
Fully Dynamic Maintenance of
k-Connectivity in Parallel

Weifa Liang, Senior Member, IEEE, Richard P. Brent, Fellow, IEEE, and Hong Shen

AbstractÐGiven a graph G � �V ;E� with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the

k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for

k � 2; 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic

updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/

vertex connected component. Our major results are the following: 1) An NC algorithm for the 2-edge connectivity problem is proposed,

which runs in O�logn log�m=n�� time using O�n3=4� processors per update and query. 2) It is shown that the biconnectivity problem can

be solved in O�log2 n� time using O�n��2n; n�= logn� processors per update and O�1� time with a single processor per query or in

O�logn logm
n� time using O�n��2n; n�= logn� processors per update and O�logn� time using O�n��2n; n�= logn� processors per query,

where ��:; :� is the inverse of Ackermann's function. 3) An NC algorithm for the triconnectivity problem is also derived, which takes

O�logn logm
n � logn log logn=��3n; n�� time using O�n��3n; n�= logn� processors per update and O�1� time with a single processor per

query. 4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the

algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the

problems using O�n� processors in contrast to
�m� processors for solving them from scratch. In particular, the proposed NC algorithm

for the 2-edge connectivity problem uses only O�n3=4� processors. All the proposed algorithms run on a CRCW PRAM.

Index TermsÐNC algorithms, 2-edge/vertex connectivity, 3-edge/vertex connectivity, dynamic data structures, parallel algorithm

design and analysis, graph problems.

æ

1 INTRODUCTION

A fully dynamic graph algorithm is one that allows edge
insertions and deletions and recomputes a desired

graph property quickly after each such update. A
partially dynamic graph algorithm is one that allows edge
insertion updates only. In this paper, we focus on the
design of fully dynamic NC algorithms for maintaining
the k-connectivity of graphs. Given a graph G � �V ;E�
with n vertices and m edges, the k-connectivity of G refers to
either the k-edge connectivity or k-vertex connectivity [18],
which will be formally defined in Section 2.1.

1.1 Previous Related Results

k-connectivity of G is a basic property in graph theory with
wide applications in robust routing, distributed computing,
reliable communications networks design, etc. There have
been extensive studies of algorithms for dynamically
maintenance of the k-connectivity of graphs with k � 4.
For example, Even and Shiloach [12] studied the
connected component problem (k � 1) in the early
1980s. Frederickson [15] studied the minimum spanning

tree problem by giving a fully dynamic algorithm with
O� �����mp � time per update and O�1� time per query.
Eppstein et al. [10] improved Frederickson's algorithm
by presenting an O� ���np log�m=n�� algorithm, using a
sparsification technique. Later, Eppstein et al. [11]
improved their own algorithm further by an O�log�m=n��
factor. Henzinger and King [25] gave an algorithm for fully
dynamic maintenance of minimum spanning trees with
O� ���n3
p

logn� time per update and constant time per query.
Randomization has also been used to improve the time
complexity of fully dynamic maintenance of connected
components. Henzinger and King [24], [23] showed that a
spanning forest can be maintained in O�log3 n� expected
amortized time per update, and the query can be answered
in O�logn= log logn� time. The update time was further
improved to O�log2 n� by Henzinger and Thorup [27]. Since
the initial submission of this paper in 1995, there has
been further development in this topic. In particular,
Holm et al. [28] recently gave an improved algorithm for
the fully dynamic maintenance of connected compo-
nents with O�log2 n� amortized time per update and
O�logn= log logn� time per query and an improved
algorithm for the fully dynamic maintenance of minimum
spanning forests with O�log4 n� amortized time per update
and O�logn= log logn� time per query, thus matching the
previously best randomized bound and improving sub-
stantially the previously best deterministic bounds of
O� ���n3
p

logn�. Note that Holm et al.'s algorithm assumes that
the initial graph is empty and the update time is the
amortized time. Thus, a single insertion or deletion
operation in their algorithm takes
�n� time in the worst
case. In the parallel setting, Ferragina [13] studied fully

846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

. W. Liang is with the Department of Computer Science, Australian
National University, Canberra, ACT 0200, Australia.
E-mail: wliang@cs.anu.edu.au.

. R.P. Brent is with Oxford University Computing Laboratory, Wolfson
Building, Parks Road, Oxford, OX1 3QD, United Kingdom.
E-mail: Richard.Brent@comlab.ox.ac.uk.

. H. Shen is with the School of Computing and Information Technology,
Griffith University, Nathan, QLD 4111, Australia.
E-mail: hong@cit.gu.edu.au.

Manuscript received 27 Dec. 1995; revised 12 June 2000; accepted 3 Apr.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100072.

1045-9219/01/$10.00 ß 2001 IEEE

dynamic maintenance of connected components on an
EREW PRAM provided only a small number of processors
are used, and the proposed parallel algorithm requires

O��n logn
p � p1���� log f

log logn�� time using O�p� processors per

update, where p � �n logn�1=�2���, f � m
n logn , and 0 � � < 1.

Das and Ferragina [8] and Ferragina [14] developed parallel

algorithms for the fully dynamic maintenance of minimum

spanning trees and connected components which requires

O�logn� time and the total of O�n2=3 logm
n� work. Indepen-

dently, Liang and McKay [35] also proposed parallel

algorithms for the same problem which requires

O�logn logm
n� time and O�n2=3� processors.

As Galil and Italiano [19] pointed out, the fully dynamic
maintenance of 2-connectivity, however, is much harder
than the fully dynamic maintenance of connected compo-
nents because the maintenance of connected components
only involves merging two connected components into one
connected component or splitting a connected component
into two connected components per update, whereas the
maintenance of 2-edge/vertex connected components may
need merging O�n� 2-edge/vertex connected components
into one or splitting a 2-edge/vertex connected component
into O�n� 2-edge/vertex connected components per update.
Westbrook and Tarjan [45] presented the first partially
dynamic algorithms for the maintenance of both 2-edge
connected components and biconnected (2-vertex con-
nected) components, which require O�m��m;n�� time for
the maintenance of 2-connectivity of graphs when there are
m queries and edge insertions. In other words, the
algorithm takes O���m;n�� amortized time per update or
per query, where ��m;n� is the inverse of Ackermann's
function. Westbrook and Tarjan left an open problem as to
whether there exists a sublinear time, fully dynamic
algorithm for the 2-connectivity problem. Since then,
finding a sublinear time algorithm for the problem has
been a challenging task. Galil and Italiano [19] presented the
first sublinear time algorithm for 2-edge connectivity, by
using Frederickson's clustering technique and the other
techniques. Their algorithm requires O�m2=3� time. Later,
Frederickson [16] improved this algorithm to O� �����mp � using
an ambivalent data structure. Eppstein et al. [10], [11] further
improved Frederickson's algorithm by developing
O� ���np log�m=n�� and O� ���np � time algorithms, based on their
sparsification technique. They also derived algorithms for
the fully dynamic maintenance of biconnectivity and
triconnectivity, which take O���q; n�� amortized time per
insertion or per query, and O�n� time per deletion, where q
is the total number of queries made. Furthermore, Henzin-
ger and King [24] generalized their randomization techni-
que for connected components by giving an O�log5 n�
expected amortized time bound per update. Recently,
Holm et al. [28] extended their results for connected
components by presenting an algorithm for the fully
dynamic maintenance of 2-edge connected components.
Their algorithm requires O�log4 n� amortized time per
update.

The fully dynamic maintenance of biconnected compo-
nents seems much harder than that of 2-edge connected
components. There is a reduction technique [18] which

can reduce a k-edge connectivity problem to a k-vertex
connectivity problem, but the reverse reduction has not yet
been found. In 1992, Rauch [40] presented the first fully
dynamic algorithm for the maintenance of biconnected
components. Her algorithm takes O�m2=3� amortized time
per update and O�1� time per query. She later improved her
algorithm to O�minf �����

m
p

logn; ng� using new data structures
and the sparse certificate technique [41]. In 1995, Henzinger
and PoutreÂ [26] further improved her result to
O� ��������������n logn
p

logm
n�. Later, Henzinger and King [23], [24]

presented polylogarithmic time randomized algorithms
for the fully dynamic maintenance of biconnectivity [23]
using a novel decomposition of graphs and the randomiza-
tion technique. Their algorithm requires O�� log4 n�
expected amortized time per update, where � is the
maximum degree of the graph. Holm et al. [28] further
improved the above results by giving a deterministic
algorithm, which takes O�log4 n� amortized time per
update.

When k � 3, Galil and Italiano [20] presented a partially
dynamic algorithm for the maintenance of 3-edge connected
components. Their algorithm takes O��n� q���q; n�� time
for a sequence of q queries and updates on an n-vertex
graph. Independently, La PoutreÂ et al. [34] presented a
partially dynamic algorithm which has the same time
bound as Galil Italiano [20]. Later, Galil and Italiano [21]
claimed that they developed a fully dynamic algorithm for
the problem which requires O�m2=3� time per update and
per query by minor modifications to their 2-edge con-
nectivity algorithm [19]. Moreover, La PoutreÂ [33] also
proposed a partially dynamic algorithm for the main-
tenance of triconnected components, which needs
O��n� q���q; n�� time for a sequence of q queries and
updates. As for k > 3, there are only a few results available.
Kanevsky et al. [30] presented a partially dynamic algo-
rithm for the maintenance of 4-vertex connected compo-
nents which requires O���q; n�� amortized time per update
and per query provided that the graph is triconnected,
where q is the number of operations performed. Dinitz [9]
presented a partially dynamic algorithm for the main-
tenance of 4-edge connected components. Note that using
Eppstein et al.'s [10], [11] sparsification technique and the
above algorithms, the following results then follow easily:
1) fully dynamic maintenance of 3-edge connected compo-
nents can be done in O�n2=3� time per update and per query,
2) fully dynamic maintenance of triconnected components
can be done in O���q; n�� time per insertion or per query,
and in O�n� time per deletion, and 3) fully dynamic
maintenance of 4-vertex connected components can be
done in O�logn� time per insertion, in O�n logn� time per
deletion, and in O�1� time per query.

Surprisingly, we have not seen any NC algorithms for
the fully dynamic maintenance of k-connectivity with k � 2
in the parallel environment. In particular, we have not seen
any NC algorithms for the addressed problems using
O�n� processors only. In this paper, we will focus on
developing such NC algorithms for the problems for the
first time. It must be mentioned that the previously
known sequential algorithms except the algorithms by
Henzinger and King [23], [24] and Holm et al. [28] are

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 847

hardly parallelizable since they use the restricted clustering
decomposition and depth-first search technique which are
inherently sequential. The algorithms by Henzinger and
King [23], [24] are Las Vegas type of randomized algo-
rithms, which are incomparable to the deterministic
algorithms, because the deterministic simulation of the
randomized algorithms may require
�m� amount of work.
The algorithm due to Holm et al. [28] does guarantee that
each update can be done in O�log4 n� amortized time, but
the time complexity is amortized, which means that all
the data structures must be rebuilt after undergoing

�m� updates. The rebuild takes
�n� time. In other
words, it takes
�n� time per update in the worst case.
Therefore, even if their algorithm can be parallelized,

�n� processors must be required in order to achieve a
polylogarithmic time complexity per update in the worst
case.

1.2 Our Contributions

In this paper, we deal with the fully dynamic maintenance
of k-edge/vertex connectivity property of a graph in the
parallel environment with k � 2; 3 after undergoing an
intermixed sequence of insertion, deletion, and query
operations, which are described as follows:

. SameConnComp(x,y): return true if vertices x and y
are in the same k-edge/vertex connected component;
otherwise, return false.

. InsertEdge(x,y): insert a new edge between vertex x
and vertex y.

. DeleteEdge(x,y): delete an existent edge between
vertex x and vertex y.

We present NC algorithms for the fully dynamic main-
tenance of k-edge/vertex connected components in G for
k � 2; 3 by using O�n� processors in contrast to the usual

�m� processors needed for computing these properties
from scratch. Our major results are as follows:

1. An NC algorithm for the 2-edge connectivity
problem is presented, which requires

O�logn log�m=n��
time using O�n3=4� processors per update and per
query;

2. An NC algorithm for the biconnectivity problem

is also given, which requires either O�log2 n� time

using O�n��2n; n�= logn� processors per update

and O�1� time with a single processor per query

or O�logn logm
n� time using O�n��2n; n�= logn�

processors per update and O�logn� time with

O�n��2n; n�= logn� processors per query;
3. An NC algorithm for the triconnectivity problem is

derived, which requires

O�logn log
m

n
� logn log logn=��3n; n��

time using O�n��3n; n�= logn� processors per update
and O�1� time with a single processor per query;

4. An NC algorithm for the 3-edge connectivity
problem is obtained, which has the same time and

processor complexities as the algorithm for the fully
dynamic maintenance of triconnectivity.

