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It can be checked that matrixA11 = [ 0:5 0:1

0:2 0:5
] has all eigenvalues

inside the unit circle, namely�1 = 0:6414 and�2 = 0:3586. Then,
one obtains

A2 =[0:2] + [ 1 1 ]
1 0

0 1
�

0:5 0:1

0:2 0:5

�1
0

0:3

=[0:9826]:

From this it follows that the system is asymptotically stable.
Similarly, matrixA22 = [0:2] has all eigenvalues inside the unit

circle. One can then calculate matrixA1

A1 =
0:5 0:1

0:2 0:5
+

0

0:3
(1� [0:2])�1 [ 1 1 ]

=
0:5 0:1

0:575 0:875
:

Next, one easily finds that the system is asymptotically stable since
eigenvalues of matrixA1 are�1 = 0:3831 and�2 = 0:9919.

IV. CONCLUDING REMARKS

Necessary and sufficient conditions for stability and asymptotic sta-
bility of a system described by the positive 2-D Roesser model (1) are
given. Conditions are significantly simpler than known conditions for
stability of the system described by regular 2-D Roesser model, one can
check stability of positive 2-D system using well-known methods for
1-D systems. We hope that the conditions will stimulate research on
synthesis of systems described by positive 2-D systems, for instance
filters for image processing.
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Permutation Routing in All-Optical Product Networks

Weifa Liang and Xiaojun Shen

Abstract—In this brief, we study the permutation routing for an all-op-
tical product network. We show a lower bound on the number of wave-
lengths needed to implement any permutation with one round. We also
present efficient routing algorithms for two models, the wavelength non-
conversion and conversion models, respectively.

Index Terms—Algorithm design and analysis, all-optical networks,
graph theory, permutation routing, product networks, wavelength
assignment.

I. INTRODUCTION

In this brief, we design routing algorithms for anall-optical network
[1], [9], [14] and [21]. This kind of network offers the possibility of
interconnecting hundreds to thousands of users, covering local to wide
area, and providing capacities exceeding substantially those a conven-
tional network can provide. The network promises data transmission
rates several orders of magnitude higher than the current electronic net-
work. The key to high speed in the network is to maintain the signal in
optical form rather than electronic form. The high bandwidth of the
fiber-optic links is utilized throughwavelength-division multiplexing
(WDM) technology which supports the propagation of multiple laser
beams through a single fiber-optic link provided that each laser beam
uses a distinct optical wavelength. Each laser beam, viewed as a carrier
of signal, provides transmission rates of 2.5–10 Gbps. The major appli-
cations of this network are found in video conferencing, scientific visu-
alization, real-time medical imaging, supercomputing and distributed
computing [21]. A comprehensive overview of the physical principles
and applications of this technology can be found in the books by Green
[9] and McAulay [14]. Following [4], [8] and [15], we shall model the
all-optical network as adirected symmetricgraph, where every two ad-
jacent vertices have a pair of opposite directed edges.

The Network Models:An all-optical network consists of vertices
(nodes, stations, processors, etc.), interconnected by point-to-point
fiber-optic links. Each fiber-optic link supports a given number
of wavelengths. The vertex may be occupied either by terminals,
switches, or both.Terminalssend and receive signals.Switchesdirect
the input signals to one or multiple output links. There are several
types of optical switches. Among them, theelementary switchis
capable of directing coming signals from a link to one or more output
links. The elementary switch, however, cannot differentiate between
different the incoming wavelengths along the same link. Rather, the
entire signal is directed to the same output(s) [5], [1] and [20]. The
generalized switch, on the other hand, is capable of switching coming
signals based on their wavelengths [1] and [20]. This kind of switch
splits coming signals with different wavelengths to different streams
and directs them to separate outputs, using acousto–optic filters. In
both cases, different messages passing through a common link must
use different wavelengths. Unless otherwise specified, in this brief we
will adopt generalized switches for the proposed routing algorithms.
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Besides the different choice of switches, there are different wavelength
assignment polices for routing paths. In most cases, only a unique
wavelength is allowed for each routing path. We call this WDM model
the wavelength nonconversion model. If different wavelengths are
allowed for different segments of a routing path, the model is called
wavelength conversion model. (It is called the�-routing modelin [6].)

