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|. INTRODUCTION
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= [0_575 0.875} . In this brief, we design routing algorithms for alt-optical network

[1], [9], [14] and [21]. This kind of network offers the possibility of
Next, one easily finds that the system is asymptotically stable sincéerconnecting hundreds to thousands of users, covering local to wide

eigenvalues of matrixi; are\; = 0.3831 and\> = 0.9919. O area, and providing capacities exceeding substantially those a conven-
tional network can provide. The network promises data transmission
IV. CONCLUDING REMARKS rates several orders of magnitude higher than the current electronic net-

work. The key to high speed in the network is to maintain the signal in

Necessary and sufficient conditions for stability and asymptotic Stgptical form rather than electronic form. The high bandwidth of the
bility of a system described by the positive 2-D Roesser model (1) &{Ser-optic links is utilized throughwavelength-division multiplexing
given. Conditions are significantly simpler than known conditions f()(lWDM) technology which supports the propagation of multiple laser
stability of the system described by regular 2-D Roesser model, one ¢@lyms through a single fiber-optic link provided that each laser beam
check stability of positive 2-D system using well-known methods fqjses a distinct optical wavelength. Each laser beam, viewed as a carrier
1-D systems. We hope that the conditions will stimulate research gfsignal, provides transmission rates of 2.5-10 Gbps. The major appli-
synthesis of systems described by positive 2-D systems, for instaRggons of this network are found in video conferencing, scientific visu-

filters for image processing. alization, real-time medical imaging, supercomputing and distributed
computing [21]. A comprehensive overview of the physical principles
ACKNOWLEDGMENT and applications of this technology can be found in the books by Green

e[i?] and McAulay [14]. Following [4], [8] and [15], we shall model the
all-optical network as directed symmetrigraph, where every two ad-
jacent vertices have a pair of opposite directed edges.

The Network Models:An all-optical network consists of vertices
(nodes, stations, processors, etc.), interconnected by point-to-point
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Besides the different choice of switches, there are different wavelength= (V, E) with |V| = n and|E| = m, if edge{u, v) € E if and
assignment polices for routing paths. In most cases, only a uniqudy if (v, u) € E.
wavelength is allowed for each routing path. We call this WDM model The direct productof two undirected graph& = (Vi, E;) and
the wavelength nonconversion modéi different wavelengths are # = (15, E»), denoted byG x H, is defined as follows. The vertex
allowed for different segments of a routing path, the model is callegt ofG x H is the Cartesian produtt x V5. There is an edge between
wavelength conversion modélt is called the\-routing modein [6].)  two vertices(vy, v2) and(vi, vh) in G x H if either v; = v and
Previous Related WorkOptical routing in an undirected network (y,, v4) € E orvs = v and(v1, v}) € E1. The graphss and H
G was considered by Raghavan and Upfal [20]. They proved @fe thefactorsof ¢ x H. Notice thatG' x H consists of Vx| copies
(1/5*) lower bound on the number of wavelengths needed i ¢ connected byV;| copies ofH, arranged in a grid-like fashion.
implement any permutation with one round, wheteis the edge Each copy off is called arow and each copy dff is called acolumn
expansion ofG: (which is defined later). They also presented af the grid. An edge it x H betweer(v, u) and(vz, ) is called a
algorithm which i‘mpleme‘nts any permutation on bounded degr%e-edgeif (11, v2) € Ey, and an edge of x H betweer@, u1) and
graphs using?(log” n/log® \) wavelengths within one round with (v, 1) is Calied anf -edgeif (u1, us) € Bo.
high probability, wheren is the number of nodes it and A is A \aquestin an all optical networkG(V, E) is an ordered pair of
the §econd largest eigenvalue (in absolute value) of the trans't\%}tices( u, v) in G which corresponds to a message to be sent from
matrix of the standard random walk afi. For degreed arrays, u to v. u is the sourceandwv is the destination An instancel is a