To the best of our knowledge, the proposed algorithms for

the above problems are the first NC algorithms that use

only O�n� processors in contrast to
�m� n� processors for

solving them from scratch. At the same time, it should be

mentioned that the basic idea of the proposed algorithm for

the fully maintenance of 2-edge connectivity comes from
Galil et al.'s sequential algorithm, although, their algorithm

by itself is not easily parallelizable. Our NC algorithm for

this problem is achieved by replacing the sequential part of

their algorithm with a highly parallelizable approach.
In this paper, the following three parallel computational

models will be used:

1. An Exclusive Read and Exclusive Write (EREW for
short) PRAM in which concurrent read and con-
current write are forbidden.

2. A CREW PRAM in which Concurrent Read is
allowed but only Exclusive Write is permitted.

3. A CRCW PRAM in which both Concurrent Read and
Concurrent Write are allowed, but the write conflicts
are resolved arbitrarily.

The remainder of this paper is organized as follows: In

Section 2, we introduce some basic concepts with respect to
the k-edge/vertex connectivity, such as the sparse k-edge/

vertex certificates, Galil et al.'s reduction technique [18],

and Eppstein et al.'s sparsification technique [10]. In

Section 3, for the sake of simplicity, we consider the fully

dynamic maintenance of 2-edge connected components in

a connected graph. The data structures used for the

maintenance are described and the algorithms for

connectivity queries, edge insertions, and edge deletions

are presented. In Section 4, we first extend the results in

connected graphs to disconnected graphs and then present
an improved NC algorithm for fully dynamic maintenance

of 2-edge connectivity in general graphs. We finally

discuss the fully dynamic maintenance of 3-edge con-

nected components. In Section 5, we deal with the fully

dynamic maintenance of biconnected components and

triconnected components and we conclude our discussions

in Section 6.

2 Preliminaries

2.1 Definitions

G�V ;E� is k-edge connected if it is still connected after

deleting any kÿ 1 edges from it. Assuming that G contains

no less than k� 1 vertices, G is k-vertex connected if it is still

connected after deleting any kÿ 1 vertices from it. If G is

not k-edge/vertex connected, it contains k-edge/vertex

connected components. Given a graph G and an integer k,

a pair of vertices u and v in G is said to be k-edge connected if
the removal of any kÿ 1 edges from G leaves u and v

connected. This is an equivalence relationship and written

as �k , i.e., if a pair of vertices x and y is k-edge connected,

we write x �k y. The vertices in G are partitioned by this

relationship into equivalence classes and each equivalence

class is a k-edge connected component in G.

848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

It seems much more complicated to define the k-vertex
connected component inGwith k > 3. Here, we only define this
concept for 1 � k � 3, which will be used in this paper. Given
a graph G�V ;E�, let E1; E2; . . . ; Eh be an edge partition of E
into equivalence classes such that two edges e0 and e00 are in
the same equivalence class if and only if either 1) e0 � e00, or 2)
there is a simple cycle inG containing both e0 and e00. For all i,
1 � i � h, letVi be the set of endpoints of the edges inEi. Then,
the subgraph Gi � �Vi; Ei� is a biconnected component (or 2-
vertex connected component) in G. An edge contained in no
cycle is a biconnected component by itself and is referred to as
a bridge inG. A graphGwithout including any bridge is called
2-edge connected. If G contains bridges, then the removal of a
bridge disconnects the graph. Usually, 2-vertex connectivity
is called biconnectivity and a biconnected component is called
a block. If, for every pair of vertices, there are two vertex
disjoint paths inGbetween them, thenG is called a biconnected
graph. It is well known [1] that G is not biconnected if and
only if there is a vertex v 2 V whose removal disconnects G.
Such a v is called an articulation point of G.

Let fa; bg be a pair of vertices in a biconnected graph G.
Suppose the edges in G are partitioned into equivalence
classes E1; E2; . . . ; Ep such that two edges, which lie on a
common path not containing any vertex of fa; bg except as
an endpoint, are in the same class. The classes Ei are called
the separation classes of G with respect to fa; bg. If there are at
least two separation classes, then fa; bg is a separation pair of
G unless 1) there are exactly two separation classes, one
class consists of a single edge, or 2) there are exactly three
classes, each consisting of a single edge. If G is a
biconnected graph that does not contain a separation pair,
then G is triconnected. Let fa; bg be a separation pair of G
and E1; E2; . . . ; Ep be the separation classes of G with
respect to fa; bg. Let E0 � Sk

i�1 Ei and E00 � Sp
i�k�1 Ei and

jE0j � 2 and jE00j � 2. Let G1 � �V �E0�; E0 [f�a; b�g� and
G2 � �V �E00�; E00 [f�a; b�g�, where V �E0� and V �E00� are the
sets of endpoints of edges in E0 and E00. G1 and G2 are
called the split graphs of G with respect to fa; bg. Replacing
G by the two split graphs is called splitting G. The new
edges �a; b� added to both G1 and G2 are called virtual edges.
If G is biconnected, then any split graph of G is also
biconnected. Suppose G is split, the split graphs are split
and so on, until no more splits are possible. The graphs
constructed in this way are called split components of G.
The split components of G are of three types: triple
bonds of form �fa; bg; f�a; b�; �a; b�; �a; b�g�, triangles of
form �fa; b; cg; f�a; b�; �a; c�; �b; c�g�, and triconnected
graphs. The split components of G are called triconnected
components in G. A triconnected component usually is also
called 3-vertex connected component and 3-vertex connectivity
is called triconnectivity.

An inverted tree T �V ;ET � is a directed tree rooted at a
distinguished vertex r, r 2 V , such that for every other
vertex v (v 6� r) there is a parent pointer pointing to the
parent FT �v� of v, an edge hv; FT �v�i 2 ET , and FT �r� � r.
Given an inverted tree T and any two vertices v and u in it,
the lowest common ancestor LCA�u; v� of u and v is the first
common vertex on the paths from u (v) to the root. It is
known that every LCA query in T can be answered in
O�1� time using one processor on an EREW PRAM

provided that T is properly preprocessed. The preproces-
sing takes O�logn� time and uses O�n� processors on an
EREW PRAM if T contains n vertices [42]. Note that all the
trees used in this paper are maintained as inverted trees.

2.2 Transformation Technique of Graphs

We now introduce a technique to transform a general graph
with arbitrary degree into a graph with bounded degree. It
is well known [22] that a graph G�V ;E� can be transformed
to another graph G0�V 0; E0� such that every vertex in G0 has
no degree greater than three. The transformation proceeds
as follows: For each vertex u of degree d � 4 in G, assume
that v0; v1; . . . ; vdÿ1 are the adjacent vertices of u in G. Then,
G0 is generated by replacing u with new vertices
u0; u1; . . . ; udÿ1, adding edges �ui; u�i�1� mod d� and edges
�ui; vi� to G0, 0 � i � dÿ 1. One important property of the
transformation is that it preserves the 2-edge connectivity of
G [19]. That is, if two vertices are in a 2-edge connected
component in G, then they will also be in the same 2-edge
connected component in G0. Otherwise, they are still not in
the same 2-edge connected component in G0.

It is clear that G0 contains O�m� n� edges and vertices
and each vertex has degree no greater than three.
Without loss of generality, in Section 3, we assume
G�V ;E� is a graph with O�m� n� vertices and each
vertex has a degree no greater than three when dealing
with the 2-edge connectivity. Otherwise, the transforma-
tion can be applied, which takes O�logn� time using
O�m� n� processors on an EREW PRAM.

2.3 The Sparse k-Edge (k-Vertex) Certificate

Let G�V ;E� be an arbitrary graph. An edge separator in G is
such a subset of edges that the removal of the edges in it
will disconnect G. A sparse k-edge certificate of G is a
subgraph H in G containing O�kn� edges and every edge
separator in H of size less than k is also an edge separator in
G. A sparse k-vertex certificate of G can be defined similarly.
In the following, we show how to find a sparse k-edge/
k-vertex certificate of G [38], [4].

Let T1 be a maximal spanning forest in G and Ti be a
maximal spanning forest of graph Gi � Gÿ [iÿ1

j�1Tj for i > 1.
Denote by Ui � [ij�1Tj, the union of the i maximal spanning
forests T1; T2; . . . ; Ti. The graph Uk is a sparse k-edge certificate
of G and has the following property:

Lemma 1 [38], [39]. The graph Uk is l-edge connected if and only
if G is l-edge connected for any integer l with 1 � l � k.

Lemma 1 always holds no matter whether G is a
simple graph or not. We now introduce the scan-first
search technique [4] on G which will be used to find a sparse
k-vertex certificate of G.

Definition 1. A scan-first search in a connected undirected
graph G�V ;E� starting from a specified vertex r is a
systematic way of visiting the vertices in G. To scan a vertex
is to visit all previously unvisited adjacent vertices of that
vertex. At the beginning of the search, only r is visited. Then,
the search iteratively scans an already visited but unscanned
vertex until all vertices are scanned.

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 849

If G is disconnected, a scan-first search spanning forest of
G is then obtained by applying the scan-first search on each
connected component in G. Cheriyan et al. [4] presented an
efficient parallel algorithm for finding a scan-first search
forest in G, which proceeds as follows: It first finds an
arbitrary spanning tree T in G. It then traverses T by
labeling the vertices with their preorder numberings in T . It
finally constructs the following scan-first tree ST : Let b�v�
be the parent of v in ST and N�v� be the set of adjacent
vertices of v in G; b�v� is such a vertex in N�v� that it has the
smallest preorder numbering for every v 2 V , v 6� r.
Lemma 2 [4]. For a graph with n vertices and m edges, a scan-

first search spanning forest can be found in O�logn� time
using C�n;m� processors on a CRCW PRAM, where C�n;m�
is the number of processors used to find spanning trees in all
connected components in O�logn� time.

Note that, currently, the best result of C�n;m� is
O��m� n���m;n�= logn� on a CRCW PRAM [6]. With the
above preparation, the sparse k-vertex certificate of G is
obtained as follows: For i � 1; 2; . . . ; k, let Ei be the
edge set of a scan-first search spanning forest in graph
Giÿ1 � �V ;E ÿ �E1 [. . . [Eiÿ1�� and G0 � �V ;E�. Then,
the graph Ck � E1 [. . . [Ek is a sparse k-vertex
certificate of G, which contains n vertices and no more
than k�nÿ 1� edges.

Lemma 3 [4]. The graph Ck defined is l-vertex connected if and
only if G is l-vertex connected for any integer l with 1 � l � k.

2.4 Sparsification Technique

Eppstein et al.'s sparsification technique [10] is based on a
certificate concept. Before introducing the technique, we
reproduce some of the definitions which are fundamental to
the technique.

Definition 2. For any graph property P and graph G�V ;E�, a
certificate for G is a graph G0 such that G has the property P if
and only if G0 has the property.

Definition 3. For any graph property P and a graph G�V ;E�, a
strong certificate for G is a graph G0 on the same vertex set
such that, for any H, G [H has the property P if and only if
G0 [H has the property.

Definition 4. Let A be a function mapping graphs to
strong certificates. Then, A is stable if it has the
following two properties: 1) for any graphs G and H,
A�G [H� � A�A�G� [H�; 2) for any graph G and edge
e 2 E, A�Gÿ feg� differs from A�G� by O�1� edges.

The sparsification technique is described as follows: We
partition the edges in G�V ;E� into dm=ne groups, all except
one contain exactly n edges. The remaining group, called
the small group may contain between 1 and n edges. When
inserting an edge into G, we place it into the small group.
When deleting an edge from a group, we move another
edge from the small group into the group, to keep the group
size invariant (i.e., n edges exactly). If deleting the last edge
in the small group, we remove the small group entirely and,
if inserting an edge to the small group while there are
already n edges in it, we start a new small group. Having
finished edge grouping, we now establish a complete

binary tree BT with dm=ne leaf nodes, which correspond
to the dm=ne groups. BT is called the sparsification tree in
which every node corresponds to a subgraph formed by the
edges in the graphs at the leaf nodes of BT that are the
descendants of the node. For every node in BT , we
maintain a sparse certificate P for it. The sparse certificate
at a leaf node is obtained by applying the procedure of
finding a sparse certificate to the subgraph consisting of the
edges in the corresponding group. The sparse certificate at a
nonleaf node is the union of the sparse certificates of its two
children nodes.