Previous Related Work:Optical routing in an undirected network
G was considered by Raghavan and Upfal [20]. They proved an

(1=�2) lower bound on the number of wavelengths needed to
implement any permutation with one round, where� is the edge
expansion ofG (which is defined later). They also presented an
algorithm which implements any permutation on bounded degree
graphs usingO(log2 n= log2 �) wavelengths within one round with
high probability, wheren is the number of nodes inG and � is
the second largest eigenvalue (in absolute value) of the transition
matrix of the standard random walk onG. For degreed arrays,
they presented an algorithm with anO(dn1=d= log n) worst case
performance. Aumann and Rabani [4] presented a near optimal
implementation algorithm for bounded degree networks within one
round. Their algorithm needsO(log2 n=�2) wavelengths. For any
bounded dimension array, any given number of wavelengths, and an
instanceI , Aumann and Rabani [4] presented an algorithm which
implements theI within O(log n log jIjTopt(I)) rounds, where
Topt(I) is the minimum number of rounds necessary to implement
I . Kleinberg and Tardos [12] later obtained an improved bound of
O(log n) on the approximation of the number of rounds required
to implementI . Rabani [19] further improved the result in [12] to
O(poly log log nTopt(I)). Pankaj [16] considered the permutation
routing in hypercubes, shuffle-exchanges, and De Bruijn networks.
He showed that permutation routing within one round can be achieved
with O(log2 n) wavelengths, while Aggrawalet al. [1] showed that
O(log n) wavelengths are sufficient for the permutation routing in
this case. Pankaj [16], [17] proved an
(log n) lower bound on the
number of wavelengths needed for any permutation routing with
one round on a bounded degree network. Aumannn and Rabani [4]
demonstrated that the permutation routing in hypercubes can be
done with a constant number of wavelengths. Gu and Tamaki [10],
[11] further showed it suffices for implementing any permutation
in a directed symmetric hypercube using two wavelengths and in
an undirected hypercube using eight wavelengths. Liang and Shen
[13] showed that the permutation routing in a cube-connected cycle
(CCC) can be achieved with one round with2blog nc wavelengths,
which is almost tight, following Pankaj’s proof [16], [17]. Barry and
Humblet [5], [6] gave bounds for routing in passive (switchless) and
�-networks. An almost matching upper bound is presented later in [1].
Peiris and Sasaki [18] considered bounds for elementary switches.
The connection between the packet routing and the optical routing
is also addressed in [1]. The integral multicommodity flow problem
related to the optical routing has been discussed in [4], [2], [3]. A
comprehensive survey for optical routing appears in [8].

Our Results: In this brief we consider the permutation routing issue
in an all-optical product network whose topology is adirect productof
two networks. This kind of network includes many well known net-
works such as hypercubes, meshes, tori, etc. We first show a lower
bound on the number of wavelengths needed for implementing any
permutation with one round in a product network; then present per-
mutation routing algorithms for such a network under two models, the
wavelength nonconversion and conversion models, respectively.

II. PRELIMINARIES

In this section, we define necessary notations and explain basic no-
tions for later use. A directed graph is called adirected symmetricgraph

G = (V; E) with jV j = n andjEj = m, if edgehu; vi 2 E if and
only if hv; ui 2 E.

The direct productof two undirected graphsG = (V1; E1) and
H = (V2; E2), denoted byG �H , is defined as follows. The vertex
set ofG�H is the Cartesian productV1�V2. There is an edge between
two vertices(v1; v2) and(v01; v

0
2) in G � H if either v1 = v01 and

(v2; v
0
2) 2 E2 or v2 = v02 and(v1; v01) 2 E1. The graphsG andH

are thefactorsof G � H . Notice thatG � H consists ofjV2j copies
of G connected byjV1j copies ofH , arranged in a grid-like fashion.
Each copy ofH is called arow and each copy ofG is called acolumn
in the grid. An edge inG�H between(v1; u) and(v2; u) is called a
G-edgeif (v1; v2) 2 E1, and an edge ofG�H between(v; u1) and
(v; u2) is called anH-edgeif (u1; u2) 2 E2.

A requestin an all optical networkG(V; E) is an ordered pair of
vertices(u; v) in G which corresponds to a message to be sent from
u to v. u is the sourceandv is the destination. An instanceI is a
set of requests. IfI = f(i; �(i))j i 2 V g, then the routing is called
permutation routing, where� is a vertex permutation inG.