. : 1/d o
they presented an algorithm with ai(dn'/®/log n) worst case sef of requests. If = {(i, =(i))| i € V'}, then the routing is called

performance. Aumann and Rabani [4] presented a near optima k . here i S
implementation algorithm for bounded degree networks within OrPeermutatlon routing, where is a vertex permutation icv.
Let P(x, y) denote a directed path @& from « toy. A routingin G

round. Their algorithm need®(log® n/3?) wavelengths. For any . . i - ' ,
bounded dimension array, any given number of wavelengths, andf han mstancé '?as‘?‘ of dlrected patH%_(I) - {.P(‘L’ y).| (, y) €
.Aninstancd is said to bemplementedf there is a routing path for

instancel, Aumann and Rabani [4] presented an algorithm whic ) . :
implements thel within O(log n log [T|Top.(T)) rounds, where every request idf, and the routing path has been assigned wavelengths

Tope(I) is the minimum number of rounds necessary to implemefftat complies with routing policy defined by the model. _
I. Kleinberg and Tardos [12] later obtained an improved bound of The conflict graph associated with a permutation routing
O(log n) on the approximation of the number of rounds required = {£(; 7(i))[ 7 € V', i is the source and(i) is the destination of
to implementI. Rabani [19] further improved the result in [12] to?} in @ directed or undirected gragi(V', E), is an undirected graph
O(poly log log nTuy(I)). Pankaj [16] considered the permutatior=. = = (V. E'), where each directed (undirected) routing path in
routing in hypercubes, shuffle-exchanges, and De Bruijn networKs.is a vertexini”” and there is an edge i’ if the two corresponding
He showed that permutation routing within one round can be achieve@ths ink share at least a common directed (or undirected) edge in
with O(log? n) wavelengths, while Aggrawadt al. [1] showed that ~ Theedge-expansiod(G) of G(V, E) is the minimum, over all sub-
O(log n) wavelengths are sufficient for the permutation routing igetsS of vertices,|S| < n/2, of the ratio of the number of edges
this case. Pankaj [16], [17] proved &X{log n) lower bound on the leavings$ to the size ofS (C V). A bisectionof a graphG/(V, E) is
number of wavelengths needed for any permutation routing wittefined as follows: LeP = (11, V2) be a vertex partition which par-
one round on a bounded degree network. Aumannn and Rabanitjdpns V" into two disjoint subset®; andV- such thatVi| = [|V|/2]
demonstrated that the permutation routing in hypercubes can dm®d|Vz| = ||V/|/2]. Thebisection problenis to find such a vertex par-
done with a constant number of wavelengths. Gu and Tamaki [18}jon (V1, V2) in G that|C| is minimized, wher€ = {(, j)|i € V4,
[11] further showed it suffices for implementing any permutatiofi € Vi, and(é, j) € E}. Lete(G) = |C|. The bisection concept for
in a directed symmetric hypercube using two wavelengths and uwndirected graphs can be extended to directed graphs. For the directed
an undirected hypercube using eight wavelengths. Liang and Shession,C' = {{i, j}| ¢ € V2, j € V1, and(i, j) € E}.

[13] showed that the permutation routing in a cube-connected cyclelet R be a permutation routing forr in G. We define
(CCC) can be achieved with one round withlog » | wavelengths, Cle, R = {P(i,x(i)| i € V,e € P(i=(i)), and
which is almost tight, following Pankaj's proof [16], [17]. Barry andp(;, (i)) € R} to be the congestionof edge e¢. Then,
Humblet [5], [6] gave bounds for routing in passive (switchless) anfle congestion problem forr in G is to find a permutation

A-networks. An almost matching upper bound is presented later in [H)uting R such that max.cp{|C(c, R)|} is minimized. Let
Peiris and Sasaki [18] considered bounds for elementary switchgs,, ;.s+(G, ©) = ming max.ep {IC(e. R)|}. The congestion of

The connection between the packet routing and the optical routipg .., ;¢ s¢(), is defined agongest(G) =
is also addressed in [1]. The integral multicommodity flow probleny 5 permutatioh.
related to the optical routing has been discussed in [4], [2], [3]. A
comprehensive survey for optical routing appears in [8].
Our Results: In this brief we consider the permutation routing issue [ll. ROUTING ALGORITHMS FORPRODUCT NETWORKS

in an all-optical product network whose topology idieect productof In this section, we design permutation routing algorithms for

two networks. This kind of network includes many well known net- roduct networks. We first show a lower bound on the number of

works such as hypercubes, meshes, tori, etc. We first show a IO\Ber . L
. . wavelengths needed to implement any permutation in such a network
bound on the number of wavelengths needed for implementing an . .
th one round. We then present routing algorithms for the two

permutation with one round in a product network; then present p del
mutation routing algorithms for such a network under two models, thRode’s.
wavelength nonconversion and conversion models, respectively.