Each update in G will cause either a single leaf node of
BT to split or two leaf nodes to merge in the worst case.
Since only the edge insertions and deletions are allowed, the
number of edges in every group except the small group,
will never be changed. When an edge is inserted or deleted,
only O�1� groups are involved. For each of these groups and
its O�logm

n� ancestor nodes in BT , we maintain the
sparse certificates of these nodes dynamically. As results,
the sparse certificate of G is the sparse certificate at the
root of BT .

2.5 The Reduction Technique

A reduction technique due to Galil and Italiano [18] can
reduce a k-edge connectivity problem in a graph G � �V ;E�
to a k-vertex connectivity problem in another graph 'k�G� �
�'�V �; '�E�� and 'k�G� is constructed as follows: For every
vertex v in G, there are kÿ 2 vertices

'�v1�; '�v2�; . . . ; '�vkÿ2�
in 'k�G�, referred to as node-vertices of 'k�G�. For every edge
e in G, there is a vertex '�e� in 'k�G�, referred to as arc-
vertex of 'k�G�. Let v be any vertex of G and u0; u1; . . . ; udÿ1

be the adjacent vertices of v in G, and ei � �v; ui� be an edge
in G, 0 � i � dÿ 1. Then, edges �'�ei�; '�e�i�1� mod d�� and
�'�ei�; '�vj�� are in 'k�G�, 0 � i � dÿ 1, 0 � j � kÿ 2.
Notice that 'k�G� is obtained from G by replacing v and
its incident edges e0; e1; . . . ; edÿ1 by a wheel with kÿ 2 hubs

'�v1�; '�v2�; . . . ; '�vkÿ2�
and vertices '�e0�; '�e1�; . . . ; '�edÿ1�. This implies that
'k�G� has O�m� kn� vertices and O�km� edges. Clearly,
'k�G� can be constructed in O�logn� time using O�k�m� n��
processors on an EREW PRAM if G contains O�n� vertices
and O�m� edges. The graph 'k�G� has the following
property:

Theorem 1 [18]. G�V ;E� is k-edge connected if and only if
'k�G��'�V �; '�E�� is k-vertex connected.

Following Theorem 1, to check whether two vertices, x and
y in G, are k-edge connected can be done through checking
whether their corresponding node-vertices '�x1� and '�y1�
in 'k�G� are k-vertex connected.

3 MAINTAINING 2-EDGE CONNECTED COMPONENTS

IN CONNECTED GRAPHS

For the sake of simplicity, in this section, we assume that
G�V ;E� is connected and contains O�m� n� vertices and
edges. Every vertex in G has a degree no greater than three.

850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Otherwise, the transformation technique will be applied in
order to obtain a graph with the degree no more than three.
Fig. 1a shows such a graph.

3.1 Overview

We present our results in the following order: First, we
decompose G into a number of disjoint connected sub-
graphs and build data structures for each of them to keep
the information on the subgraph. Also, we build a data
structure to keep the information among the subgraphs,
which is referred to as the compact representation Ĝ of G. Ĝ is
the super graph of G, defined as follows: Each vertex in Ĝ
corresponds to a subgraph of G. There is an edge between
two vertices in Ĝ if there are edges in G between the vertices
in the two corresponding subgraphs. For any two sub-
graphs in G, we use two data structures to keep the edge
information between them. Then, we assume that all the
data structures for 2-edge connected components in each
subgraph have been already built. Now, consider a query
which asks whether two given vertices x and y are in the
same 2-edge connected component in G. To answer this
query, we proceed as follows: Let x be in Cx and y be in Cy.
We check whether Cx and Cy are in the same 2-edge
connected component in Ĝ. If yes, then x and y are in the
same 2-edge connected component in G. Otherwise, for
every articulation point C in Ĝ separating Cx from Cy, we
examine the induced subgraph of G by the vertices in C to
see whether there is a potential bridge internal to the
subgraph separating x from y in G. If yes, then x and y are
not in the same 2-edge connected component in G. Finally,
we deal with the fully dynamic maintenance of the data
structures when there is an edge insertion or deletion. Note

that each insertion/deletion only involves updating a
constant number of subgraphs and Ĝ. Accordingly, we only
update those involved subgraphs and Ĝ instead of the entire
graph G, which is much cheaper in terms of the
maintenance cost because of the smaller sizes of these
subgraphs and Ĝ compared to G. Therefore, it is possible to
reduce the maintenance cost to respond the updates and
queries.

The rest of this section is organized as follows: Section 3.2
introduces the data structures that the proposed algorithm
uses and Section 3.3 presents algorithms for constructing
the data structures. Section 3.4 proposes an algorithm for
query processing, using the proposed data structures.
Section 3.5 shows how to maintain the data structures
efficiently when there are edge insertions and deletions.

3.2 Data Structures for 2-Edge Connected
Components

The proposed algorithm, basically, is a parallel implemen-
tation of Galil and Italiano's algorithm [19]. Therefore, most
data structures used in their algorithm are adopted. Let
G�V ;E� be a connected graph with the maximum degree
three. The vertex cluster partition of G is described as follows:
Following the vertex clustering idea by Frederickson [15],
the vertex set V is partitioned into V1; V2; . . . ; Vp disjoint
subsets such that 1) bK=2c � jVij � d3K=2e for all i, 1 � i � p
and 2) the induced subgraph of G by the vertices in Vi is
connected, where K is a parameter to be determined later.
V � [pi�1Vi and p � O�m=K� because G contains O�m� n�
vertices and each vertex in it has a degree no greater than
three. Each vertex subset Vi is a vertex cluster (or cluster for
short) of G. The size of a cluster is the number of vertices in

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 851

Fig. 1. A graph, its spanning tree, and the vertex cluster partition. (a) A graph G�V ;E�. (b) A spanning tree and a vertex cluster partition of G.

it. However, the size of each cluster is O�K�. For example, a
spanning tree in G is shown in Fig. 1b. The vertex set of G is
partitioned into two vertex clusters C1 � f1; 2; 3; 4; 5; 11g
and C2 � f6; 7; 8; 9; 10g with K � 4.

3.2.1 Data Structures Pertinent to a Vertex Cluster C
Induced Subgraph G�C� of C. Let C be a vertex cluster. An
edge in G with both its endpoints in C is said to be internal to
C while an edge in G with only one endpoint in C is said to
be incident to C. The induced subgraph of G by the vertices
in C is denoted by G�C�. For the above example, G�C1� is
shown in Fig. 2a. Edge �2; 4� in G is internal to C1 while edge
�4; 6� in G is incident to C1.

Full RepresentationF�C� of C. The full representation F�C�
of a vertex cluster C is a simple graph, which consists of G�C�
a vertex for each vertex cluster adjacent to C and the edges
incident to C. In other words, the vertex set of F�C� consists
of the vertices internal to C and the corresponding vertices
of the vertex clusters which are incident to C. The edge set of
F�C� is composed of all the edges in G internal and incident
to C. Fig. 2b showsF�C1�, where C2 is the cluster adjacent to C1.

Tree Representation T �C� of C. The tree representation T �C�
of a vertex cluster C is a tree in which the edges are the
bridges in G�C� and the vertices are the 2-edge connected
components in G�C�. For a given G�C1�, in Fig. 2a, the tree
representation T �C1� of C1 is shown in Fig. 3a, where
vertices 1, 2, and 3 are in a 2-edge connected component

called a, vertices 4, 5, and 11 are in the 2-edge connected
components called b, c, and d, respectively.

3.2.2 Edge Set Presentation between

Two Vertex Clusters

Given two clusters Ci and Cj, let Ei;j � fe1; e2; . . . ; ehg be a
subset of E in which the two endpoints of every edge are in
Ci and Cj, respectively. The edges in Ei;j are represented by
two data structures: One is for Ci, named E�Ci; Cj�, and the
other is for Cj, named E�Cj; Ci�. Let X be an endpoint set
of the edges in Ei;j, which is a subset of Cj, then
E�Ci; Cj� � fy j y is a 2-edge connected component vertex
in T �Cj�, including x and x 2 Xg. Therefore, E�Ci; Cj� is a
vertex subset of T �Cj�. In other words, E�Ci; Cj� contains
those vertices of T �Cj� that, for each such vertex u, there is
at least an edge �x; y� 2 Ei;j incident to u, where x 2 Ci,
y 2 u, and u is a 2-edge connected component in G�Cj�.
E�Ci; Cj� is represented by a balanced binary search tree and
the key to access a vertex in it is the preorder numbering of
the vertex in T �Cj�. For the example, in Fig. 1b, there are
two vertex clusters C1 and C2. E2;1 � f�4; 6�; �5; 6�; �11; 10�g.
E�C2; C1� � fb; c; dg. Fig. 3b shows E�C2; C1�, where
preorder�x� is the preorder numbering of x in T �C1�.

3.2.3 Super Graphs and Equivalent Graphs

The super graph Ĝ of G is a multigraph defined as follows:
Each vertex in Ĝ is a vertex cluster. There is an edge

852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 2. The induced subgraph G�C1� and the full representation F�C1� of C1. (a) The induced subgraph G�C1� of G by the vertices in cluster C1.

(b) The full presentation F�C1� of a vertex cluster C1 where C1 � f1; 2; 3; 4; 5; 11g.

Fig. 3. (a) The tree representation T �C1� of C1. (b) E�C2; C1� and its binary search tree representation.

between two vertex clusters Ci and Cj if jEi;jj � 1 and there

are two edges between them if jEi;jj � 2. For example, the

graph in Fig. 4 is a super graph of a graph G.
A simple graph G�V; E�, derived from Ĝ, is defined as

follows:

V � fCi j Ciis a vertex clusterg
[fvi;j;1; vi;j;2 jthere are two edges in Ĝ between Ci and Cjg;

where vi;j;k is an artificial vertex, k � 1; 2.

E � f�Ci; Cj� jthere is only one edge in Ĝ between Ciand Cjg
[f�Ci; vi;j;k�; �vi;j;k; Cj� jthere are two edges between

Ci and Cj in Ĝ and k � 1; 2g:
Thus, the vertex set of Ĝ is a subset of the vertex set of G.

Graph G�V; E� is called the equivalent graph of Ĝ in the sense

that they both have the same sets of articulation points and

bridges. Assume that Ĝ contains m0 edges and n0 vertices.

Then, G�V; E� contains no more than 2m0 edges and

n0 �m0 vertices. For example, the graph in Fig. 5a is the

equivalent graph of a super graph shown in Fig. 4.
From now on, we assume that there is no big difference

between Ĝ and G with respect to the articulation points and

bridges. The purpose that we here introduce the equivalent

graph G for Ĝ is to make Tarjan and Vishkin's parallel

algorithm for finding biconnected components can be

applied, which is only applicable for simple graphs.

3.3 Construction of Data Structures

We now show how to construct the defined data structures
in parallel. In order to obtain a vertex cluster partition of G,
a spanning tree T �V ;ET � of G is generated, using any
efficient parallel algorithm such as the algorithm by
Awerbuch and Shiloach [2]. Assume T has already been
built and stored as an inverted tree. Our approach for the
vertex cluster partition of G is based on the following
lemma due to Lipton and Tarjan [37].

Lemma 4 [37]. Given an n-vertex tree with the maximum degree
three, there is a vertex partitioning by removing exactly one
edge from the tree. As the result, the tree is separated into two
subtrees and the number of vertices in each subtree is between
bn=3c and d2n=3e.

The vertex cluster partition of G then can be obtained as
follows:

Lemma 5. Given an inverted tree T with m vertices and the
maximum degree three, partition its vertices into cm=K vertex
clusters such that every vertex cluster contains O�K� vertices.
This can be done in O�log�m=K�� time using O�m� processors
on an EREW PRAM, where m � 3K=2, cm=K is the number
of clusters, and c is constant.

Proof. Let F be a forest of inverted trees. Initially, F � fTg.
For each tree T 0 2 F , we proceed as follows: If the
number of vertices n1 in T 0 is between K=2 and 3K=2, we
do nothing about it. Otherwise, traverse T 0 by a Eulerian
tour and make it into a linked list L. Delete such an edge
in L that the two resulting subtrees have almost the same

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 853

Fig. 4. The super graph Ĝ of a graph G.