LetP (x; y) denote a directed path inG fromx to y. A routing in G

for an instanceI is a set of directed pathsR(I) = fP (x; y)j (x; y) 2

Ig. An instanceI is said to beimplementedif there is a routing path for
every request inI , and the routing path has been assigned wavelengths
that complies with routing policy defined by the model.

The conflict graph, associated with a permutation routing
R = fP (i; �(i))j i 2 V , i is the source and�(i) is the destination of
ig in a directed or undirected graphG(V; E), is an undirected graph
GR; � = (V 0; E0), where each directed (undirected) routing path in
R is a vertex inV 0 and there is an edge inE0 if the two corresponding
paths inR share at least a common directed (or undirected) edge inG.

Theedge-expansion�(G) ofG(V; E) is the minimum, over all sub-
setsS of vertices,jSj � n=2, of the ratio of the number of edges
leavingS to the size ofS (� V ). A bisectionof a graphG(V; E) is
defined as follows: LetP = (V1; V2) be a vertex partition which par-
titionsV into two disjoint subsetsV1 andV2 such thatjV1j = djV j=2e

andjV2j = bjV j=2c. Thebisection problemis to find such a vertex par-
tition (V1; V2) inG thatjCj is minimized, whereC = f(i; j)j i 2 V2,
j 2 V1, and(i; j) 2 Eg. Let c(G) = jCj. The bisection concept for
undirected graphs can be extended to directed graphs. For the directed
version,C = fhi; jij i 2 V2, j 2 V1, andhi; ji 2 Eg.

Let R be a permutation routing for� in G. We define
C(e; R = fP (i; �(i))j i 2 V , e 2 P (i; �(i)), and
P (i; �(i)) 2 Rg to be the congestion of edge e. Then,
the congestion problem for� in G is to find a permutation
routing R such that maxe2EfjC(e; R)jg is minimized. Let
congest(G; �) = minR maxe2E fjC(e; R)jg. The congestion of
G, congest(G), is defined ascongest(G) = maxfcongest(G; �)j�

is a permutationg.

III. ROUTING ALGORITHMS FORPRODUCT NETWORKS

In this section, we design permutation routing algorithms for
product networks. We first show a lower bound on the number of
wavelengths needed to implement any permutation in such a network
with one round. We then present routing algorithms for the two
models.

A. Lower Bounds on the Number of Wavelengths

Lemma 1: Given an all-optical networkG(V; E), we assume that
c(G) is the number of edges in its bisection, andwmin is the number
of wavelengths needed to implement any permutation inG with one
round. We havewmin � congest(G) � (n� 1)=2c(G).
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Proof: Following the congestion definition and the optical
routing rule that different signals through a single link must be
assigned different wavelengths, it follows thatwmin � congest(G).

Let (V1; V2) be a bisection inG with jV1j � jV2j. Assume there
is a permutation� which permutes the vertices inV2 to the vertices in
V1. The congestion ofG for � is congest(G; �) � bn=2c=c(G) �

(n�1)=2c(G). Sincecongest(G) � congest(G; �), the lemma then
follows.

Notice that Lemma 1 always holds no matter whether the all-optical
network uses the wavelength conversion model or not.

Lemma 2: Let G � H be a directed symmetric product network.
Let c(G0) be the number of edges in a bisection of a graphG0 and
V (G0) be the vertex set ofG0. Suppose thatdG and dH are the
maximum in-degrees (out-degrees) ofG andH . Then, 1)c(G�H) �

minfjV (H)jc(G); jV (G)jc(H)g if both jV (G)j and jV (H)j are
even; 2)c(G � H) � minfjV (G)jc(H) + dH jV (G)j=2 + c(G),
jV (H)jc(G)g if jV (G)j is even and jV (H)j is odd; 3)
c(G � H) � minfjV (H)jc(G) + dGjV (H)j=2 + c(H),
jV (G)jc(H)g if jV (G)j is odd and jV (H)j is even; 4)
c(G � H) � minfjV (G)jc(H) + bjV (G)j=2cdH + c(G),
jV (G)jc(G) + bjV (G)j=2cdG +c(H)g otherwise.