max{congest(G, m)|T

A. Lower Bounds on the Number of Wavelengths

Lemma 1: Given an all-optical networki(V, E), we assume that
¢(@) is the number of edges in its bisection, angl, is the number

In this section, we define necessary notations and explain basic nbwavelengths needed to implement any permutatio iwith one
tions for later use. A directed graph is calledigected symmetrigraph  round. We haveuv..in > congest(G) > (n — 1)/2¢(G).

Il. PRELIMINARIES
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Proof: Following the congestion definition and the opticalSuppose thals anddy; are the maximum in-degrees (out-degrees) of
routing rule that different signals through a single link must bé& andH . Then, alower bound on the minimum number of wavelengths

assigned different wavelengths, it follows thati, > congest(G). wmin (VW) for implementing any permutation i with one round is
Let (Vi, V») be a bisection irG' with |[Vi| > |V2|. Assume there 2S follows.

is a permutationr which permutes the vertices I} to the vertices in 1) V@& VEH)| 1

V4. The congestion off for 7 is congest(G, m) > |n/2]/c(G) > tmax 2¢(@G) T 2¢(H)

n—1)/2¢(G). Sincecongest(G) > ¢ (G, ), thel then
(n—1)/2¢(@). Sincecongest(G) > congest(G, ), the lemmathen it both [V (G)| and |V ()] are even,

follows. [ ]
Notice that Lemma 1 always holds no matter whether the all-optical |V (H)] V(@)
network uses the wavelength conversion model or not. 2)  max { 2e(H) +dn + 20(G)/V(G) 7 2¢(G) 1}

Lemma 2: Let G x H be a directed symmetric product network. . . .
Let ¢(G') be the number of edges in a bisection of a graghand If |V (G)] is even andV (H)] is odd.
V(G') be the vertex set ofi’. Suppose thatlc and dx are the V(G| V (H)|
maximum in-degrees (out-degreesyoandH . Then, 1y:(G x H) < 3) max{%(G) e+ 2e(E)/[V(H) L, Se(H) 1}
min{|V(H)[e(G), [V(G)|e(H)} if both [V(G)| and |V (H)| are ) )
even; 2)c(G x H) < min{|V(G)|c(H) + du|V(G)|/2 + <(G), i [V(G)|isoddandV (H)|is even.
|[V(H)|lc(G)} if |[V(G)| is even and |V(H)| is odd; 3) V(&)
od x H)y < min{|[V(H)|(G) + da|V(H)|/2 + c(H), 4) max{{)i de s 2 E IV (H -1
V(G)|e(H)}  [V(G)| is odd and [V(H)| is even: 4) 26(@) + do + 2e(H)/IV( |il(H)|
oG x H) < min{[V(@le(H) + IV(G)/2)dn + o(G), _ s 1}
V(G)|e(G) + [[V(G)]/2)de +c(H)} otherwise. 2¢(H) +di + 2¢(G)/|V(G)

Proof: We first consider case 1) where both = |V(G)| otherwise.

andgq = |V(H)| are even. LeV' (G) = {vi, vo, ..., v, } be the
vertex set ofG. SupposeVi(G), V2(G)) is a bisection of7, where B. A Routing Algorithm on the Packet-Passing Model