Fig. 5. The equivalent graph G of Ĝ and the resulting graph through replacing a vertex cluster C2 in G by F�C2�. (a) The equivalent graph G of a super

graph Ĝ. (b) Replace C2 and its artificial adjacent vertices by F�C2� in G.

number of vertices (one has n1=3 vertices and the other
has 2n1=3 vertices in the worst case). The existence of
such a partition is guaranteed by Lemma 4. Remove T 0

from F and add the two new trees to F . Repeat the
above procedure on F until the size of every tree in F is
between K=2 and 3K=2. There are O�log�m=K�� calls for
the procedure. As a result, every tree in F is a vertex
cluster of G because its size is between K=2 and 3K=2
and the tree is a connected subgraph in G. Therefore, the
vertex cluster partition can be done in O�logm� time
using O�m� processors on an EREW PRAM [31] because
the size of the resulting tree is reduced by one third at
least for each procedure call, compared with the size of
its immediate predecessor. tu

Note that the restricted vertex cluster partition by
Frederickson cannot be applied here because it uses the
depth-first-search technique which seems highly sequential.
Furthermore, although the algorithms for finding a span-
ning tree and a vertex cluster partition take O�logn� time
using O�m� n� processors and O�log�m=K�� time using
O�m� processors, respectively, they are only done once. In
the design of dynamic algorithms, the time spent for this
part is called preprocessing time, which is not taken into
account as part of the dynamic maintenance cost for the
operations including insertions, deletions, and queries.

Given a vertex cluster partition of G, the defined data
structures are constructed as follows: For a vertex cluster C,
the graph G�C� can be constructed in O�1� time using
O�K� processors on a CRCW PRAM because G�C� contains
O�K� vertices and edges and the degree of each vertex in it
is constant. Since each vertex cluster C containsO�K� vertices
and each vertex in G has a degree no greater than three,
then the full representation F�C� of C contains O�K� vertices
and edges. F�C� can be constructed in O�logK� time with
O�K� processors using the adjacency lists of those vertices
in G that are also in C and the vertex cluster partition of G.
Note that the maximum degree of the vertices in F�C� is
O�K�, not a constant. The tree representation T �C� of C can
be obtained by the following lemma:

Lemma 6. The full tree representation T �C� of a vertex cluster C
can be constructed in O�logK� time using O�K� processors
on a CRCW PRAM.

Proof. We here provide a constructive proof. We know that
G�C� is a simple graph. First, find all biconnected
components in G�C� by applying Tarjan and Vish-
kin's algorithm [44]. This takes O�logK� time with
O�K� processors on a CRCW PRAM because G�C�
contains O�K� vertices and edges. Then, find all bridges
in G�C�. The edge in a biconnected component consisting
of one edge only is a bridge in G�C�, which can be found
in O�1� time with O�K� processors after all biconnected
components in G�C� have been found. Let B be the set of
bridges in G�C�. Let G0�C� be the resulting graph after
removing the edges in B from G�C�, which can be done in
O�1� time with O�K� processors because of the constant
degree of each vertex in G�C�. Finding connected
components in G0�C�, which in fact are the 2-edge
connected components (BCs) in G�C� takes O�logK� time
using O�K� processors on a CRCW PRAM [43]. Finally,

use the vertex in BC with the smallest index to label all
the vertices in it. The BC is then represented by that
vertex. Thus, all the vertices in the BC have a unique
representative. Let D�� be such a labeling function, i.e.,
D�u� � v for all u 2 BC, where v is the vertex in BC with
the smallest index.

Let T 00 be a spanning tree of G�C�. We now construct
the tree T �C�. Let FT �C��v� be the parent of v in T �C�.
Then, the vertex set of T �C� consists of all 2-edge
connected components in G�C�. The edges in T �C� are
defined as follows: Initially, set FT �C��D�v�� :� v for all
v 2 BC. Then, for every edge �x; y� in B, assign
FT �C��D�x�� :� D�y� if y is the parent of x in T 00;
FT �C��D�y�� :� D�x� otherwise. This can be done in
O�1� time with O�K� processors because B contains
O�K� edges. tu

Given an inverted tree T �Ci� of Ci, assigning every vertex
in T �Ci� a preorder numbering takes O�logK� time using
O�K� processors on an EREW PRAM [31]. Then, all
E�Cj; Ci�s can be constructed in O�logK� time using
O�K� processors by sorting the preorder numbering of
vertices in increasing order because the degree of each
vertex in G�Ci� is no more than three, assuming that Cj is a
vertex cluster adjacent to Ci.

The super graph Ĝ can be constructed in O�1� time using

O��m=K�2� processors because Ĝ contains O�m=K� vertices.

Thus, the equivalent graph G of Ĝ can be constructed in the

same time and processor bounds because G contains

O��m=K�2� vertices and edges.
Consequently, the data structures pertinent to a vertex

cluster C can be maintained in O�logK� time using
O�K� processors and the data structures for Ĝ and G
can be maintained in O�log�m=K� � logK� time using
O��m=K�2� processors on a CRCW PRAM, which will be
proven in Section 3.4.

3.4 The Algorithm for Queries

Given a pair of vertices x and y, the query is about
whether x and y are in the same 2-edge connected
component in G. Instead of using G, an auxiliary graph
Gx;y will be used to answer the query. Let Cx and Cy be
the vertex clusters containing x and y, respectively. The
simple graph Gx;y is obtained from G through replacing
vertices Cx, Cy and their adjacent artificial vertices and the
edges incident to them by the full representations F�Cx�
and F�Cy� of Cx and Cy. For example, Fig. 5b shows the
resulting graph after replacing C2 and its adjacent
artificial vertices in G in Fig. 5a by its full representation
F�C2�. Now, assume that x and y are not in the same 2-
edge connected component in G. Then, there must be at
least one bridge e 2 E in G separating x from y and any
such bridge can be one of the following two types: 1) If e
is either internal to Cx, or Cy, or an edge between two
different clusters; 2) if e is internal to a vertex cluster C
with C 6� Cx and C 6� Cy. To check these two types of
bridges, we have the following theorem:

Theorem 2 [19]. Let x and y be any two vertices in G. Then, the
following is true: 1) e is a Type 1 bridge in G if and only if the
corresponding edge is a bridge in Gx;y; 2) if e is a Type 2 bridge

854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

in G separating x from y and e is internal to a cluster C
(C 6� Cx and C 6� Cy), then C is an articulation point in Gx;y.

Following Theorem 2, the checking algorithm proceeds
as follows: It checks Type 1 bridges in Gx;y first. If there is no
Type 1 bridge, then it checks Type 2 bridges. If no Type 2
bridge exists, then, x and y are in the same 2-edge connected
component in G; otherwise, x and y are in the different
2-edge connected components in G. The rest of this
section, therefore, focuses on checking the two types of
bridges. However, Type 1 bridge can be easily detected by
the following lemma:

Lemma 7. Given a simple connected graph with n1 vertices and
m1 edges, to determine whether there exist bridges in any path
between two given vertices takes O�logn1� time using
O�n1 �m1� processors on a CRCW PRAM.

Proof. First, find all biconnected components in the graph
by applying Tarjan and Vishkin's algorithm and identify
those biconnected components consisting of one edge
only (the edges are the bridges of the graph). Let B be the
set of such edges. Then, find a spanning tree T in the
graph by applying any efficient spanning tree algorithm
and identify the edges in path � in T between the two
given vertices. Finally, if there is an edge in both B and �,
then it is a bridge of the graph separating the two
vertices. The time spent for finding biconnected compo-
nents is O�logn1� and the number of processors used is
O�m1 � n1�. Constructing B takes O�1� time using O�n1�
processors. T can be found in O�logn1� time using
O�m1 � n1� processors. All the edges in � can be
identified in O�logn1� time using O�n1� processors.
Therefore, all the bridges in the graph separating x from
y can be found in O�logn1� time using O�m1 � n1�
processors on a CRCW PRAM. tu

As a result, Type 1 bridges in G between x and y can be
found in O�logK � log�m=K�� time using O�K � �m=K�2�
processors on a CRCW PRAM because Gx;y contains
O�K � �m=K�2� vertices and edges by Lemma 7.

3.4.1 Type 2 Bridge Checking

We now deal with Type 2 bridges. We first introduce the
following notions and notations for later use:

Let a vertex cluster C be an articulation point in Gx;y
separating x and y. Then, C is also an articulation point in
both G and Ĝ separating Cx from Cy by the definition of
equivalent graphs. Let AC � fQ1;Q2; . . . ;Qtg be a set of
vertex clusters in which each vertex cluster Qj in Ĝ is
adjacent to C, 1 � j � t and t � 2. LetW1;W2; . . . ;Ws be the

s connected components in the resulting graph Ĝ ÿ fCg after

the removal of C and the edges incident to it from Ĝ, where

each vertex in Wi represents a vertex cluster, 1 � i � s.
Without loss of generality, letW1 � fX1;X 2; . . . ;Xpg be the

connected component containing Cx, W2 � fY1;Y2; . . . ;Yqg
be the connected component containing Cy, and

Wi � fZi;1;Zi;2; . . . ;Zi;r�i�g
be a connected component containing the vertex clusters in
AC ÿ �W1 [W2�, 3 � i � s, where X l1 , Yl2 , and Zi;j are the

vertex clusters, 1 � l1 � p, 1 � l2 � q, 1 � j � r�i�, and
3 � i � s. Clearly, p� q �Ps

i�3 r�i� � t. Given the tree
representation T �C� of C and an edge e in it, let
T 1�C� and T 2�C� be the resulting subtrees after the
removal of e from T �C�. The connected component Wi

(� fZi;1;Zi;2; . . . ;Zi;r�i�g) defined is said to be compatible
with e if all the edges between Zi;j and C, 1 � j � r�i�, are
incident to either T 1�C� or T 2�C�, but not to both, 3 � i � s.
For example, the connected component W3, shown in
Fig. 6a is compatible with edge �u; v�, but the connected
component W4 is incompatible with edge �c; d�, which is
explained as follows: There are two edges, �v1; va� and
�v2; vb�, in G such that both v1 2 Z1 and v2 2 Z2 while Zi is a
vertex cluster inW4, i � 1; 2. Let a and b be the 2-connected
components in G�C� containing endpoints va and vb of the
two edges and T 1�C� and T 2�C� be the resulting trees
including c and d after the removal of �c; d� from T �C�. We
then have a 2 T 1�C�, but b 2 T 2�C� while both v1 2 Z1 inW4

and v2 2 Z2 in W4. Following the definition, W4 is
incompatible with edge �c; d�.

Let A1;A2; . . . ;Al be any l clusters in Ĝ adjacent to
cluster C, l > 0. Then, E�Ai; C� 6� ;, for all i, and color each
vertex in E�Ai; C� with the color blue, 1 � i � l. Denote by
��A1;A2; . . . ;Al� a vertex in T �C� which is the root of a
subtree containing all the blue vertices but no other subtree
rooted at a proper descendant of ��A1;A2; . . . ;Al� also
contains all the blue vertices. In other words,
��A1;A2; . . . ;Al� is such a vertex in T �C� that all the
edges between Ai and C are incident below it, 1 � i � l.
Here, ªbelowº means that a vertex is included in a
subtree of T �C� rooted at ��A1;A2; . . . ;Al�. For example,
given two clusters A1 and A2 adjacent to C, shown in
Fig. 6b, vertex w is ��A1;A2�, but vertex f is not because
the subtree rooted at f does not include the blue vertices b
and e in E�A2; C�, where a; b; c, d, and e are blue vertices
in T �C�.