Proof: We first consider case 1) where bothp = jV (G)j

and q = jV (H)j are even. LetV (G) = fv1; v2; . . . ; vpg be the
vertex set ofG. Suppose(V1(G); V2(G)) is a bisection ofG, where
V1(G) = fv1; v2; . . . ; vp=2g andV2(G) = fvp=2+1; . . . ; vpg. We
replace each vertex inG by the graphH , and establish a connection
between the two corresponding vertices in the two copies ofH if
there is an edge inG. This results in the graphW . Now, we partition
the vertex set ofW into two disjoint subsets of equal size according
to the bisection ofG. Thus, the number of edges ofW in this
partition is jV (H)jc(G). Similarly, there is another partition based
on the bisection ofH . The number of edges in this latter partition is
jV (G)jc(H). Thus,c(G�H) � minfjV (H)jc(G), jV (G)jc(H)g.

We then consider case 2) wherep = jV (G)j is even and
q = jV (H)j is odd. If we use only theG-edges for the vertex
partition of W , then the number of edges inW in this partition
is jV (H)jc(G), following the above discussion. We now consider
another vertex partition ofW , which consists of bothH- and
G-edges as follows. Let(V1(H); V2(H)) be a bisection ofH , where
jV1(H)j = bjV (H)j=2c and jV2(H)j = djV (H)j=2e. We replace
each vertex inH with the graphG, we then obtain a vertex partition
(V (W1); V (W2)) in W with jV (W1)j = bjV (H)j=2cjV (G)j

and jV (W2)j = bjV (H)j=2cjV (G)j + jV (G)j. The number of
edges inW in this partition is no more thanjV (G)jc(H). It is
clear that this vertex partition is not a bisection ofW . To obtain
a vertex partition ofW with equal size based on this partition, it
proceeds as follows. Letv 2 V2(H), there is a correspondingG
in W for v, partition the vertices in thisG copy into two equal
sizes, using the bisection ofG, and let (V GW

1 ; V GW
2 ) be the

resulting vertex partition of theG copy. Now there is another
vertex partition(V (W1) [ V GW

1 ; V (W2) [ V GW
2 � V (G)) for

W with jV (W2) [ V GW
2 � V (G)j �jV (W1) [ V GW

1 j = 0,
and the number of edges in this partition is no more than
jV (G)jc(H) + dH jV (G)j=2 + c(G). While the bisection ofW is
such a partition that has the minimum number of edges, therefore,
c(G�H) � minfjV (H)jc(G), jV (G)jc(H)+dHjV (G)j=2+c(G)g.
The other two cases can be dealt similarly, omitted.

Having Lemmas 1 and 2, the following theorem immediately fol-
lows.

Theorem 1: Let W = G � H be a directed symmetric product
network. Letc(X) be the number of edges in a bisection of graphX.

Suppose thatdG anddH are the maximum in-degrees (out-degrees) of
G andH . Then, a lower bound on the minimum number of wavelengths
wmin(W ) for implementing any permutation inW with one round is
as follows.

1) max
jV (G)j

2c(G)
� 1;

jV (H)j

2c(H)
� 1

if both jV (G)j andjV (H)j are even.

2) max
jV (H)j

2c(H) + dH + 2c(G)=jV (G)
� 1;

jV (G)j

2c(G)
� 1

if jV (G)j is even andjV (H)j is odd.

3) max
jV (G)j

2c(G) + dG + 2c(H)=jV (H)
� 1;

jV (H)j

2c(H)
� 1

if jV (G)j is odd andjV (H)j is even.

4) max
jV (G)j

2c(G) + dG + 2c(H)=jV (H)j
� 1;

jV (H)j

2c(H) + dH + 2c(G)=jV (G)
� 1

otherwise.

B. A Routing Algorithm on the Packet-Passing Model

LetW = G�H and� be a permutation inW . Assume the factorsG
andH ofW are equipped with routing algorithms. We are interested in
designing a routing algorithm forW by using the routing algorithms for
G andH assubroutines. The permutation routing on a directed, product
networkW has been addressed by Baumslag and Annextein [7] for
the packet-passing model. Their algorithm consists of three phases. 1)
Route some set of permutations usingG-edges only; 2) Route some set
of permutations usingH-edges only; 3) Route some set of permutations
usingG-edges only. Since the product network is a symmetric network,
the three phases can be applied alternatively, i.e., by first routing onH ,
followed byG, and followed byH .