Vi(G) = {o1, 02, vp/2} andVz(G) = {'UP/QH_’ ces Up) We_ LetWW = G x H andr be a permutation ifi. Assume the factox§
replace each vertex i&x by the_ grath, anc_j establish a cqnnegtlonandH of W are equipped with routing algorithms. We are interested in
betwe_en the tWO_ corre.spondlng.vertlces in tvhe two copleﬁ_lqlf designing arouting algorithm fé# by using the routing algorithms for
there is an edge 'G This resglts.ln the graph’. Now, we partltlon. G andH assubroutinesThe permutation routing on a directed, product
the verte?( set_ ofV into two disjoint subsets of equal size ?Cco_rd'n%etworkw has been addressed by Baumslag and Annextein [7] for
to the bisection of:. Thus, the number of edges 61" in this o hacket-passing model. Their algorithm consists of three phases. 1)
partition .|s |V.(H) |e(G). Similarly, there is a.noth.er partition _b_ase_dRoute some set of permutations usiieedges only; 2) Route some set
or] the bisection off. The number of efjges in this Ifatter partition isy¢ permutations using -edges only: 3) Route some set of permutations
[V(G)le(H). Thus,e(G x H) < min{[V(H)[e(G), [V(G)le(H)}. singG-edges only. Since the product network is a symmetric network,
We then consider case 2) whefe = |V (G)| is even and the three phases can be applied alternatively, i.e., by first routid§,on
g = |V(H)| is odd. If we use only the&7-edges for the vertex followed by G, and followed byH .
partition of W, then the number of edges W in this partition Now, for the given permutation, consider a naive routing method
is |V (H)|c(G), following the above discussion. We now considem which each source in a column is routed to its destination row in
another vertex partition ofit”, which consists of bothH- and the column, followed by routing each source in a row to its destina-
G-edges as follows. LetVi (H), V2(H)) be a bisection off, where tion column in that row. This routing fails to produce edge-disjoint
Vi(H)| = [|[V(H)|/2] and|V2(H)| = [|V(H)|/2]. We replace paths because there may exist a case where several sources in the same
each vertex i with the graphG, we then obtain a vertex partition column have their destinations in a common row. If we are allowed to
(V(W), V(W) in W with |[V(Wy)| = [|[V(H)|/2]|V(G)| useaninitial extra phase, this congestion problem can be solved easily.
and |[V(W2)| = [|[VE)|/2]IV(G)| + |V(G)|. The number of That is, we first “rearrange” each column so that each row consists of
edges inW in this partition is no more thafV (G)|c(H). It is a set of sources whose destinations are in distinct columns. After that,
clear that this vertex partition is not a bisection 16f. To obtain a permutation of each row is required to get each source to its correct
a vertex partition ofil¥’ with equal size based on this partition, itcolumn after the rearrangement. Once all the sources are in their cor-
proceeds as follows. Let € V,(H), there is a corresponding  rect columns, a final permutation of each column suffices to get each
in W for v, partition the vertices in thig€¥ copy into two equal source to its correct destination. This final phase is indeed a permuta-
sizes, using the bisection off, and let (V""", Vi¥") be the tion since the destinations of all sources are distinct. Thus, the aim of
resulting vertex partition of theZ copy. Now there is another the first phase is to find a set of sourd®s, one per column, such that
vertex partition(V (W) U V%W, V(W) U Vi — V(G)) for  every source irPr has its destination in a different column, for every
W owith [V(W2) U VY — V(@)| —|[V(W) U V%] = 0, rowR. To this end, a bipartite graghis(X, Y, Eg) is constructed as
and the number of edges in this partition is no more thaollows. LetX andY represent the set of columnsTifi. There is an
[V (G)|c(H) + du|V(G)|/2 + <«(G). While the bisection oM is edge betweem; € X andy; € Y for each source in columhwhose
such a partition that has the minimum number of edges, therefodestination is in columr. Sincer is a permutation, it follows that
(GxH) <min{|V(H)|c(G),|V(G)|c(H)+du|V(G)|/2+c(G)}. Gg is a regular, bipartite multigraph. Thu§,z can be decomposed
The other two cases can be dealt similarly, omitted. m into a set of edge disjoint perfect matchings, and the destinations of the
Having Lemmas 1 and 2, the following theorem immediately folsources included in a single perfect matching are in distinct columns.
lows. Therefore, for every rowR, the sources included in a single perfect
Theorem 1:Let W = G x H be a directed symmetric productmatching form the sePr. Each sefr, is “lifted” to row R during the
network. Letc(X) be the number of edges in a bisection of gréph first phase of the algorithm. Since each source is included in precisely
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one perfect matching, the mapping of sources in a column during theThe following corollary can be derived directly, by Theorem 2.

first phase is indeed a permutation of the column.