Recall that Cx and Cy are the clusters including vertices
x and y which are adjacent to C, X i 2 W1, and Yj 2 W2,
1 � i � p and 1 � j � q. A vertex v in T �C� is colored red if
there is an edge between X i and C incident to v, 1 � i � p.
Similarly, a vertex u in T �C� is colored black if there is an
edge between Yj and C incident to u, 1 � j � q. Define the
top-red vertex � as ��X1;X2; . . . ;X p� and the top-black vertex
� as ��Y1;Y2; . . . ;Yq�. We now check Type 2 bridges. Let C
be an articulation point in Gx;y separating x from y. Then, a
Type 2 bridge internal to C separating x from y in G may
exist. Our objective is to find the bridge if it exists. The
intuition behind the algorithm is as follows: Assume that
there is an edge e � �u; v� in T �C� and the corresponding
edge of e in G is a bridge separating x from y. Let T 1�C� and
T 2�C� be the two subtrees including u and v after the
removal of e from T �C�. Following the definition of Cx and
Cy, every path in G between x and y must have the
following structure. It starts with a path outside of C ending
at a vertex of C that corresponds to a red vertex in T �C�. It
ends with a path outside C starting at a vertex of C that
corresponds to a black vertex in T �C�. Since the correspond-
ing edge of e internal to C is the bridge of G separating x
from y, then there is a path in G from x to y containing the
corresponding edge of e. Thus, e satisfies the following two

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 855

conditions: 1) e must be in a path in T �C� between a red
vertex and a black vertex and 2) eachWi is compatible with e,
3 � i � s. In other words, for a given Wi, all the edges
betweenWi and C are incident to either T 1�C� or T 2�C�, but
not to both, 3 � i � s. The query algorithm, thus, is to check
whether there is such an edge e in T �C� in order to
determine whether there is a bridge in G separating x from
y. We have the following lemma:

Lemma 8 [19]. Let C be a vertex cluster that is an articulation
point in Gx;y separating x from y. There is a bridge inside C
separating x from y in G if and only if there is an edge e in
T �C� that satisfies the following two conditions: 1) The
removal of e separates red vertices from black vertices and
2) each connected component Wi is compatible with e,
3 � i � s.

Given � and � in T �C�, let v � LCA��; �� be the lowest
common ancestor of � and � in T �C�. Condition 1 of
Lemma 8 can be further decomposed into four cases
which are expressed in the following lemma, depending
on the relative positions of the three vertices �, �, and v in
T �C�:
Lemma 9 [19]. Let � be the top-red, � the top-black vertices, and
v � LCA��; ��. Let ��;� be the path in T �C� between � and �.
Then, 1) if v � � � �, no edge in T �C� can separate black and
red vertices, 2) if v 6� � and v 6� �, then all the edges in ��;�
separate black and red vertices, 3) if v � � 6� �, an edge e
separates black and red vertices if and only if e is in ��;� and
there are no black vertices below child�e�, where child�e� is an
endpoint of e and another endpoint of e is the parent of

child�e� in T �C�, and 4) if v � � 6� �, an edge e separates
black from red vertices if and only if e is in ��;� and there are
no red vertices below child�e�.

Lemmas 8 and 9 imply that we only need to check
whether there is an edge e in ��;� of T �C� separating red
vertices from black vertices and every Wi is compatible
with e, 3 � i � s, in order to check whether there is a bridge
inside C separating x from y in G. The algorithm proceeds as
follows: It first considers all the edges between C and the
clusters in W1 and W2. If there is no edge e in ��;�
separating red vertices from black vertices in T �C� (Case 1),
then there is no bridge inside C separating x from y in G and
the query is answered. Otherwise, it examines Cases 2-4 of
Lemma 9. Here, we only deal with Case 3. Case 4 is
analogous while Case 2 can be dealt by checking the edges
in two paths ��;v and ��;v in T �C�, respectively, using the
very similar fashion. However, the algorithm for Case 3,
due to Galil and Italiano, is highly sequential and, therefore,
hard to parallelize. A parallel algorithm for Case 3 is
proposed below.

Assume that r is the root of T �C� and each vertex v in
T �C� has a preorder numbering preorder�v�. Consider the
connected components W3;W4; . . . ;Ws defined. Let

i � ��Zi;1;Zi;2; . . . ;Zi;r�i��, where cluster Zi;j 2 Wi. If some

i is not in path ��;r of T �C� between � and r, then all the
edges between Zi;j and C are incident to one of the two
subtrees, T 1�C� and T 2�C�, after the removal of any edge e in
��;� from T �C� for all j, 1 � j � r�i�. This means that Wi is
always compatible with e in T �C� for any edge e in ��;� and
all the edges between Zi;j in Wi and C do not help

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 6. The notions on T �C�. (a) W3 is compatible with �u; v� while W4 is incompatible with �c; d� in T �C�. (b) An illustration of ��A1;A2�.

determine whether e separates red vertices from black
vertices in T �C�. So, discard all such
is that are not in path
��;r for further consideration, 3 � i � s. Sort the remaining

is in T �C� by the preorder numbering in decreasing order
and let
00;

0
1;

0
2; . . . ;
0s0 be the sorted vertex sequence

and W00;W01; . . . ;W0s0 be the corresponding connected
components, then preorder�
0l� > preorder�
0l�1�, 0 � l < s0,
0 � s0 � s, and
00 � �. Label each vertex cluster in W0i
with
0i. Thus, each cluster Ci0 2 W0i has a label
0i, 0 � i � s0.

The checking of Case 3 is implemented through
constructing two auxiliary graphs Gi first, i � 1; 2, and
then using the graphs to check whether there is an edge in
��;� in T �C� satisfying the two conditions in Lemma 8. The
objective of constructing G1 and G2 is to find a maximal
subpath ��;
0i0

of ��;� including � such that no edge in it can
satisfy the two conditions in Lemma 8.

The auxiliary graph G1�V1; E1� is constructed as follows:
V1 � f
00;
01; . . . ;
0s0 g. There is an edge �
0i;
0j� 2 E1 if and
only if 1) there is a cluster Ci0 2 W0i and a cluster Cj0 2 W0j
and Ei0;j0 6� ; or 2) there is a cluster Cj0 2 W0j and there is an
edge between Cj0 and C incident below
0i in T �C�. Fig. 7a
illustrates Condition (2) in the construction of G1, where u
represents a 2-edge connected component in G�C�. There is
an edge between Cj0 and C incident to u which is below
0i,
and u 2 C. It is obvious that for a given pair of vertices
0i
and
0j in G1, if either Condition (1) or Condition 2 holds,
then there is an edge in G1 and a corresponding path �
0i;
0j
in T �C� in which no edge can satisfy the two conditions in
Lemma 8 because there are some W0ls which are incompa-
tible with e for every edge e in �
0i;
0j .

Let CC be a connected component in G1�V1; E1� in which

0l and
0h are the two vertices with the smallest and the
largest indexes l and h. In case CC contains only one vertex,
then l � h. Clearly, 0 � l; h � s0. We assign every vertex
v 2 CC a pair of labels, l and h. Let �l; h� represent a closed
interval with l � h. Denote by �li; hi� the pair of labels
assigned to
0i. Then, we have the following lemma:

Lemma 10. Let CC be a connected component in G1�V1; E1� and
every vertex in it is labeled with a pair of labels li and hi as
above. Then, there are W0js, which are incompatible with e for
every edge e in path �
0

li
;
0
hi

in T �C�, 1 � j � s0.
Proof. Let CC be a connected component in G1 in which

every vertex has been labelled with li and hi. Then, the
vertices
0li and
0hi are included in CC by the definition.
Following the above discussion, we know that there is no
edge in �
0a;
0b in T �C� satisfying the two conditions in
Lemma 8 for every edge �
0a;
0b� 2 E1 in G1 by the
construction of G1 and li � a; b � hi. Thus, every edge in
G1 corresponds to a subpath of ��;r in T �C� in which no
edge satisfies the two conditions in Lemma 8. Now,
consider two edges �
0a;
0b� and �
0b;
0c� sharing a common
vertex
0b in a CC, then no edge in �
0a;
0c satisfies the two
conditions in Lemma 8 because both �
0a;
0b and �
0

b
;
0c do

not contain any edge satisfying the two conditions.
Therefore, no edge in path �
0

li
;
0
hi

in T �C� satisfies the two
conditions in Lemma 8 because �
0

li
;
0
hi

is the union of the
subpaths generated by the corresponding edges of G1 in
the CC. tu

Given that each vertex
0i 2 V1 has a pair of labels li and
hi, 0 � i < s0, another graph G2�V2; E2� is constructed as
follows: V2 � V1 and �
0i;
0j� 2 E2 if and only if 1) either
�
0i;
0j� 2 E1 or 2) the intersection of the two intervals is
nonempty, i.e., �li; hi� \ �lj; hj� 6� ;, which means that two
paths �
0

li
;
0
hi

and �
0
lj
;
0
hj

are overlapping. Since no edge in

both �
0
li
;
0
hi

and �
0
lj
;
0
hj

satisfies the two conditions of

Lemma 8, no edge in the union of the two paths satisfies

the two conditions in Lemma 8. We then have the

following lemma:

Lemma 11. Let CC be a connected component in G2�V2; E2�,
including vertex � �
00 such that i0 is the maximum index of

the vertices in it. Then, there is no edge e in ��;
0i0
in T �C�

satisfying 1) the removal of e separates red vertices from black

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 857

Fig. 7. Checking whether an edge in ��;� satisfies the two conditions of Lemma 8. (a) Condition 2 in the construction of G1. (b) An illustration of

checking whether an edge in �
0i0
;� satisfies the two conditions of Lemma 8.

vertices and 2) each connected component W0i is compatible

with e, 1 � i � s0.
Proof. Let CC0 be a connected component in G1 consisting

of vertices
0i1 ;

0
i2
; . . . ;
0ik . Assume that these vertices are

sorted by their preorder numberings in T �C� in

decreasing order, i.e., preorder�
0ij� > preorder�
0ij�1
�

and 1 � j � kÿ 1. Then, there is no edge in path

�
0i1 ;

0
ik

in T �C� satisfying the two conditions in Lemma 8,

which is derived by Lemma 10 directly.
Let CCi and CCj be the two connected compo-

nents in G1 and �li; hi� and �lj; hj� the pairs of labels
for them. If �li; hi� \ �lj; hj� 6� ;, we can distinguish four
cases:

1. li > lj but hi < hj, i.e., �li; hi� � �lj; hj�. Path �
0
li
;
0
hi

is a subpath in T �C� of �
0
lj
;
0
hj

while no edge in

�
0
lj
;
0
hj

in T �C� satisfies the two conditions in

Lemma 8.
2. li < lj and hi < hj. There is no edge in �
0

li
;
0
hj

in

T �C� satisfying the two conditions in Lemma 8
because both �
0

li
;
0
hi

and �
0
lj
;
0
hj

are the subpaths of
�
0

li
;
0
hj

.

3. li < lj but hi > hj. This case is similar to Case 1,
omitted.

4. li > lj and hi > hj. This case is similar to Case 2
and omitted.

Thus, each edge �
0a;
0b� in a connected component,
including �, corresponds to a path �
0a;
0b in T �C�. So, we
conclude that there is no edge in ��;
0i0

in T �C� satisfying

the two conditions in Lemma 4 because ��;
0i0
is the union

of the subpaths derived from the corresponding edges in

the connected component including � in G2. tu
The example, shown in Fig. 8, illustrates the idea used in

the proof of Lemma 11. Assume that
0j1
;
0j2

;
0j3 , and
0j4

are the vertices in a connected component in G1,

0i1 ;

0
i2 ;

0
i3 , and
0i4 are the vertices in another connected

component in G1. We have shown that there is no edge in
either �
0j1 ;

0
j4

or �
0i1 ;

0
i4

of T �C� satisfying the two conditions
of Lemma 8, by Lemma 10. Suppose that �j1; j4� \ �i1; i4� 6� ;,
then the vertices
0j1 ,
0j2 ,
0j3 ,
0j4

,
0i1 ,
0i2 ,
0i3 , and
0i4 are
in the same connected component in G2, by the definition of

G2. Clearly, there is no edge in path �
0j1 ;

0
i4

in T �C�
satisfying the two conditions in Lemma 8 due to that �
0j1 ;

0
i4

is the union of �
0j1 ;

0
j4

and �
0i1 ;

0
i4

.

Having built G1 and G2, to decide whether there is
an edge in ��;� in T �C� satisfying the two conditions in
Lemma 8 (Case 3), it proceeds as follows: If
preorder��� > preorder�
0i0�, then there is no edge in
��;� satisfying the two conditions in Lemma 8 because ��;� is

a subpath of ��;
0i0
and there is no edge in ��;
0i0

satisfying the

two conditions in Lemma 8 by Lemma 11, where vertices
0i0
and � are in the same connected component in G2 and
0i0
has the maximum index i0 in the connected component.