Now, for the given permutation�, consider a naive routing method
in which each source in a column is routed to its destination row in
the column, followed by routing each source in a row to its destina-
tion column in that row. This routing fails to produce edge-disjoint
paths because there may exist a case where several sources in the same
column have their destinations in a common row. If we are allowed to
use an initial extra phase, this congestion problem can be solved easily.
That is, we first “rearrange” each column so that each row consists of
a set of sources whose destinations are in distinct columns. After that,
a permutation of each row is required to get each source to its correct
column after the rearrangement. Once all the sources are in their cor-
rect columns, a final permutation of each column suffices to get each
source to its correct destination. This final phase is indeed a permuta-
tion since the destinations of all sources are distinct. Thus, the aim of
the first phase is to find a set of sourcesPR, one per column, such that
every source inPR has its destination in a different column, for every
rowR. To this end, a bipartite graphGB(X; Y; EB) is constructed as
follows. LetX andY represent the set of columns inW . There is an
edge betweenxi 2 X andyj 2 Y for each source in columni whose
destination is in columnj. Since� is a permutation, it follows that
GB is a regular, bipartite multigraph. Thus,GB can be decomposed
into a set of edge disjoint perfect matchings, and the destinations of the
sources included in a single perfect matching are in distinct columns.
Therefore, for every rowR, the sources included in a single perfect
matching form the setPR. Each setPR, is “lifted” to row R during the
first phase of the algorithm. Since each source is included in precisely
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one perfect matching, the mapping of sources in a column during the
first phase is indeed a permutation of the column.

C. Routings on the Wavelength Conversion Model

The algorithm in the previous section can be expressed in a different
way. That is, the permutation� can be decomposed into three permuta-
tions�i, i = 1; 2; 3, where�1 and�3 are permutations in the columns
ofW and�2 is a permutation in the rows ofW . For example, letv be a
source inW at the position of rowi1 and columnj1 and�(v) = u be
the destination ofv at the position rowi2 and columnj2. Supposev has
been “lifted” to the position of rowi01 and columnj1 in the first phase.
Then,�1(i1; j1) = (i01; j1), followed by the second phase of�2 such
that�2�1(i1; j1) = �2(i

0

1; j1) = (i01; j2), and followed by the third
phase of�3 such that�3�2�1(i1; j1) = �(i01; j2) = (i2; j2). In the
light of this observation, we now present a permutation routing algo-
rithm for � in an all-optical symmetric product networkW , based on
the wavelength conversion model. We start with the following major
theorem.

Theorem 2: Given permutation routing algorithms for networksG
andH , there is a permutation routing algorithm for the product net-
work G � H . The number of wavelengths for any permutation with
one round is at mostmaxf2w(G); w(H)g if w(G) � w(H); or
maxf2w(H); w(G)g otherwise, wherew(X) is the number of wave-
lengths needed to implement any permutation in networkX with one
round.

Proof: The permutation routing algorithm presented by Baum-
slag and Annexstein [7] is for the packet-passing model, which is to-
tally different from the WDM model that we are concerned here. In
their model, the path length was the major concern. Here we are not
interested in the number of edges on a path, but in the number of wave-
lengths needed to avoid interference among the paths. To make their al-
gorithm work for the WDM model, some modifications are necessary.
As we can see, implementing the permutation routing inW for � can
further be decomposed into three permutations�i, 1 � i � 3. Without
loss of generality, assumew(G) � w(H). Following the three phases
of the above algorithm, permutation�1 can be implemented withw(G)
wavelengths [in other words, all routing paths can be colored with
w(G) colors]; permutation�2 can be implemented withw(H) wave-
lengths [all routing paths can be colored withw(H) colors, and the
colors for�1 can be re-used here]; and permutation�3 can be imple-
mented withw(G) wavelengths [all routing paths can be colored with
w(G) colors, and the colors for�1 cannot be used here].

