004), which
forms the core technology behind the Semantic Web . e approach of treating the
subjects and occasionally the objects as resources or entities leads naturally the formu-
lation of semantic graphs (Sowa, 1984), where the subjects and objects of triples are
treated as nodes and edges are labeled with the predicates. Question answering sys-
tems built on semantic graphs have been explored (Dali, Rusu, Fortuna, Mladenic,
and Grobelnik, 2009), although only using very limited natural language querying
support (limited to questions that match predeëned language templates).

A variety of different approaches have been used to represent modiëers or additional
information in triples. Katz (1997) used a nested triple system, which allows for much
more complex knowledge to be represented then plain triples. e method in Rusu
et al. (2007) only allows for nesting of modiëers with other modiëers, which is still
signiëcantly more general then the approach described in this report.

In connection with the resurgence in interest of triples as metadata, a variety of ap-
proaches for machine generating triples from natural language have been explored.
In Rusu et al. (2007) heuristics for triple extraction are speciëed over a variety of dif-
ferent types of parse trees. Nakayama (2008) uses similar heuristics, although both
methods are signiëcantly simpler then the approach described here. Dali and Fortuna
(2008) uses a Support Vector Machine for triple extraction, using a binary classiëca-
tion approach to pick a subset from the large number of possible triples that could be
extracted form the sentence.

Many real world systems have taken more general logic formulations as their knowl-
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edge representation language. Techniques include heuristic (Elworthy, 2000) and
machine learning (Zettlemoyer and Collins, 2009) approaches. Molla, Aliod, Berri,
and Hess (1998) used Horn clauses as the knowledge representation language and
used a bottom up query expansion method.

As far as the author is aware, inductive logic programming techniques have not previ-
ously been applied to direct question answering. Although the approach discussed in
this report uses similar techniques and notation, it does so to very different ends. ILP
is a form of learning as opposed to an inference system. e technique of top-down
search of reínement graphs was pioneered by the ILP system MIS (Shapiro, 1982).
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Conclusions

e natural language question answering system described showed promising results
on the test corpus, with 35% of the questions having their correct answer in the top
5 answers returned.

It was not initially clear from the formulation of the logic query space that an ex-
haustive search would be practical, but the results conërm that it is able to ënish in a
reasonable amount of time. e single triple and modiëer query search took on aver-
age 3.38 seconds, which with suitable optimisation is fast enough for use in practical
systems. e two triple, one modiëer query search often took substantially longer,
with an average of 15.2 seconds, although the median was only 4.95, suggesting most
of that time was taken on a few long running queries. e average size of the query
spaces was 1670 queries, a reasonable size for exhaustive search methods to deal with.

e triple extraction method worked well in practice, although it was prone to over-
simplifying sentences, and was found to be vulnerable to errors in the language pipeline,
notably in the named entity recognition and coreference resolution stages.

Given the search method’s radical departure from existing methods, and the short
time span it was built in, its performance suggests it would perform well as the core
of a more reëned question answering system, or as part of an ensemble of methods.
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Algorithm 5 Conjunction splitting pass pseudo-code.

def SplitCoordinatingConjunctions( t : TreeWithModifiers ) = {
if one of t's children is a CC node {

var replacements = splitOnCCs(t)
return replacements flatMap (SplitCoordinatingConjunctions)

}

var results = []
for( child <- t.children ) {

var replacements = SplitCoordinatingConjunctions(child)
var clones = []
for(new_child <- replacements)

clones += A clone of t with child replaced with new_child

if( clones.size > 1 )
results += clones flatMap (SplitCoordinatingConjunctions)

}

return results
}

def splitOnCCs( t : TreeWithModifiers ) = {
var new_children = []
var forests = splitChildrenOfTree(t, {CC, ","})
for ( forest <- forests ) {

group = new node with same label as t
group addChildren forest
new_children += group

}

return new_children
}

def splitChildrenOfTree( t : TreeWithModifer, delims : String) = {
val forest = []
foreach consecutive group g between delims {

val n = new Node with class t.class
n.children += g
forest += n

}

return forest
}

36



Algorithm 6 Dependent clauses extracting pass pseudo-code.

val adj_heads = {WHNP, WHADJP, NP, WP$, WP, WDT}
val advp_heads = {WHADVP, WHAVP, IN, WHPP, WRB}

def ExtractDependentClauses( t : TreeWithModifiers) = {
var results = []

if t in {S, FRAG, SBAR, PRN}
excise t from its parent

if t in {S, FRAG}
results += t

if s is SBAR {
var subclause = first child of t matching S
if subclause != null {

var adjHead = get child matching adj_heads
if adjHead != null {

var subject = first NP in a DFS of parent
add subject as first child of subclause
t = subclause

}

var advHead = get child matching advp_heads
if advHead != null

t += new modifier(advHead, subclause.toString)
}
results += t

}

if t is PRN {
var subject = first NP in a DFS of parent
remove Left and right bracket symbol nodes from t
results += new tree of form

(S
{subject}
(VP (VBZ be)

{t}))

}

t.children = t.children flatMap (ExtractDependentClauses)
return [] if results contains a single tree with no children
otherwise return results

}
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Algorithm 7 Adjective phrase extraction pass pseudo-code. See 5 for deënition of
splitChildrenOfTree.

def ExtractAdjectivePhrases( t : TreeWithModifiers) = {
val forest = splitChildrenOfTree(t, {',', ';', '.'})

if forest.size == 2 {
val head = first child of the first tree in forest
val pred_parent = second tree in forest
val pred = first child of pred_parent

if head is NP {
excise pred from t
if pred is not NP

add copy of head as first child of pred_parent

make pred_parent S
results += pred_parent

}
}

results += t.children flatMap (ExtractAdjectivePhrases)
return results

}

def (xs map f) = transform each element of list by applying f
def (xs flatMap f) = map then concat list of lists to single list
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Algorithm 8 Prepositional Phrase extraction pass pseudo-code.

def ExtractPrepositionalPhrases( t : TreeWithModifiers) = {
val results = [t]
val pps = removePrepositionalPhrases(t,null)

if pps != null {
reverse(pps)
for( pp <- pps ) {

val head = head of pp phrase as string
val body = pp with head excised as string

if body != null
t += new Modifier(head,body)

}
}

return results
}

def removePrepositionalPhrases( t : TreeWithModifiers,
parent : TreeWithModifiers) = {

val pps = []

for( c <- t.children )
pps += removePrepositionalPhrases(c,t)

if t is PP {
if parent != null

parent.remove(t)
pss += t

}

return pps
}
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