Otherwise, although there is no edge in path ��;
0i0
satisfying

the two conditions of Lemma 8, we cannot guarantee that

this claim also holds in path �
0i0 ;�
. Path ��;� is the union of

��;
0i0
and �
0i0 ;�

. To check whether there is an edge in path

�
0i0 ;�
satisfying the two conditions of Lemma 8, we proceed

by checking whether there is a vertex cluster Yj 2 W2

including Cy such that u 2 E�Yj; C� and

preorder�
0i0� � preorder�u� < preorder�
0i0� � nd�
0i0� ÿ 1;

�1�
where nd�z� is the number of vertices in a subtree of T �C�
rooted at z. In other words, we need to check whether there
is an edge between Yj and C incident to u and u is below
0i0
in T �C�, 1 � j � q. Fig. 7b illustrates this case. If (1) holds,
then no edge in �
0i0 ;�

satisfies the two conditions of
Lemma 8, which means there is no bridge internal to C
separating x from y in G. We then examine the other
articulation points C0, if existing in Gx;y, separating x from y
to determine whether x and y are in the same 2-edge
connected component in G. If none of the articulation points
contains a bridge separating x from y in G, then x and y are
in the same 2-edge connected component in G.

3.4.2 Implementing the Operations

Now, we discuss the implementation details of the
proposed algorithm for query processing. Due to space
limitations, some unimportant details are omitted. Assume
that the data structures defined are available.

858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 8. An illustration of the proof of Lemma 11.

Gx;y is constructed as follows: First, a graph G0 is
generated from G by removing the vertices Cx and Cy and
their adjacent artificial vertices (i.e., the new vertices added
in the generation of G). Then, Gx;y is generated by merging
the adjacency lists of G0, F�Cx�, and F�Cy�, which takes
O�logK � log�m=K�� time using O�K � �m=K�2� processors
on a CRCW PRAM because Gx;y contains O�K � �m=K�2�
vertices and edges.

Given the graph Gx;y, the next objective is to find all
articulation points Cs in Gx;y separating x from y. Obviously,
each such C is also an articulation point in both G and Ĝ,
separating Cx from Cy, which can be found by the following
lemma:

Lemma 12. Finding all articulation points in G separating Cx
from Cy takes O�log�m=K� � logK� time using O��m=K�3�
processors on a CRCW PRAM.

Proof. Since Ĝ and G are the equivalent graphs, an
articulation point in Ĝ is also an articulation point in G.
We proceed with the following in parallel: For each
vertex C in Ĝ, make a copy GC of G for C, delete C and its
incident edges from GC, and compute the connected
components of the resulting graph GC ÿ fCg. If vertices Cx
and Cy are not in the same connected component in
GC ÿ fCg, then C is an articulation point in G separating Cx
from Cy. Since the connected component computation in
graph GC ÿ fCg for each C requires O�log�m=K�� time and
O��m=K�2� processors on a CRCW PRAM [43], finding
all articulation points in G separating Cx from Cy requires
O�log�m=K� � logK� time and O��m=K�3� processors on
a CRCW PRAM because G contains O�m=K� vertex
clusters (all the other vertices in G are artificial vertices)
and O��m=K�2� edges. tu

Now, assume that every vertex v in T �C� has been
assigned a preorder numbering preorder�v�. Otherwise,
such an assignment can be done in O�logK� time with
O�K� processors using the Euler traversal technique [31]
because T �C� is an inverted tree containing O�K� vertices
and edges. Also, answering a LCA query in T �C� can be
answered in O�1� time using one processor on an EREW
PRAM [42].

Lemma 13. Let A1;A2; . . . ;Al be l vertex clusters adjacent to
a vertex cluster C. ��A1;A2; . . . ;Al� can be found in
O�logK � log l� time with O�l� processors on a CRCW
PRAM, where 1 � l � dcm=Ke and c is constant.

Proof. For every Ai, the two vertices in E�Ai; C� with the
smallest and the largest preorder numberings in T �C�
can be found in O�logK� time using one processor due to
the fact that E�Ai; C� contains O�K� vertices and is
maintained as a balanced binary search tree. Let ui and vi
be the two vertices found from E�Ai; C�. Then, sort the
sequence of 2l vertices in T �C� by their preorder
numberings in increasing order, which can be done in
O�log l� time with O�l� processors. ��A1;A2; . . . ;Al� is the
LCA of the two vertices with the smallest and the largest
preorder numberings in the sorted sequence. So, the
entire computation takes O�log l� logK� time and uses
O�l� processors on a CRCW PRAM. tu

Corollary 1. � and � can be found in O�log�m=K� � logK�
time using O�m=K� processors on a CRCW PRAM.

Proof. It can be derived from Lemma 13 with l � cm=K
because 1 � p; q � cm=K, c is constant. tu

Recall that
i � ��Zi;1;Zi;2; . . . ;Zi;r�i��, where Zi;j 2 Wi,
1 � j � r�i�, and 3 � i � s. Finding the sequence

3;
4; . . . ;
s takes O�logK � log�m=K�� time using

O
Xs
i�3

r�i�
 !

� O�m=K�

processors on a CRCW PRAM. Let
1 � � and
2 � �, which
can be found in the same time and processor bounds. Then,
discard those
is that are not in ��;r. Let
01;

0
2; . . . ;
0s0 be the

sorted resulting sequence by the preorder numbering of
vertices in T �C� in decreasing order. This sequence can be
obtained in

O�log s� � O�log�m=K��
time using O�s� � O�m=K� processors by checking if

i � LCA��;
i� which takes O�1� time using one proces-
sor, 1 � i � s � cm=K. Furthermore, let W00;W01; . . . ;W0s0
be the corresponding connected components of

00;

0
1;

0
2; . . . ;
0s0 , where 0 � s0 � s and
00 � �.

The complexity for the construction of G1 is as
follows: Checking Condition 1 takes O�1� time using
O��m=K�2� processors because there are O�m=K� vertex
clusters and checking Condition 2 takes O�logK� time
using O�m=K� processors, which has been proven by
the following lemma:

Lemma 14 [19]. Let C0 be any cluster adjacent to C and let v be
any vertex of T �C�. Then, to check whether there are edges in
G between C0 and C incident below v in O�logK� time with
one processor on a CRCW PRAM.

Notice that we use the same data structure as Galil and
Italiano [21] did in this part. The proof of Lemma 14 is
omitted.

The construction of G1 thus requires O�logK� time and
O��m=K�2� processors because 1 � s0 � cm=K. Finding
connected components in G1 requires O�log�m=K�� time
and O��m=K�2� processors on a CRCW PRAM because G1

contains O�m=K� vertices and O��m=K�2� edges [43].
Broadcasting the smallest and the largest indices of the
vertices in a connected component to all the vertices in it
requires O�log�m=K�� time and O�m=K� processors on an
EREW PRAM. Similarly, the construction of G2 and finding
connected components in G2 takes O�log�m=K�� time using
O��m=K�2� processors on a CRCW PRAM. As a result, the
maximum index i0 of a vertex in the connected component
in G2 containing � can be found in the above time and
processor bounds. Thus, the path ��;
0i0

in T �C� can be
found, which does not contain any edge satisfying the two
conditions in Lemma 8. Checking whether there is any edge
in �
0i0 ;�

satisfying the two conditions of Lemma 8 can be
done in O�logK� time using O�m=K� processors by
Lemma 14, because there are O�m=K� vertices in T �C�.
Thus, we have the following theorem:

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 859

Theorem 3. The query about whether x and y are in the same
2-edge connected component in a connected graph G�V ;E�
can be answered in O�logm� time using O�m3=4� processors
on a CRCW PRAM.

Proof. The construction of Gx;y takes O�logK � log�m=K��
time using O�K � �m=K�2� processors. Following
Theorem 2, Type 1 bridge checking takes

O�logK � log�m=K��
time using O�K � �m=K�2� processors. Type 2 bridge
checking needs finding all articulation points in Gx;y
separating x from y, which requires O�logK � log�m=K��
time usingO��m=K�3�processors. Checking all the cases
in Lemma 9 requires O�log�m=K� � logK� time using
O��m=K�2� processors. The theorem then follows, by
setting K � m3=4. tu

3.5 Inserting and Deleting Edges

In this section, we consider the InsertEdge�x; y� operation.
Let Cx and Cy be the vertex clusters including x and y. When
a new edge �x; y� is inserted, the degrees of vertices x and y
in the original graph G increase by one. If none of them
becomes four, only the data structures pertinent to Cx and Cy
are required to be updated, i.e., F�Cx�, T �Cx�, F�Cy�, T �Cy�,
E�Cx; Cy�, E�Cy; Cx�, and Ĝ needed be updated. Otherwise, if
either the degree of x or the degree of y becomes four, then
the transformation given in Section 2 will be applied. This
leads to a constant number of extra vertices and edges in the
resulting graph. Assume that the degree of x in G now is
four. We apply the transformation to the cluster Cx. As a
result, all data structures pertinent to Cx must be updated to
reflect the change. However, to keep the vertex degree of a
graph no greater than three, the insertion of extra vertices
may lead to the size of Cx becoming greater than 3K=2. We
deal with this latter case by splitting Cx into two vertex
clusters C0 and C00. Since the original size of Cx is between
K=2 and 3K=2 and the degree of each vertex in it is no
greater than three, the two new clusters C0 and C00 as well as
the data structures pertinent to them can be constructed in
O�logK� time using O�K � �m=K�2� processors on a CRCW
PRAM, which is explained as follows: The full representa-
tions F�C0� and F�C00� and the tree representations T �C0�
and T �C00� of C0 and C00 can be obtained in O�logK� time
with O�K� processors by the discussion in Section 3.3. The
balanced binary search tree for the other cluster Cj adjacent
to Cx, E�C0; Cj�, E�Cj; C0�, E�C00; Cj�, and E�Cj; C00� can be
constructed in O�logK� time using O�K� processors
because the degree of every vertex in Cx is at most three.
The handling of Cy can be done similarly. The super graph Ĝ
and its equivalent graph G can be updated in O�log�m=K� �
logK� time using O��m=K�2� processors because they
contain O��m=K�2� vertices.

To perform an insertion of �x; y�, we distinguish two
cases depending on whether �x; y� is an edge internal to a
cluster or an intercluster edge. 1) If Cx � Cy � C, then �x; y�
is an internal edge. As a result, only the data structures
related to C, F�C� and T �C�, are updated, which takes
O�logK� time using O�K� processors on a CRCW PRAM.
2) If Cx 6� Cy, then �x; y� is an intercluster edge. The data
structures needed to be updated are F�Cx�, T �Cx�,

F�Cy�, T �Cy�, E�Cx; Cy�, E�Cy; Cx�, and Ĝ. This takes
O�logK � log�m=K�� time using O��m=K�2� processors on
a CRCW PRAM. In summary, inserting an edge �x; y�
causes at most two clusters to be split and at most constant
clusters' data structures to be updated. Following the above
discussion, each update requires O�logK � log�m=K�� time
using O�K � �m=K�2� processors on a CRCW PRAM.

To keep O�logm� time complexity per update and per
query in the worst case, we need to be cautious when
dealing with the data structure maintenance. Let mt be the
number of edges in the graph at time t. We show an update
at time t can be implemented in O�logmt� time with
O�m3=4

t � processors on a CRCW PRAM. Let Kt � dm3=4
t e.

When the value of K changes due to an InsertEdge or
DeleteEdge operation, there will be at least dm3=4

t =2e
more updates before K becomes twice as large or one half
as small as it was before. Following the idea of Galil and
Italiano [19] that adjusts a constant number of clusters each
time there is an update, this gives a total of O�m3=4

t � cluster
adjustments. Since there are no more than O�mt=Kt� �
O�m1=3

t � clusters that need to be adjusted and the
adjustments can be accomplished before a new round of
adjustment starts. Thus, whenever there is an insertion,
the clusters can be scanned to find any cluster that is too
small and a constant number of these clusters can be
merged with a neighbor if needed.

The processing for the deletion case is similar to that for
the insertion case, which is omitted here. Therefore, we
have the following theorem:

Theorem 4. Full dynamic maintenance of 2-edge connected
components in a connected graph G�V ;E� with m edges can
be done in O�logm� time using O�m3=4� processors on a
CRCW PRAM.