Now, for a given request(i; �(i)), let (u1; v1) and(u2; v2) be the
positions ofi and�(i) in W . Then, the routing pathLi for the re-
quest(i; �(i)) consists of three routing segmentsLi; 1, Li; 2 andLi; 3

which correspond to�1, �2, and�3, whereLi; 1 contains the vertices
in columnv1 of W and consists ofG-edges only;Li; 2 contains the
vertices in rowu0

1 of W and consists ofH-edges only, assuming that
�1(i) is at rowu0

1 and columnv1 in W ; andLi; 3 contains the vertices
in columnv2 ofW and consists ofG-edges only.Li can be further sim-
plified, and make it become a simple pathL0

i after removing the cycles
it contains. LetL0

i; j be the corresponding segment ofLi; j , 1 � j � 3.
L0

i is then assigned three different wavelengths for each of its segments,
which are the wavelengths forLi; j originally, j = 1; 2; 3. That is,
eachL0

i for a request(i; �(i)) can be implemented with at most three
wavelengths. Notice that the wavelengths used forLi; 1 may not be
used forLi; 3 due to that both use theG-edges ofW . Therefore, to im-
plement any permutation inW with one round, at least2w(G) wave-
lengths are needed. In summary, implementing any permutation� in
W with one round can be done ifmaxf2w(G); w(H)g wavelengths
are available inW .

The following corollary can be derived directly, by Theorem 2.
Corollary 1: I) For a directed symmetric hypercubeHq of 2q ver-

tices, there is a permutation algorithm for implementing any permuta-
tion with one round if two wavelengths are available. II) For a directed
symmetricl � h meshM with l � h andn = lh, there is a per-
mutation algorithm for implementing any permutation with one round,
if there aremaxfl; bh=2cg wavelengths available. In particular, when
l = n=2 andh = 2n, the algorithm needs at mostn=2 wave-
lengths, which is almost optimal in terms of the wavelengths used.

Proof: I) Since Hq = K2 � Hq�1 and w(K2) = 1,
w(Hq) = maxf2w(K2); w(Hq�1)g by Theorem 2. While
Hq�1 = K2�Hq�2, it is easy to showw(Hq) = 2 by induction onq.

II) Assume l � h and M = Ll � Lh, where Li rep-
resents a chain ofi vertices. Obviouslyw(Li) = bi=2c.
w(M) = maxf2w(Ll); w(Lh)g � maxfl; bh=2cg by
Theorem 2. WhenM = n=2 � p

2n, we havew(M) =

maxf2w(Lp
n=2

); w(Lp2n)g = n=2, and by Theorem 2 again,
the lower bound of the number of wavelengths for any permutation in
M within one round is
(

p
n) due toc(M) = n=2, so, this bound

is almost tight.

D. Routings on the Wavelength Non-Conversion Model

In this section, we study the permutation routing inW for the wave-
length nonconversion model in which every routing path is assigned
a single wavelength. For convenience, we only consider the case of
w(G) � w(H). The case ofw(H) � w(G) can be dealt with simi-
larly, and omitted.

Following the proof of Theorem 2, a routing pathL0i for everyi 2
V (W ) consists of three segmentsL0i; k, and each segment has been
assigned a wavelength (a color),k = 1; 2; 3, based on the wave-
length nonconversion model. Let
i be the color (wavelength) ofL0i; k.
Then,(
1; 
2; 
3) is the ordered color tuple ofL0i. We treat the tuple
(
1; 
2; 
3) as a coordinate point in a three-dimensional Cartesian co-
ordinate system. Assume that each coordinate point in the system has
been assigned a unique label, i.e.,L0i is assigned a wavelength num-
bered by the label of(
1; 
2; 
3). Then, the total number of coordinate
points for all routing paths inW for a permutation isw(G)�w(H)�
w(G) = w(G)2w(H). However, such wavelength assignment is not
valid for those routing paths that have the same labels, because some
of them sharing common edges will be assigned the same wavelength.
We use an example (see Fig. 1) to illustrate this case. For the given per-
mutation�, consider two routing pathsL0i andL0j which have identical
color tuple, whereL0i starts fromi, goes throughy0, �(j), x, x0, and
ends at�(i),L0j starts fromj, goes throughx0, �(i), y, y0, and ends at
�(j). ClearlyL0i andL0j share two common segments which are from
y0 to �(j) and fromx to �(i). It is obvious thatL0i andL0j cannot be
assigned the same wavelength on the WDM model.

To cope with this case, the following approach is applied. Let
lmax(G) be the number of edges in the longest routing path inG and
Rl = fL0ijL0i is labeled byl in the Cartesian coordinate systemg.