C. Routings on the Wavelength Conversion Model

Corollary 1: 1) For a directed symmetric hyperculzg, of 27 ver-
tices, there is a permutation algorithm for implementing any permuta-
tion with one round if two wavelengths are available. 1) For a directed
symmetricl x h meshM with ! < h andn = [h, there is a per-

The algorithm in the previous section can be expressed in a differgfiation algorithm for implementing any permutation with one round,

way. Thatis, the permutationcan be decomposed into three permutgs here aremax/{l

|h/2]} wavelengths available. In particular, when

tionso;,i = 1, 2, 3, wherer andss are permutations in the columnsl — \/m andh = 2n, the algorithm needs at mos,t’m wave-

of W ando - is a permutation in the rows & . For example, let be a
source ini¥ at the position of row; and columry; and=(v) = u be
the destination of at the position row, and columry.. Suppose has
been “lifted” to the position of row, and columny; in the first phase.
Then,o1 (i1, j1) = (i}, j1), followed by the second phase®f such
thatosoy (i1, j1) = o2(dh, j1) = (i), j=), and followed by the third
phase ofr; such thatrsosoi (i1, j1) = o(il, j2) = (i2, j2). In the

lengths, which is almost optimal in terms of the wavelengths used.
Proof: 1) Since H, = K; X Hy—; and w(K,;) = 1,
w(Hy) = max{2w(K3), w(Hq_1)} by Theorem 2. While
H, 1 = K3 x H;_,, itis easy to show (H,) = 2 by induction ory.
I) Assume! < h and M = L; x L, where L; rep-
resents a chain ofi vertices. Obviouslyw(L;) = [i/2].
w(M) = max{2w(L;), w(Ly)} < max{l, |h/2]} by

light of this observation, we now present a permutation routing al9¢xeorem 2. WhenMf = \/m x \/2n, we havew(M) =

rithm for « in an all-optical symmetric product netwofk’, based on

the wavelength conversion model. We start with the following maj%e lower bo

theorem.

maX{Qw(L\/m), w(L 7))} = /n/2, and by Theorem 2 again,
und of the number of wavelengths for any permutation in

M within one round i€2(/n) due toc(M) = /n/2, so, this bound

Theorem 2: Given permutation routing algorithms for networks . :

. . . ! is almost tight. u
and H, there is a permutation routing algorithm for the product net-
work G x H. The number of wavelengths for any permutation wit
one round is at mostax{2w(G), w(H)} if w(G) < w(H); or
max{2w(H), w(G)} otherwise, where (X)) is the number of wave-
lengths needed to implement any permutation in netwonkith one length nonconversion model in which every routing path is assigned
round. a single wavelength. For convenience, we only consider the case of

Proof: The permutation routing algorithm presented by Baum#(G) < w(H). The case ofv(H) < w(G) can be dealt with simi-
slag and Annexstein [7] is for the packet-passing model, which is tewly, and omitted.
tally different from the WDM model that we are concerned here. In Following the proof of Theorem 2, a routing pakfj for every: ¢
their model, the path length was the major concern. Here we are fot#V) consists of three segments ,, and each segment has been
interested in the number of edges on a path, but in the number of wagesigned a wavelength (a colof), = 1, 2, 3, based on the wave-
lengths needed to avoid interference among the paths. To make theiteiigth nonconversion model. Let be the color (wavelength) df; ;..
gorithm work for the WDM model, some modifications are necessaryhen,(+1, 72, 73) is the ordered color tuple df;. We treat the tuple
As we can see, implementing the permutation routingirfor = can (71, 72, 73) as a coordinate point in a three-dimensional Cartesian co-
further be decomposed into three permutationd < i < 3. Without ordinate system. Assume that each coordinate point in the system has
loss of generality, assume(G) < w(H). Following the three phases been assigned a unique label, i.E},is assigned a wavelength num-
of the above algorithm, permutatien can be implemented with(G))  bered by the label dfyi, 42, ¥3). Then, the total number of coordinate
wavelengths [in other words, all routing paths can be colored witipints for all routing paths if” for a permutation isu(G) x w(H) x
w(@) colors]; permutatiomr, can be implemented witlv( H) wave- w(G) = w(G)*w(H). However, such wavelength assignment is not
lengths [all routing paths can be colored witl{ ) colors, and the valid for those routing paths that have the same labels, because some
colors foro; can be re-used here]; and permutationcan be imple- of them sharing common edges will be assigned the same wavelength.
mented withw (G) wavelengths [all routing paths can be colored wittWe use an example (see Fig. 1) to illustrate this case. For the given per-

rb. Routings on the Wavelength Non-Conversion Model

In this section, we study the permutation routingfihfor the wave-

w(G) colors, and the colors far, cannot be used here].