Proof. From the discussion above and Theorem 3, the
theorem follows. tu

4 MAINTAINING 2-EDGE AND 3-EDGE CONNECTED

COMPONENTS IN GENERAL GRAPHS

4.1 Maintaining 2-Edge Connected Components in
Disconnected Graphs

We deal with the fully dynamic maintenance of 2-edge
connected components in disconnected graphs by extend-
ing the results of connected graphs. Let G be a disconnected
graph consisting of l connected components. We augment G
by adding lÿ 1 dummy edges such that the augmented
graph is connected and no cycle in the augmented graph
includes two dummy edges. Every edge in G is assigned
weight 1 and every dummy edge is assigned weight 2. Such
augmentation does not change the property of 2-edge
connected components in G, i.e., two vertices x and y are in
a 2-edge connected component in the augmented graph if
and only if they are in the same 2-edge connected
component in G. The key here is to maintain a vertex
cluster partition of a minimum spanning tree T instead of
maintaining a vertex cluster partition of an arbitrary
spanning tree in the augmented graph.

When inserting an edge e � �x; y�, we check whether
there is already a dummy edge in T between them. If yes,
we decrease the weight of e from 2 to 1; otherwise, we insert

860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

this edge with weight 1 to T and update T , which can be
implemented in O�logm� time with O�m2=3� processors on a
CREW PRAM, using either Ferragina's algorithm [14] or
Liang and McKay's algorithm [35]. If e becomes an edge in
the new minimum spanning tree through deleting a
dummy edge e0, then e0 is deleted. When deleting an edge
e � �x; y�, we check whether e is in T . If yes, T is updated;
otherwise, e is deleted. Therefore, we have the following
theorem:

Theorem 5. Full dynamic maintenance of 2-edge-connected
components in a disconnected graph G�V ;E� can be done in
O�logm� time using O�m3=4� processors on a CRCW PRAM.

Proof. It is straightforward from Theorem 4. tu

The above proposed algorithm can be further improved
if the sparsification technique of Eppstein et al. [10] is
employed. In the following, we present an improved
algorithm for the problem, using the sparsification
technique.

If G is k-edge connected, we can use a sparse k-edge
certificate Uk (� [ki�1Ti) of G instead of G itself when
dealing with the k-edge connectivity ofG. Eppstein et al. [10]
have shown that Uk is a strong k-edge certificate of G.
Obviously, the sparse 2-edge certificate of G is a special case
with k � 2. For any fixed k, Uk can be maintained in time
O�logn� with O�n2=3� processors per update, using the
k copies of the algorithm for fully dynamic maintenance
of minimum spanning forests, where copy i is used to
maintain forest Ti, i � 1; . . . ; k. Also, Uk is stable since at
most a single edge flips in one of the k minimum spanning
forests when there is an update.

Theorem 6. Full dynamic maintenance of 2-edge connected
components in a graph G�V ;E� can be done in O�logn logm

n�
time using O�n3=4� processors on a CRCW PRAM.

Proof. By applying the sparsification technique, we first
build a tree BT and maintain the sparse 2-edge certificate
at every node in BT by two dynamic data structures, one
for 1-edge connectivity which requires O�logn� time and
O�n2=3� processors on a CREW PRAM [14], [35] and
another for 2-edge connectivity U2 � T1 [T2, i.e., T1 and
T2. We then run the parallel algorithm for the
maintenance of 2-edge connected components in U2,
described in the beginning of this section, at the root
node of BT . So, for every edge insertion and deletion,
the maintenance time spent for all the data structures
involved is O�logn logm

n� and the number of processors
used is O�n3=4� because the height of BT is O�logm

n�.
Similarly, the query can be answered at the root of BT in
the same time and processor bounds as above. tu

4.2 Maintaining 3-Edge Connected Components

Theorem 7. Fully dynamic maintenance of 3-edge connected
components in a graph G�V ;E� requires

O�logn log
m

n
� logn log logn=��3n; n��

time using O�n��3n; n�= logn� processors per update
and O�1� time with a single processor per query on a
CRCW PRAM.

Proof. Let U3 be a sparse 3-edge certificate of G. By applying
the reduction technique of Galil et al. that reduces the
k-edge connectivity of G into the k-vertex connectivity of
another graph 'k�G�, we first construct '3�U3� from U3,
which takes O�logn� time using O�n= logn� processors on
a CRCW PRAM because'3�U3� containsO�n� vertices and
edges. We then maintain a tree BT in which each node
contains a sparse 3-vertex certificate of the subgraph
induced by the edges at the leaf nodes in the subtree
rooted at the node, using Eppstein et al.'s sparsification
technique. The computational complexity of the fully
dynamic maintenance of 3-vertex connected components
is given by Theorem 9 in Section 5.3, the theorem then
follows. tu

5 MAINTAINING BICONNECTED AND TRICONNECTED

COMPONENTS IN GENERAL GRAPHS

5.1 Finding a Strong and Sparse
k-Vertex Certificate of G

Eppstein et al.'s sparsification technique [10] is applicable
only if the certificate P is both sparse and strong. For
k-vertex connectivity of a graph G, Eppstein et al. [10] have
shown that Ck (� [kj�1Bj) is a strong, sparse certificate of G,
where Bj is a breadth-first search forest in graph
Gÿ [jÿ1

i�1Bi. However, currently, the number of processors
used in any NC algorithm for finding a breadth-first search
forest is no better than the number of scalar operations for
matrix multiplication, which is O�n2:376� [7]. To reduce the
number of processors used, we adopt an alternative
approach to find a sparse k-vertex certificate and show the
found certificate is a strong certificate.

To find a sparse k-vertex certificate of G�V ;E�, we use
the scan-first search technique [4]. Let Ck � G�V ;[ki�1Ei�,
where Ei is the edge set of the spanning forest Fi obtained
by applying the scan-first search in graph Gi � Gÿ

Siÿ1
j�1 Fj.

It is obvious that Ck is sparse when k is fixed. In the
following, we show that Ck is strong too:

Lemma 15. Ck is a strong k-vertex certificate of G�V ;E�.
Proof. Let S be a �kÿ 1�-vertex cut in any graph Ck [H

which partitions the vertices in V ÿ S into two
subsets A and B. Obviously, H does not contain
any edge between a vertex in A and a vertex in B.
Let si 2 S ÿ fs1; s2; . . . ; siÿ1g be the first vertex in the
ith scan-first search of Gi � Gÿ F1 ÿ F2 ÿ . . .ÿ Fiÿ1,
where Fi is a scan-first search spanning forest of Gi.

Let T be a tree rooted at r containing s1 and T 2 F1.
We claim either r 2 A, r 2 B, or r 2 S. If r 2 S, then
r � s1 by the following argument: The index of r is
smaller than the index of s1 because r is visited before s1

by the definition of scan-first search. This contradicts that
s1 has the smallest index in S. So, either r 2 A or r 2 B.
Without loss of generality, assume that r 2 A. In the
following, we show that all the edges between s1 and the
vertices in B are included in T , therefore, in F1 because
T 2 F1. We proceed as follows:

If r � s1, then all such edges incident to s1 are in T
obviously. Now, consider r 2 A. Assume that there is an
edge �s1; v� 2 E and v 2 B, but �s1; v� 62 T . We show this
is impossible. Since s1 and v are in the same connected

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 861

component in G, they must be in the same spanning tree
in G. Therefore, both s1 and v are included in T . Let p�v�
be the parent of v in T . We then have either p�v� 2 A,
p�v� 2 B, or p�v� 2 S and only one of these holds. If
p�v� 2 A, then there is an edge between p�v� (2 A) and v
(2 B) after the deletion of all the vertices in S and the
edges incident to them. This contradicts that S is a
�kÿ 1�-vertex cut between A and B. Thus, either
p�v� 2 B or p�v� 2 S. Obviously, it is also impossible
that p�v� 2 B because the index of s1 is smaller than
that of any other vertex in B by the definition of scan-first
search. Thus, s1 must be the parent of v in T because
�s1; v� 2 E. Therefore, p�v� must be in S and p�v� � s1,
i.e., the edge �s1; v� must be included in T . In other
words, all the edges between s1 and the vertices in B are
included in F1 instead of in Ck ÿ F1 and S ÿ fs1g forms a
�kÿ 2�-vertex cut in Ck ÿ F1. We proceed in the same
way on the resulting graph. As a result, each application
of scan-first search will eliminate a vertex from G and in
the end Fk must be disconnected. But this can only
happen if S is also a vertex cut in G and, hence, in G [H.
We have already shown that any vertex cut in Ck [H is
also a vertex cut in G [H. The converse follows
immediately from the fact that Ck is a subgraph of G.
Hence, Ck is a strong certificate of G. tu

5.2 Maintaining Biconnected Components

Assume that G is connected. Otherwise, two types of data
structures are maintained, one for 1-edge connectivity
(connected components) and another for biconnectivity
(2-vertex connected components). As a result, if there is a
query to ask whether vertices u and v are in the same
biconnected component in G, we first check the data
structures for 1-edge connectivity to see whether u and v
are connected. If yes, we then run the query algorithm on
the data structures for biconnectivity. Otherwise, the
response to the query is false. It is known that the fully
dynamic maintenance of 1-edge connectivity can be done in
O�logn logm

n� time using O�n2=3� processors on a CREW
PRAM [8], [35].

Theorem 8. Fully dynamic maintenance of biconnected compo-
nents of a graph G�V ;E� requires O�log2 n� time using
O�n��2n; n�= logn� processors per update and O�1� time with
one processor per query or requires O�logn logm

n� time using
O�n��2n; n�= logn� processors per update and O�logn� time
using O�n��2n; n�= logn� processors per query on a
CRCW PRAM.

Proof. When an edge is inserted or deleted, it results in only
O�1� leaf node updates in BT . Meanwhile, the sparse
2-vertex certificates of the involved leaf nodes and their
ancestor nodes in the paths in BT from the leaf nodes to
the root node need to be updated. Finding the sparse
2-vertex certificate at a node requires O�logn� time and
O�n��2n; n�= logn� processors by Cheriyan et al.'s algo-
rithm [4]. At the root node, we run Tarjan and Vishkin's
algorithm [44] to maintain biconnected components in
the sparse 2-vertex certificate at the root node
while finding biconnected components in a graph
with n vertices and m edges requires O�logn� time
and O�m� n� processors on a CRCW PRAM,
which can also be implemented in O�log2 n� with

O��m� n�= logn� processors by Brent's theorem [3].

Therefore, updating all data structures requires

O�logn log
m

n
� log2 n� � O�log2 n�

time and O�n��2n; n�= logn� processors when there is an

insertion or a deletion. For a query, we just check the root

node of BT to see whether the two vertices are in the

same biconnected component, which takes O�1� time

using one processor. If we want to reduce the update

time further, there is another approach in which, for each

update, we recompute the sparse 2-vertex certificates for

all involved nodes in BT and for each query about

whether there exist k vertex disjoint paths, we run the

algorithm by Khuller and Schieber [32] at the root of BT .

For the case where k � 2, their algorithm requires

O�logn� time and O�n��2n; n�= logn� processors. So, it

requires O�logn logm
n� time using O�n��2n; n�= logn�

processors per update and O�logn� time using

O�n��2n; n�= logn� processors per query on a CRCW

PRAM. tu
Notice that there is a faster algorithm for testing k vertex

disjoint paths between a pair of vertices [29], which requires

O�k log log k logn� time and O��n2 � k�k�C�n;m� � kn��
processors on an arbitrary CRCW PRAM. This algorithm

is superior to the algorithm of Khuller and Schieber [32]

only when k is not constant.

5.3 Maintaining Triconnected Components

Assume that G is biconnected. Otherwise, two types of data

structures are maintained, one for biconnectivity and

another for triconnectivity of G. That is, if there is a query

to ask whether vertices u and v are in the same triconnected

component, we first check the data structures for biconnec-

tivity to see whether u and v are biconnected. If yes, we then

run the query procedure on the data structures for

triconnectivity. Otherwise, the response to the query is

false. By Theorem 8, the fully dynamic maintenance of

biconnectivity can be done in O�logn logm
n� time using

O�n��2n; n�= logn� processors on a CRCW PRAM.

Theorem 9. Fully dynamic maintenance of triconnected

components in a graph G�V ;E� requires

O�logn log
m

n
� logn log logn=��3n; n��

time using O�n��3n; n�= logn� processors per update and

O�1� time with one processor per query. The algorithm runs in

a CRCW PRAM.