Then, the set of routing paths for� is R =
w(G) w(H)
l=1 Rl. For

eachRl, an auxiliary graphGl = (Vl; El) which is a subgraph of
the conflict graph inW , is constructed as follows. Every vertex inVl
corresponds to a routing path inRl. There is an edge inEl between
two vertices if the two corresponding routing paths share at least one
common edge inW , 1 � l � w2(G)w(H). Then, we have

Lemma 3: Let Gl = (Vl; El) be defined as above, then the max-
imum degree ofGl is lmax(G).

Proof: LetL0i andL0j be the corresponding routing paths of two
vertices inGl. We know thatL0k consists of three segmentsL0k; 1,L0k; 2,
andL0k; 3, k = i or k = j. By the definition ofRl, L0i; p andL0j; p
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Fig. 1. An example.

are edge disjoint for allp, 1 � p � 3. Notice thatL0

i; 1 andL0

j; 3

(similarly L0

j; 1 andL0

i; 3) may not be edge disjoint (see Fig. 1). Since
the number of edges in any routing path is no greater thanlmax(G),
there are at mostlmax(G) other routing paths sharing common edges
with L0

i. Therefore, the maximum degree ofGl is lmax(G).
Now, the graphGl is colorable withlmax(G) + 1 colors such that

the adjacent vertices are colored with different colors. This coloring
can be done in polynomial time by a greedy approach. Thus, for each
Rl, we can assignlmax(G) + 1 wavelengths for the routing paths
in it such that those paths sharing common edges are assigned dif-
ferent wavelengths, and there arew(G)2w(H) Rls. Therefore, the
total number of wavelengths required for any permutation within one
round is(lmax(G) + 1)w(G)2w(H), which is formally described as
follows.

Theorem 3: Given permutation routing algorithms for networksG
andH , there is a permutation routing algorithm for the product network
W = G �H . The number of wavelengths for any permutation inW

with one round is(lmax(G) + 1)w(G)2w(H) if w(G) � w(H); or
(lmax(H)+ 1)w(H)2w(G) otherwise, wherew(X) is the number of
wavelengths needed to implement any permutation in networkX with
one round, andlmax(X) is the number of edges in the longest routing
path inX.

Theorem 3 is only suitable for those kinds of product networks in
which the number of wavelengths needed to implement any permuta-
tion with one round in its factor networks is small (constant or loga-
rithmic of the problem size). Otherwise, it may not be good. Consider
the following an example.

Let jV (G)j = p, jV (H)j = q, andn = pq. If bothw(H) andw(G)
are linear functions of the vertex sizes ofG andH , i.e.,w(G) = ap

andw(H) = bq wherea andb are constants with0 < a; b < 1.
Without loss of generality, we further assume thatw(G) � w(H).
Then, following Theorem 3, it needs(lmax(G) + 1)w(G)2w(H) =

(lmax(G) + 1)(a2b)pn = cn1+� > n wavelengths to implement
any permutation with one round. Actually, any permutation can be im-
plemented in any network with one round withn wavelengths, where
p = n� and0 < � � 1. To cope with this case, we present another per-
mutation routing algorithm for it. We start with the following lemma.

Lemma 4 [22]: Let GB(X; Y; E) be a bipartite graph such that
for every subsetS of X, we havejN(S)j � jSj, whereN(S) is the
subset ofY that are adjacent to vertices inS. Then,GB has a perfect
matching of sizeminfjXj; jY jg.

Supposep � q. Our idea comes from [22]. Each time we select
p sources and their destinations such that these sources are in dis-
tinct rows and their destinations are in distinct columns. Such sources
can be found through finding a perfect matching in a bipartite graph

GB = (X; Y; E) whereX is the set of rows andY is the set of
columns. There is an edge connectingx 2 X andy 2 Y if there
is a source in rowx whose destination is in columny. ClearlyGB is a
bipartite multigraph, the degree of every vertex inX of GB is q, and
the degree of every vertex inY of GB is p. Since any subsetS � X

and jN(S)j � jSj, there is a perfect matching inGB by Lemma 4.
By deleting this matching, we can find the next perfect matching in
the remaining graph, and so on. As a result,GB is decomposed into
q edge disjoint perfect matchings. Since the routing paths in a perfect
matching are edge disjoint, they can be assigned the same wavelength.
So, we have

Lemma 5: Given a directed symmetric networkG � H with
jV (G)j = p, jV (H)j = q andp � q, there is an algorithm for imple-
menting any permutation inG � H with one round ifq wavelengths
are available.

If there aremaxfw(G); w(H)g wavelengths available for every
fiber-optic link inG�H , then, we have the following theorem.