Now, for a given request, = (i)), let (w1, vi) and(uz, v2) be the
positions ofi and = (i) in W. Then, the routing patiL; for the re-
quest(i, (7)) consists of three routing segmetits, L; » andL; 3

which correspond te+, o2, andos, whereL; ; contains the vertices

in columnwv; of W and consists ofi-edges only;L; » contains the

vertices in rowu) of W and consists off -edges only, assuming that

mutationr, consider two routing paths; andL’; which have identical
color tuple, wherel! starts fromi, goes throughy’, 7(j), «, «’, and
ends atr(4), L; starts fromj, goes through', = (i), y, y', and ends at
=(j). Clearly L} and L, share two common segments which are from
y' tow(j) and froma to «(i). It is obvious thatl; and L’ cannot be
assigned the same wavelength on the WDM model.

To cope with this case, the following approach is applied. Let

o1 (i) is at rowu} and columny in W; andL; 3 contains the vertices Imax(G) be the number of edges in the longest routing pait¥ iand

in columnu, of W and consists aff-edges onlyL; can be further sim-

plified, and make it become a simple pdthafter removing the cycles Then, the set of routing paths faris R = U',‘”Z(IG)Z‘”(H) Ri.

it contains. Letl; ; be the corresponding segmentlof,;,1 < j < 3.

R: = {Li|L} is labeled by! in the Cartesian coordinate system
For

eachR;, an auxiliary graphG; = (Vi, E;) which is a subgraph of

L’ isthen assigned three different wavelengths for each of its segmettts, conflict graph iV, is constructed as follows. Every vertexip

which are the wavelengths fdr;, ; originally, j = 1, 2, 3. That is,

corresponds to a routing path ®;. There is an edge if; between

eachL! for a requesti, =(i)) can be implemented with at most threetwo vertices if the two corresponding routing paths share at least one

wavelengths. Notice that the wavelengths usedIfgr may not be
used forL; 3 due to that both use th&-edges o#V . Therefore, to im-
plement any permutation i~ with one round, at leagtw(G) wave-
lengths are needed. In summary, implementing any permutation
W with one round can be doneiifax{2w(G), w(H)} wavelengths
are available if¥. ]

common edge itV, 1 < I < w*(G)w(H). Then, we have
Lemma 3: Let G; = (V;, E;) be defined as above, then the max-
imum degree of; iS lmax (G).
Proof: Let L} andL be the corresponding routing paths of two
vertices inG;. We know thatl;, consists of three segmerit$ ,, L, .,
andLj, 3, k = i or k = j. By the definition ofR;, L] , and L} ,
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where * is either iorj.

Fig. 1. An example.