Proof. The approach employed is the same as the one
used for Theorem 8, except that we replace Tarjan and
Vishkin's [44] algorithm for biconnectivity by the
algorithm for triconnectivity due to Fussel et al. [17].
Their algorithm for the fully dynamic maintenance of
triconnectivity of a graph with n vertices and m edges
requires O�logn� time and O��m� n� log logn= logn�
processors on a CRCW PRAM, which also can be
implemented in O�logn log logn=��m;n�� time using
O�m� n���m;n�= logn� processors by Brent's theorem.tu

862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

6 CONCLUSIONS

In this paper, we have studied the problem of fully dynamic

maintenance of k-connectivity of graphs and presented the

first NC algorithms with ~O�n� work for it, where k � 2; 3. In

particular, our NC algorithm for 2-edge connectivity uses

o�n� processors only. For the biconnectivity problem, we

have obtained an NC algorithm with O�n� processors. From

this algorithm, we have also derived NC algorithms with

O�n� processors for the fully dynamic maintenance of

3-edge connectivity and triconnectivity. However, for the

addressed problems there is still a gap between the best

sequential time complexity for them and the amount of

work needed in parallel. It is interesting and challenging to

find better NC algorithms for them to reduce or eliminate

the gap.

ACKNOWLEDGMENTS

The authors appreciate the three anonymous referees for

their invaluable suggestions and comments which helped

improve the quality and presentation of the paper. Also,

they would like to thank the referees for bringing [28] to our

attention. Partial contents of this paper also appeared in [36].

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974.

[2] B. Awerbuch and Y. Shiloach, ªNew Connectivity and MSF
Algorithms for Shuffle-Exchange Networks and PRAM,º IEEE
Trans. Computers, vol. 36, pp. 1258-1263, 1987.

[3] R.P. Brent, ªThe Parallel Evaluation of General Arithmetic
Expressions,º J. ACM, vol. 21, pp. 201-206, 1974.

[4] J. Cheriyan, M.Y. Kao, and R. Thurimella, ªScan-First Search and
Sparse Certificatesan Improved Parallel Algorithm for k-Vertex
Connectivity,º SIAM J. Computers, vol. 22, pp. 157-174, 1993.

[5] F.Y. Chin, J. Lam, and I.-N. Chen, ªEfficient Parallel Algorithms
for Some Graph Problems,º Comm. ACM, vol. 25, pp. 659-665,
1982.

[6] R. Cole and U. Vishkin, ªApproximate and Exact Parallel
Scheduling with Applications to List, Tree, and Graph Problems,º
Proc. 27th Ann. Symp. Foundations of Computer Science, pp. 478-491,
1986.

[7] D. Coppersmith and S. Winograd, ªMatrix Multiplication via
Arithmetic Progressions,º Proc. 19th ACM Symp. Theory of
Computing, pp. 1-6, 1987.

[8] S.K. Das and P. Ferragina, ªAn o�n� Work EREW Parallel
Algorithm for Updating MST,º Proc. European Symp. Algorithms,
pp. 331-342, 1994.

[9] E.A. Dinitz, ªMaintaining the 4-Edge-Connected Components of a
Graph On-Line,º Proc. Second Israel Symp. Theory of Computing and
Systems, pp. 88-99, 1993.

[10] D. Eppstein, Z. Galil, G.F. Italiano, and A. Nissenzweig,
ªSparsificationÐA Technique for Speeding Up Dynamic Graph
Algorithms,º J. ACM, vol. 44, pp. 669-696, 1997.

[11] D. Eppstein, Z. Galil, and G.F. Italiano, ªImproved Sparsification,º
Technical Report, TR93-20, Dept. of Information and Computer
Science, Univ. of California, Irvine, 1993.

[12] S. Even and Y. Shiloach, ªAn On-Line Edge Deletion Problem,º
J. ACM, vol. 28, pp. 1-4, 1981.

[13] P. Ferragina, ªStatic and Dynamic Parallel Computation of
Connected Components,º Information Processing Letters, vol. 50,
pp. 63-68, 1994.

[14] P. Ferragina, ªAn EREW PRAM Fully-Dynamic Algorithm for
MST,º Proc. Ninth Int'l Conf. Parallel Processing Symp., pp. 93-100,
1995.

[15] G.N. Frederickson, ªData Structures for On-Line Updating of
Minimum Spanning Trees,º SIAM J. Computing, vol. 14, pp. 781-
798, 1985.

[16] G.N. Frederickson, ªAmbivalent Data Structures for Dynamic
2-Edge-Connectivity and k Smallest Spanning Trees,º Proc. 32nd
Ann. Symp. Foundations of Computer Science, pp. 632-641, 1991.

[17] D. Fussel, V. Ramachandran, and R. Thurimella, ªFinding
Triconnected Components by Local Replacement,º SIAM J.
Computing, vol. 22, pp. 587-615, 1993.

[18] Z. Galil and G.F. Italiano, ªReducing Edge Connectivity to Vertex
Connectivity,º SIGACT News, vol. 22, pp. 57-61, 1991.

[19] Z. Galil and G.F. Italiano, ªFully Dynamic Algorithms for 2-Edge-
Connectivity, Fully Dynamic Algorithms for 2-Edge-Connectiv-
ity,º SIAM J. Computing, vol. 21, pp. 1047-1069, 1992.

[20] Z. Galil and G.F. Italiano, ªFully Dynamic Algorithms for 2-Edge-
Connectivity, Maintaining the 3-Edge-Connected Components of
a Graph On-Line,º SIAM J. Computing, vol. 22, pp. 11-28, 1993.

[21] Z. Galil and G.F. Italiano, ªFully Dynamic Algorithms for 2-Edge-
Connectivity, Fully Dynamic Algorithms for 3-Edge-Connectiv-
ity,º Manuscript, 1992.

[22] F. Harary, Graph Theory. Reading, Mass.: Addison-Wesley, 1969.
[23] M.R. Henzinger and V. King, ªFully Dynamic Algorithms for

2-Edge-Connectivity, Full Dynamic Biconnectivity and Transitive
Closure,º Proc. 36th Symp. Foundations of Computer Science, pp. 664-
672, 1995.

[24] M.R. Henzinger and V. King, ªFully Dynamic Algorithms for
2-Edge-Connectivity, Randomized Dynamic Graph Algorithms
with Polylogarithmic Time per Operation,º Proc. 27th Symp.
Theory of Computing, pp. 519-527, 1995.

[25] M.R. Henzinger and V. King, ªFully Dynamic Algorithms for
2-Edge-Connectivity, Maintaining Minimum Spanning Trees in
Dynamic Graphs,º Proc. 24th Int'l Colloquium on Automata,
Languages, and Programming, pp. 594-604, 1997.

[26] M.R. Henzinger and H. La PoutreÂ, ªCertificates and Fast
Algorithms for Biconnectivity in Fully-Dynamic Graphs,º Proc.
Third European Symp. Algorithms, pp. 171-184, 1995.

[27] M.R. Henzinger and M. Thorup, ªSampling to Provide or to
Bound: With Applications to Fully Dynamic Graph Algorithms,º
Random Structures and Algorithms, vol. 11, pp. 369-379, 1997.

[28] J. Holm, K. de Lichtenberg, and M. Thorup, ªPoly-Logarithmic
Deterministic Fully-Dynamic Algorithms for Connectivity, Mini-
mum Spanning Tree, 2-Edge, and Biconnectivity,º Proc. 30th Symp.
Theory of Computing, pp. 79-89, 1998.

[29] K. Iwama, C. Iwamoto, and T. Ohsawa, ªA Faster Parallel
Algorithm for k-Connectivity,º Information Processing Letters,
vol. 61, pp. 265-269, 1997.

[30] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen, ªOn-Line
Maintenance of the Four-Connected Components of a Graph,º
Proc. 32nd Ann. Symp. Foundations of Computer Science, pp. 793-801,
1991.

[31] R.M. Karp and V. Ramachandran, ªParallel Algorithms for Shared
Memory Machines,º Handbook of Theoretical Computer ScienceÐ-
Volume A: Algorithms and Complexity, J. Van Leeuwen, ed.,
Cambridge, Mass.:, MIT Press, 1990.

[32] S. Khuller and B. Schieber, ªEfficient Parallel Algorithms for
Testing Connectivity and Finding Disjoint s±t Paths in Graphs,º
SIAM J. Computing, vol. 20, pp. 352-375, 1991.

[33] J.A. La PoutreÂ, ªMaintenance of Triconnected Components of
Graphs,º Proc. 19th Int'l Colloquium Automata, Languages and
Programming, LNCS 623, pp. 354-365, 1992.

[34] J.A. La PoutreÂ, J. van Leeuwen, and M.H. Overmars,
ªMaintenance of 2- and 3-Connected Components of Graphs,
Part I: 2- and 3-Edge-Connected Components,º Discrete Math.,
vol. 114, pp. 329-359, 1993.

[35] W. Liang and B.D. McKay, ªFully Dynamic Maintenance of
Minimum Spanning Trees by Using a Sublinear Number of
Processors,º Manuscript, http://cs.anu.edu.au/~Weifa.Liang/
Unpublished_manuscripts, Dec. 1994.

[36] W. Liang and H. Shen, ªFully Dynamic Maintaining 2-Edge
Connectivity in Parallel,º Proc. Seventh Symp. Parallel and
Distributed Processing, pp. 216-223, 1995.

[37] R.J. Lipton and R.E. Tarjan, ªA Separator Theorem for Planar
Graphs,º SIAM J. Applied Math., vol. 3, pp. 177-189, 1979.

[38] H. Nagamochi and T. Ibaraki, ªA Linear Time Algorithm for
Finding a Sparse k-Connected Subgraph of a k-Connected Graph,º
Algorithmica, vol. 7, pp. 583-596, 1992.

[39] H. Nagamochi and T. Ibaraki, ªComputing Edge-Connectivity in
Multigraphs and Capacitated Graphs,º SIAM J. Discrete Math.,
vol. 5, pp. 54-66, 1992.

LIANG ET AL.: FULLY DYNAMIC MAINTENANCE OF K-CONNECTIVITY IN PARALLEL 863

[40] M. Rauch, ªFully Dynamic Biconnectivity in Graphs,º Proc. 33rd
Symp. Foundations of Computer Science, pp. 50-59, 1992.

[41] M. Rauch, ªImproved Data Structures for Fully Dynamic
Biconnectivity,º Proc. 26th Symp. Theory of Computing, pp. 686-
695, 1994.

[42] B.S. Schieber and U. Vishkin, ªOn Finding Lowest Common
Ancestors: Simplification and Parallelization,º SIAM J. Computing,
vol. 17, pp. 1253-1262, 1988.

[43] Y. Shiloach and U. Vishkin, ªAn O�logn� Parallel Connectivity
Algorithm,º J. Algorithms, vol. 3, pp. 57-67, 1982.

[44] R.E. Tarjan and U. Vishkin, ªAn Efficient Parallel Biconnectivity
Algorithm,º SIAM J. Computing, vol. 14, pp. 862-864, 1985.

[45] J. Westbrook and R.E. Tarjan, ªMaintaining Bridge-Connected and
Biconnected Components On-Line,º Algorithmica, vol. 7, pp. 433-
464, 1992.

Weifa Liang (M '99-SM '01)received the PhD
degree from the Australian National University in
1998, the ME degree from the University of
Science and Technology of China in 1989, and
the BSc degree from Wuhan University, China in
1984, all in computer science. He is currently a
lecturer in the Department of Computer Science
at the Australian National University. His re-
search interests include routing protocol design

for high speed networks, design and analysis of parallel and distributed
algorithms, data warehousing and OLAP, query optimization, and graph
theory. He is a senior member of the IEEE.

Richard P. Brent (M'72-SM'83-F'91) received
the BSc (hons) degree in mathematics from
Monash University, Australia in 1968 and the
PhD degree in computer science from Stanford
University, California in 1971. Since 1998, he
has been a professor of computing science at
Oxford University, England. His research inter-
ests include parallel computer architectures,
analysis of algorithms (especially parallel algo-
rithms), numerical analysis, and computational

number theory. He is a member of AMS, SIAM, Sigma Xi, and a fellow
of the ACM and of the IEEE.

Hong Shen is a professor of computer science
and research director of the Parallel Computing
Unit in the School of Computing and Information
Technology, Griffith University, Australia. He has
published extensively in the areas of parallel and
distributed computing, high-performance net-
working, algorithms, and data mining. He has
served as editor, associate editor, and editorial
board member of five international journals and
chaired several international conferences.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