Theorem 4: Let G � H be a directed symmetric network. On
the wavelength nonconversion model, if there are permutation al-
gorithms for implementing any permutation inG andH with one
round with w(G) and w(H) wavelengths respectively, then there
is a permutation algorithm for implementing any permutation in
G � H within jV (H)j=max fw(H); w(G)g (�2c(H) + 1) rounds
with maxfw(H); w(G)g wavelengths ifjV (G)j � jV (H)j, or
within jV (G)j=maxfw(H); w(G)g (� 2c(G) + 1) rounds with
maxfw(H); w(G)g wavelengths, wherew(G) and w(H) are the
linear functions of their sizes andc(X) is the number of edges in a
bisection ofX.

Proof: We only consider the casejV (G)j � jV (H)j. The anal-
ogous casejV (H)j < jV (G)j is omitted. By Lemma 1,w(H) �

(jV (H)j�1)=2c(H),we havejV (H)j � 2w(H)c(H)+1.According
to Lemma 5, the number of rounds needed is at most

jV (H)j

maxfw(H); w(G)g
�

2w(H)c(H)+ 1

maxfw(H); w(G)g

in order to implement any permutation inG � H with
maxfw(H); w(G)g wavelengths. That is, the number of rounds is at
mostjV (H)j=w(H) � (2w(H)c(H) + 1)=w(H) � 2c(H) + 1 if
w(G) � w(H); or jV (H)j=w(G) � (2w(H)c(H) + 1)=w(G) �

2c(H) + 1 otherwise.

IV. CONCLUSIONS

In this brief, we have shown a lower bound on the number of wave-
lengths required for routing any permutation in an all-optical product
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network with one round. We also have presented efficient routing algo-
rithms for two models, the wavelength nonconversion and conversion
models, respectively.
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Robust Control for Markovian Jump Linear Discrete-Time
Systems With Unknown Nonlinearities

Magdi S. Mahmoud and Peng Shi

Abstract—In this brief, we investigate the control problem
for a class of nonlinear discrete-time systems with Markovian jump
parameters. The jump parameters considered here is modeled by a
discrete-time Markov process. Our attention is focused on the design
of state feedback controller such that both stochastic stability and a
prescribed performance are required to be achieved when the real
system under consideration is affected by both unknown nonlinearity
and norm-bounded real time-varying uncertainties. Sufficient conditions
are proposed to solve the above problem, which are in terms of a set
of solutions of linear matrix inequalities (LMIs).

Index Terms—Discrete-time systems, Markovian jump parameters,
norm-bounded uncertainties, Riccati-like inequalities.

I. INTRODUCTION

Recently, stochastic linear uncertain systems have been studied
extensively, in particular, the linear uncertain systems with Markovian
jump parameters case, see, for example, [13], [15], [23] and [24]. A
great amount of progress has been made in extending some of the
results of the class of linear systems such as the stability, the stability
robustness, the controllability, the observability, etc. to the class of
linear systems with Markovian jump parameters. More recently, the
H1 control problem for this class of systems in continuous case
has been considered by De Souza and Fragoso [22], Shi and Boukas
[16] which established the conditions guaranteeing the disturbance
rejection in both cases of finite and infinite horizons. The counterpart
of H1 control for discrete-time Markovian linear systems has been
tackled by Fragosoet al., [8], Boukas and Shi [5].

In this brief, we will investigate the problems of robust stability and
robustH1 control of discrete-time Markovian linear systems with both
unknown nonlinearity and norm-bounded real time-varying parameter
uncertainties. The motivation for us to consider these kinds of uncer-
tainties is that, in general, many uncertainties in real physical systems
can be described by the above-mentioned uncertainty forms, which
have been widely used in the design of robust control and filtering, see,
e.g., [14], [17]–[19], [10]–[12].

The brief is organized as follows. In Section II, we give a brief de-
scription of the class of nonlinear discrete-time system with Markovian
jump parameters and present some preliminary results. In Section III,
we present our main results in this brief, i.e., robust stochastic sta-
bility and robustH1 control. The controller we design will achieve a
prescribedH1 disturbance attenuation for all admissible uncertainties
and unknown nonlinearity. It has been shown that the above problems
have solutions if certain sets of coupled discrete Riccati-like inequali-
ties have solutions.
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