are edge disjoint for alp, 1 < p < 3. Notice thatL; ; andL’ ; Gg = (X,Y, E) whereX is the set of rows and” is the set of
(similarly L, , and L ;) may not be edge disjoint (see Fig. 1). Sinceolumns. There is an edge connectinge X andy € Y if there
the number of edges in any routing path is no greater than(G), is a source in rowr whose destination is in column ClearlyG s is a
there are at most,.x(G) other routing paths sharing common edgebipartite multigraph, the degree of every vertextinof Gz is ¢, and
with L}. Therefore, the maximum degree@f is Imax(G). B the degree of every vertex i of Gg is p. Since any subsef C X
Now, the graph; is colorable withl,....(G) + 1 colors such that and|N(S)| > |S|, there is a perfect matching iz by Lemma 4.
the adjacent vertices are colored with different colors. This colorifigy deleting this matching, we can find the next perfect matching in
can be done in polynomial time by a greedy approach. Thus, for eable remaining graph, and so on. As a res@il is decomposed into
Ri, we can assigh..x(G) + 1 wavelengths for the routing pathsq edge disjoint perfect matchings. Since the routing paths in a perfect
in it such that those paths sharing common edges are assigned miftching are edge disjoint, they can be assigned the same wavelength.
ferent wavelengths, and there aréG)*w(H) R;s. Therefore, the So, we have
total number of wavelengths required for any permutation within oneLemma 5: Given a directed symmetric networkk x H with
round iS(Imax(G) + Dw(G)?w(H), which is formally described as |V (G)| = p, |V(H)| = ¢ andp < ¢, there is an algorithm for imple-
follows. menting any permutation i& x H with one round ifg wavelengths
Theorem 3: Given permutation routing algorithms for networks are available.
andH , there is a permutation routing algorithm for the product network If there aremax{w(G), w(H)} wavelengths available for every
W = G x H. The number of wavelengths for any permutatioMin fiber-optic link inG x H, then, we have the following theorem.
with one round iglmax(G) + Dw(G)?w(H) if w(G) < w(H); or Theorem 4:Let G x H be a directed symmetric network. On
(Imax (H) + Dw(H)*w(G) otherwise, wherey (X ) is the number of the wavelength nonconversion model, if there are permutation al-
wavelengths needed to implement any permutation in netdowkith  gorithms for implementing any permutation ¢ and H with one
one round, andx..x (X ) is the number of edges in the longest routingound with w(G) and w(H) wavelengths respectively, then there
path inX. is a permutation algorithm for implementing any permutation in
Theorem 3 is only suitable for those kinds of product networks i@ x H within |V (H)|/ max {w(H), w(G)} (L2c¢(H) + 1) rounds
which the number of wavelengths needed to implement any permutéth max{w(H), w(G)} wavelengths if[V(G)| < |V(H)|, or
tion with one round in its factor networks is small (constant or logawithin [V(G)|/ max{w(H), w(G)} (< 2¢(G) + 1) rounds with
rithmic of the problem size). Otherwise, it may not be good. Considerax{w(H ), w(G)} wavelengths, wheres(G) and w(H) are the

the following an example. linear functions of their sizes an X') is the number of edges in a
Let|[V(G)| = p, [V(H)| = ¢, andn = pq. If bothw(H ) andw(G)  bisection of X
are linear functions of the vertex sizes@fand H, i.e.,w(G) = ap Proof: We only consider the cag®’ (G)| < |V (H)|. The anal-

andw(H) = bq wherea andb are constants with < a, b < 1. ogous casgV (H)| < |[V(G)| is omitted. By Lemma Lw(H) >
Without loss of generality, we further assume thdi) < w(H). (|[V(H)|-1)/2¢c(H),wehavgV (H)| < 2w(H)c(H)+1.According
Then, following Theorem 3, it needémn.x(G) + Dw(G)*w(H) = to Lemma 5, the number of rounds needed is at most
(Imax (G) + 1)(a*b)pn = en't™ > n wavelengths to implement
any permutation with one round. Actually, any permutation can be im-
plemented in any network with one round withwavelengths, where
p=n"and0 < « < 1. To cope with this case, we present another Pe7  order
mutation routing algorithm for it. We start with the following lemma.
Lemma 4 [22]: Let Gg(X, Y, E) be a bipartite graph such that
for every subsef of X, we have|l N(S)| > |S|, whereN(S) is the
subset oft” that are adjacent to vertices fh Then,G has a perfect
matching of sizenin{|X|, |Y|}.
Supposep < g¢. Our idea comes from [22]. Each time we select
p sources and their destinations such that these sources are in dis-
tinct rows and their destinations are in distinct columns. Such sourcesn this brief, we have shown a lower bound on the number of wave-
can be found through finding a perfect matching in a bipartite grapéngths required for routing any permutation in an all-optical product

|V (H)| < 2w(H)e(H)+ 1
max{w(H), w(G)} — max{w(H), w(G)}

to implement any permutation ¢ x H with
max{w(H), w(G)} wavelengths. That is, the number of rounds is at
most|V (H)|/w(H) < (2w(H)c(H) + 1)/w(H) < 2¢(H) + 1 if
w(G) < w(H);or|V(H)|/w(G) < Qw(H)c(H)+ 1)/w(G) <
2¢(H) 4+ 1 otherwise. L

IV. CONCLUSIONS
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network with one round. We also have presented efficient routing alggobust Control for Markovian Jump Linear Discrete-Time
rithms for two models, the wavelength nonconversion and conversion Systems With Unknown Nonlinearities
models, respectively.
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